Topological Methods in Nonlinear Analysis Volume 47, No. 1, 2016, 333–345 DOI: 10.12775/TMNA.2016.009

O 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

REMETRIZATION RESULTS FOR POSSIBLY INFINITE SELF-SIMILAR SYSTEMS

Radu Miculescu — Alexandru Mihail

ABSTRACT. In this paper we introduce a concept of possibly infinite selfsimilar system which generalizes the attractor of a possibly infinite iterated function system whose constitutive functions are φ -contractions. We prove that for a uniformly possibly infinite self-similar system there exists a remetrization which makes contractive all its constitutive functions. Then, based on this result, we show that for such a system there exist a comparison function φ and a remetrization of the system which makes φ -contractive all its constitutive functions. Finally we point out that in the case of a finite set of constitutive functions our concept of a possibly infinite self-similar system coincides with Kameyama's concept of a topological self-similar system.

1. Introduction

In order to generalize the notion of the attractor of an iterated function system A. Kameyama (see [10]) introduced the concepts of topological self-similar set and self-similar topological system as follows:

DEFINITION 1.1. A compact Hausdorff topological space K is called a topological self-similar set if there exist continuous functions $f_1, \ldots, f_N \colon K \to K$, where $N \in \mathbb{N}^* = \{1, 2, \ldots\}$, and a continuous surjection $\pi \colon \Lambda \to K$, where

²⁰¹⁰ Mathematics Subject Classification. 28A80, 37B10, 37C70, 54E35.

Key words and phrases. Possibly infinite self-similar systems; remetrizations; φ -contractions.

 $\Lambda = \{1, \ldots, N\}^{\mathbb{N}^*}$, such that the diagram

commutes for all $i \in \{1, \ldots, N\}$, where

$$\tau_i(\omega_1\dots\omega_m\omega_{m+1}\dots)=i\omega_1\dots\omega_m\omega_{m+1}\dots \quad \text{for each } \omega_1\dots\omega_m\omega_{m+1}\dots\in\Lambda.$$

We say that $(K, \{f_i\}_{i \in \{1,...,N\}})$, a topological self-similar set together with a set of continuous maps as above, is a topological self-similar system.

He asked the following fundamental question (see [10]): Given a topological self-similar system $(K, \{f_i\}_{i \in \{1,...,N\}})$, does there exist a metric on K compatible to the topology such that all the functions f_i are contractions? Such a metric is called a self-similar metric. L. Janoš ([8] and [9]) settles the case N = 1.

On the one hand, Kameyama provided a topological self-similar set which does not admit a self-similar metric and, on the other hand, he proved that every totally disconnected self-similar set and every non-recurrent finitely ramified selfsimilar set have a self-similar metric.

R. Atkins, M. Barnsley, A. Vince and D. Wilson [1] gave an affirmative answer to the above question for self-similar sets derived from affine transformations on \mathbb{R}^m (see also [12] for a generalization of this result for a Banach space $(X, \|\cdot\|)$ instead of the Banach space \mathbb{R}^m and for an arbitrary set *I* instead of the set $\{1, \ldots, N\}$), M. Barnsley and A. Vince [4] for projectives functions and A. Vince [14] for Möbius transformations.

The problem of the existence of a self-similar metric on a self-similar set was also studied by K. Hveberg [7], M. Barnsley and K. Igudesman [3], T. Banakh, W. Kubiś, N. Novosad, M. Nowak and F. Strobin [2].

In [13], we modified Kameyama's question (which, as we have seen, has a negative answer for an arbitrary topological self-similar system) by weakening the requirement that the functions in the topological self-similar system are contractions to requiring that they are φ -contractions. More precisely, we gave an affirmative answer to the following question: Given a topological self-similar system $(K, \{f_i\}_{i \in \{1,...,N\}})$, does there exist a metric δ on K which is compatible with the original topology and a comparison function φ such that $f_i: (K, \delta) \to$ (K, δ) is φ -contraction for each $i \in \{1, ..., N\}$?

In this paper we study the case of a possibly infinite family of functions $(f_i)_{i \in I}$. We introduce the concept of possibly infinite self-similar system which generalizes the notion of the attractor of a possibly infinite iterated function system whose constitutive functions are φ -contractions (see Proposition 3.7).

334