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NONLINEAR NONCOERCIVE NEUMANN PROBLEMS
WITH A REACTION CONCAVE NEAR THE ORIGIN

PAsQuUALE CANDITO — GIUSEPPINA D’AGUf
NIKOLAOS S. PAPAGEORGIOU

ABSTRACT. We consider a nonlinear Neumann problem driven by the p-
Laplacian with a concave parametric reaction term and an asymptotically
linear perturbation. We prove a multiplicity theorem producing five non-
trivial solutions all with sign information when the parameter is small. For
the semilinear case (p = 2) we produce six solutions, but we are unable to
determine the sign of the sixth solution. Our approach uses critical point
theory, truncation and comparison techniques, and Morse theory.

1. Introduction

Let © C RY be a bounded domain with a C?-boundary 9. In this paper,

we study the following nonlinear Neumann problem:

—Apu+ B(2)ulP~2u = Aul?2u+ f(z,u) in Q,
(Px) ou

— = on 0,
for B € L>(Q), B(z) > 0 almost everywhere in 2, with g # 0, Apu :=
div(||Vu||P~2Vu) the p-Laplacian operator, 1 < p < +o0o, and n(-) the out-
ward unit normal on 992. Moreover, A > 0 is a parameter and ¢ € (1,p). So,
the term \|z|97 2z is strictly sublinear (concave term). In addition, we assume
that the perturbation f(z,x) is a Carathéodory function (i.e. for all € R,
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z + f(z,x) is measurable and for almost all z € Q, x — f(z,z) is continuous)
which exhibits (p — 1)-linear growth near +occ.

Our aim in this paper is to prove a multiplicity theorem for problem (P))
for certain values of the parameter A and provide sign information for all solu-
tions produced. More precisely, we show that for all parameters A > 0 suitably
small, problem (P)) has at least five nontrivial smooth solutions, four of con-
stant sign (two positive and two negative, Proposition 3.6) and the fifth is nodal
(Theorem 4.3). In the semilinear case (p = 2), we produce six nontrivial smooth
solutions, but we are unable to determine the sign of the sixth solution (Theo-
rem 5.2).

In the past, problems with concave terms and asymptotically linear pertur-
bations were studied primarily in the context of semilinear (p = 2) Dirichlet
equations. We mention the works of de Paiva and Massa [4], Hu and Papa-
georgiou [12], Li, Wu and Zhou [16], Perera [25] and Wu and Yang [27]. Ex-
tensions to the Dirichlet p-Laplacian can be found in Guo and Zhang [10] (for
p > 2), Gasinski and Papageorgiou [8] (singular problems), [9] (positive solu-
tions of anisotropic problems), Kyritsi and Papageorgiou [14] (pairs of positive
solutions) and Motreanu, Motreanu and Papageorgiou [19] (problems which have
an asymmetric reaction, superlinear in the positive direction and coercive in the
negative direction; this leads to a different geometry and a distinct multiplicity
theorem with respect to our framework). For Neumann equations we mention
the work of Motreanu, Motreanu and Papageorgiou [20], who study the equation

—Apu+ NuP"?u = f(z,u) in Q, % =0 on 0.

Here A > 0 is a parameter and f(zx,z) is a Carathéodory reaction exhibiting
a concave term near zero. A multiplicity result is proved (including a nodal
solution) for A > 0 small (Theorem 4.3).

We should also mention the work of Motreanu, Motreanu and Papageor-
giou [21] which inspired our results on the semilinear case (see Section 5).

Our approach uses critical point theory, combined with suitable truncation
and comparison techniques, and with Morse theory (critical groups).

The paper is arranged as follows. In the next section, for the convenience
of the reader, we recall the main mathematical tools that we use in this work.
Section 3 is devoted to constant sign solutions for (P} ), Section 4 to the existence
of a nodal solution, and the semilinear case is studied on Section 5.

2. Mathematical background

Let X be a Banach space and X* its topological dual. By (-, -) we denote
the duality brackets for the pair (X*, X). Given ¢ € C1(X), we say that ¢
satisfies the “Cerami condition” (the “C-condition” for short), if the following is



