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POSITIVE SOLUTIONS

OF A DIFFUSIVE PREDATOR-PREY MUTUALIST MODEL

WITH CROSS-DIFFUSION

Jun Zhou

Abstract. In this paper, a competitor-competitor-mutualist model with

cross-diffusion is studied by means of the Leray–Schauder degree theory and
global bifurcation theory. The conditions for the existence and multiplicity

of positive solutions are established.

1. Introduction

The competitor-competitor-mutualist model is the following ODE system:

(1.1)



du1

dt
= αu1

(
1− u1

K1
− δu2

1 +mu3

)
, t > 0,

du2

dt
= βu2

(
1− u2

K2
− ηu1

)
, t > 0,

du3

dt
= γu3

(
1− u3

L0 + lu1

)
, t > 0,

where u1, u2 and u3 represent the population densities of two competitors and

a mutualist. Model (1.1) was proposed and studied by Rai et al. in [17], where

the explanations of the ecological background of this model can be found as well.
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Zheng [24] introduced diffusion to (1.1) to get the following reaction-diffusion

system:

(1.2)



∂u1

∂t
− d1∆u1 = αu1

(
1− u1

K1
− δu2

1 +mu3

)
, x ∈ Ω, t > 0,

∂u2

∂t
− d2∆u2 = βu2

(
1− u2

K2
− ηu1

)
, x ∈ Ω, t > 0,

∂u3

∂t
− d3∆u3 = γu3

(
1− u3

L0 + lu1

)
, x ∈ Ω, t > 0,

∂ui
∂ν

(x, t) = 0 o rui(x, t) = 0, i = 1, 2, 3, x ∈ ∂Ω, t > 0,

ui(x, 0) = ui0(x), i = 1, 2, 3, x ∈ Ω,

where Ω is a bounded domain in RN (N ≥ 1 is an integer) with smooth boundary

∂Ω, ∂/∂ν is the outward normal derivative on ∂Ω. The homogeneous Neumann

boundary ∂ui

∂ν

∣∣
∂Ω×(0,∞)

= 0 means there is no migration of all species across the

boundary of their habitat. While the homogeneous Dirichlet boundary condition

ui|∂Ω×(0,∞) = 0 can be considered as such a condition under which neither of

the three species can exist on the boundary. The positive constants d1, d2 and d3

are called diffusion coefficients, the initial data ui0 are nonnegative continuous

functions. Zheng discussed the stability of nonnegative constant solutions of

(1.2) with Neumann boundary and the existence and stabilities of trivial and

nontrivial nonnegative equilibrium solutions with Dirichlet boundary.

The steady-states of (1.2) with Dirichlet boundary were studied by Chen and

Wang in [5], and Hei in [12], and the conditions for the existence of coexistence

states and the corresponding parameter regions were established by. While the

steady-states of (1.2) with Neumann boundary were investigated by Cheng and

Wang in [4], and Xu in [22], and the global stability of the unique positive con-

stant steady-state and the existence and non-existence of non-constant positive

steady-state were established.

Taking into account the inter-specific population pressure between two com-

petitors, Chen and Peng [3] introduced a cross-diffusion into (1.2) and considered

the following elliptic system after scaling:

(1.3)



− d1∆u1 = u1

(
1− u1 −

σu2

1 + u3

)
, x ∈ Ω,

− d2∆[(1 + d4u1)u2] = u2(1− u2 − u1), x ∈ Ω,

− d3∆u3 = u3

(
1− u3

1 + u1

)
, x ∈ Ω,

∂ui
∂ν

(x) = 0, i = 1, 2, 3, x ∈ ∂Ω.
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System (1.3) is a quasi-linear elliptic system and the term d4u1u2 is called the

cross-diffusion term. The existence and non-existence results concerning non-

constant positive steady-states were proved in that paper.

Based on the above consideration, a natural question is how about the sta-

tionary patterns of (1.2) with cross-diffusion and Dirichlet boundary. In this

paper, we will investigate this problem. After scaling, we consider the following

problem:

(1.4)



−∆u = u

(
a− u− rv

1 +mw

)
, x ∈ Ω,

−∆[(1 + κu)v] = v(b− v + du), x ∈ Ω,

−∆w = w

(
c− w

1 + nu

)
, x ∈ Ω,

u = v = w = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1 is an

integer. The parameters a, c, d, r,m, n are positive, b ∈ R, and κ is nonnegative.

Analysis of the existence and multiplicity of positive solutions to (1.4) is the

main goal of this paper. Positive solutions here refer to those solutions being

component-wise strictly positive in Ω. Our method is based on the bifurcation

theory and the Leray–Schauder degree theory.

The rest of this paper is organized as follows. In Section 2, we give some

preliminary results that are needed in later discussions. In Section 3, we obtain

sufficient conditions for the existence of positive solutions to (1.4). In Section 4,

we give some multiplicity results about the positive solutions to (1.4).

2. Preliminaries

In this section we list some notation, definitions and well-known facts which

will be used in the sequel. We use ‖·‖X as the norm of Banach space X, 〈 · , · 〉 as

the duality pair of a Banach space X and its dual space X∗. For a linear opera-

tor L, we use N (L) as the null space of L and R(L) as the range space of L, and

we use L[w] to denote the image of w under the linear mapping L. For a mul-

tilinear operator L, we use L[w1, . . . , wk] to denote the image of (w1, . . . , wk)

under L, and when w1 = . . . = wk, we use L[w1]k instead of L[w1, . . . , w1]. For

a nonlinear operator F , we use Fu as the partial derivative of F with respect to

the argument u.

First we recall some well-known abstract bifurcation theorems. Consider an

abstract equation

F (λ, u) = 0,
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where F : R×X → Y is a nonlinear differential mapping, and X,Y are Banach

spaces such that X is continuously embedded in Y . The following bifurcation

and stability theorems were obtained in [6], [7], [16] (see also [19], [20]).

Theorem 2.1. Let U be a neighbourhood of (λ0, u0) in R×X, and F : U → Y

be a twice continuously differentiable mapping. Assume that F (λ, u0) = 0 for all

(λ, u0) ∈ U . At (λ0, u0), F satisfies

dimN (Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1

and

Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)).

Here N (Fu(λ0, u0)) = span{w0}. Let Z be the complement of span{w0} in X.

Then the solution set of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves

u = u0 and Γ := {(λ(s), u(s)) : s ∈ I = (−ε, ε)}, where λ : I → R, z : I → Z are

C1 functions such that u(s) = u0 + sw0 + sz(s), λ(0) = λ0, z(0) = 0, and

λ′(0) = −〈`, Fuu(λ0, u0)[w0, w0]〉
2〈`, Fλu(λ0, u0)[w0]〉

,

where ` ∈ Y ∗ satisfies R(Fu(λ0, u0)) = {φ ∈ Y : 〈`, φ〉 = 0}. Moreover, if in

addition, Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ U , then the bifurcation

curve Γ is contained in Σ, which is a connected component of S, where S :=

{(λ, u) ∈ U : F (λ, u) = 0, u 6= u0}; and either Σ is not compact in U , or Σ

contains a point (λ∗, u0) with λ∗ 6= λ0.

Theorem 2.2. Assume that all assumptions in Theorem 2.1 are satisfied,

and let {λ(t), u(t)} be the solution curve in Theorem 2.1. Then there exist C2

functions m : (λ0− ε, λ0 + ε)→ R, z : (λ0− ε, λ0 + ε)→ X, µ : (−δ, δ)→ R, and

w : (−δ, δ)→ X such that

Fu(λ, u0)z(λ) = m(λ)z(λ), λ ∈ (λ0 − ε, λ0 + ε),

Fu(λ(t), u(t))w(t) = µ(t)w(t), t ∈ (−δ, δ),

where m(λ0) = µ(0) = 0, z(λ0) = w(0) = w0. Moreover, near t = 0 the functions

µ(t) and −tλ′(t)m′(λ0) have the same zeros and, whenever µ(t) 6= 0, the same

sign. More precisely,

lim
t→0

−tλ′(t)m′(λ0)

µ(t)
= 1.

For each q(x) ∈ C(Ω), the eigenvalues of

−∆u+ qu = λu, x ∈ Ω, u = 0, x ∈ ∂Ω,

are denoted by λi(q), i= 1, 2, . . . Then λ1(q)< λ2(q)≤ . . . and lim
i→∞

λi(q)=∞.

It is well known that λi(q) is strictly increasing in the sense that q1(x) ≤ q2(x)

and q1(x) 6≡ q2(x) implies λi(q1) < λi(q2). Moreover, the eigenfunction corre-

sponding to λ1(q) can be chosen positive in Ω. We denote λi(0) by λi and let
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φ1(x) be the eigenfunction corresponding to λ1 with normalization ‖φ1‖L2(Ω) = 1

(see [23, Proposition 1.1]).

Now we give two results for comparison of eigenvalues (see [1], [9], [14], [21]).

Theorem 2.3. Let q ∈ C(Ω) and M be a sufficiently large number such that

M > q(x) for all x ∈ Ω, define a positive and compact operator

L := (−∆ +M)−1(M − q(x)) : C0(Ω)→ C0(Ω),

where C0(Ω) : {ϕ ∈ C(Ω) : ϕ = 0 on ∂Ω}. Denote the spectral radius of L by

r(L). Then we have:

(a) λ1(q) > 0 if and only if r(L) < 1;

(b) λ1(q) < 0 if and only if r(L) > 1;

(c) λ1(q) = 0 if and only if r(L) = 1.

Theorem 2.4. Let q(x) ∈ C(Ω) and φ ∈ C(Ω) ∩ C2(Ω) such that φ ≥ 0,

φ 6≡ 0 in Ω, and φ = 0 on ∂Ω. Then:

(a) λ1(q) < 0 if 0 6≡ −∆φ+ q(x)φ ≤ 0;

(b) λ1(q) = 0 if −∆φ+ q(x)φ ≡ 0;

(c) λ1(q) > 0 if 0 6≡ −∆φ+ q(x)φ ≥ 0.

Consider the following single equation:

(2.1) −∆u = uf(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω,

where f : Ω× [0,∞) 7→ R satisfies:

(1) f(x, u) is a Cα-function in x, where 0 < α < 1;

(2) f(x, u) is a C1-function in u with fu(x, u) < 0 for all (x, u) ∈ Ω× [0,∞);

(3) f(x, u) ≤ 0 in Ω× [C,∞) for some positive constant C.

Theorem 2.5 (see [2], [15]). Under assumptions (1)–(3). The following

conclusions hold:

(a) The nonnegative solution u of (2.1) satisfies u(x) ≤ C for all x ∈ Ω.

(b) If λ1(−f(x, 0)) ≥ 0, then (2.1) has no positive solutions. Moreover, the

trivial solution u = 0 is globally asymptotically stable.

(c) If λ1(−f(x, 0)) < 0, then (2.1) has a unique positive solution which is

globally asymptotically stable. In this case, the trivial solution u = 0 is

unstable.

Due to the above theorem, we denote by θa the unique positive solution of

the following problem:

−∆u = u(a− u), x ∈ Ω, u = 0, x ∈ ∂Ω,

under the assumption a > λ1. It is well known that the mapping a 7→ θa is

strictly increasing, continuously differentiable on (λ1,∞), and θa → 0 uniformly

on Ω as a→ λ1. Moreover, 0 < θa < a in Ω.
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Now, let us recall a result of the fixed point index theory, which is a funda-

mental tool in our proofs.

Let E be a Banach space and W ⊂ E be a closed convex set. The set W is

called a total wedge if γW ⊂ W for all γ ≥ 0 and W −W = E. For y ∈ W,

define Wy = {x ∈ E : y + γx ∈ W for some γ > 0} and Sy = {x ∈ Wy :

−x ∈ Wy}. ThenWy is a wedge containingW, y,−y, while Sy is a closed subset

of E containing y. Let T be a compact linear operator on E which satisfies

T (Wy) ⊂ Wy. We say that T has property a on Wy if there are t ∈ (0, 1) and

ω ∈ Wy \ Sy such that (I − tT )ω ∈ Sy. Let A : W →W be a compact operator

with a fixed point y ∈ W and A be Fréchet differentiable at y. Let B = A′(y)

be the Fréchet derivative of A at y. Then B maps Wy into itself. We denote by

degW(I − A,D) the degree of I − A in D relative to W, by indexW(A, y) the

fixed point index of A at y relative to W.

Theorem 2.6 (see [8], [14], [18]). Assume that I−B has no non-trivial kernel

in Wy. Then:

(a) If B has property a on Wy, then indexW(A, y) = 0.

(b) If B does not have property a on Wy, then indexW(A, y) = (−1)σ, where

σ is the sum of multiplicities of all eigenvalues of B which is greater

than 1.

Finally, we recall a result of Dancer and Du in [10]. Suppose E1 and E2

are ordered Banach spaces with positive cones W1 and W2, respectively. Let

E = E1 ⊕ E2 and W = W1 ⊕ W2. Then E is an ordered Banach space with

positive cone W. Let D be an open set in W containing 0 and Ai : D →Wi be

completely continuous operators, i = 1, 2. Denote by (u, v) a general element

in W with u ∈ W1 and v ∈ W2. Let A : D → W be defined by A(u, v) =

(A1(u, v), A2(u, v)). Also we define W2(ε) = {v ∈ W2 : ‖v‖E2 < ε}.

Theorem 2.7. Suppose Ũ ⊂ W1 ∩ D is relatively open and bounded, and

A1(u, 0) 6= u for u ∈ ∂Ũ , A2(u, 0) ≡ 0 for u ∈ Ũ . Suppose A2 : D → W2

extends to a continuously differentiable mapping of a neighbourhood of D into

E2, W2−W2 is dense in E2 and Φ = {u ∈ U : u = A1(u, 0)}. Then the following

conclusions are true:

(a) degW(I − A, Ũ × W2(ε), 0) = 0 for ε > 0 small, if for any u ∈ Φ,

the spectral radius r(A′2(u, 0)|W2
) > 1 and 1 is not an eigenvalue of

A′2(u, 0)|W2
corresponding to a positive eigenvector;

(b) degW(I −A, Ũ ×W2(ε), 0) = degW1
(I −A1|W1 , Ũ , 0) for ε > 0 small, if

for any u ∈ Φ, the spectral radius r(A′2(u, 0)|W2) < 1.
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3. Existence of positive solutions

In this section, we will derive some sufficient conditions for the existence of

positive solutions to (1.4). For (1.4), only nonnegative solutions are of practical

interest. Obviously, (1.4) has a trivial nonnegative solution (0, 0, 0). As in [10],

[11], the other nonnegative solutions of (1.4) can be classified by three types:

(1) nonnegative solutions with exactly two components identically zero;

(2) nonnegative solutions with exactly one component identically zero;

(3) nonnegative solutions with no component identically zero.

We call solutions of types 1–3 weakly semi-trivial solutions, strongly semi-trivial

solutions and positive solutions, respectively. It is obvious that (1.4) has weakly

semi-trivial solutions (θa, 0, 0) if and only if a > λ1, (0, θb, 0) if and only if b > λ1,

(0, 0, θc) if and only if c > λ1.

Next, we analyze the strong semi-trivial solutions of (1.4). When u = 0,

(1.4) has a strongly semi-trivial solution (0, θb, θc) if and only if b, c > λ1.

When v = 0, by virtue of Theorem 2.5, (1.4) has a strong semi-trivial solution

(θa, 0, θ(a,c)) if and only if a, c > λ1, where θ(a,c) is the unique positive solution

of the problem

(3.1) −∆w = w

(
c− w

1 + nθa

)
, x ∈ Ω, w = 0, x ∈ ∂Ω.

If w = 0, (1.4) degenerates to

(3.2)


−∆u = u(a− u− rv), x ∈ Ω,

−∆[(1 + κu)v] = v(b− v + du), x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Then it follows from [23, Theorem 3.1] that (3.2) admits one positive solution if

one of the following conditions holds true:

(C1) λ1

(
− b+ dθa

1 + κθa

)
< 0 and a >

{
λ1(rθb), if b > λ1;

λ1, if b ≤ λ1.

(C2) λ1

(
− b+ dθa

1 + κθa

)
> 0, b > λ1, and λ1 < a < λ1(rθb).

So, (1.4) has a strongly semi-trivial solution (u, v, 0) if (C1) or (C2) holds, where

(u, v) is a positive solution of (3.2).

By using the transformation z = (1 + κu)v, i.e.

(3.3) v = z/(1 + κu),
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(1.4) can be rewritten as follows:

(3.4)



−∆u = F (u, z, w) := u

(
a− u− rz

(1 + κu)(1 +mw)

)
, x ∈ Ω,

−∆z = G(u, z, w) :=
z

1 + κu

(
b+ du− z

1 + κu

)
, x ∈ Ω,

−∆w = H(u, z, w) := w

(
c− w

1 + nu

)
, x ∈ Ω,

u = z = w = 0, x ∈ ∂Ω.

It is obvious that (1.4) has a positive solution if and only if (3.4) has a positive

solution. So, we will study the existence of positive solutions of (1.4) through

(3.4). Let (u, z, w) be a positive solution of (3.4), then u < a and

(3.5)



−∆u < au, x ∈ Ω,

−∆z <
b+ du

1 + κu
z ≤


b+ ad

1 + aκ
z, d > κb;

bz, d ≤ κb,
x ∈ Ω,

−∆w < cw, x ∈ Ω,

u = z = w = 0, x ∈ ∂Ω,

and it follows from the Krein–Rutman theorem that

(H) a, c > λ1, b > b∗ :=

{
λ1(1 + aκ)− ad, d > κb;

λ1, d ≤ κb.

Since we are interested in positive solutions, we assume that (H) holds through-

out this section.

By the maximum principle, one can get that any nonnegative solution (u, z, w)

of (3.4) satisfies

(3.6) u(x) < a, z(x) < M1 := (b+ad)(1+κa), w(x) < M2 := c(1+na), x ∈ Ω.

In order to use the functional analytic framework of the degree theory, we

introduce

• E := C0(Ω)×C0(Ω)×C0(Ω), where C0(Ω) := {ϕ ∈ C(Ω) : ϕ = 0 on ∂Ω};
• W := K ×K ×K, where K := {ϕ ∈ C0(Ω) : ϕ ≥ 0 on Ω};
• D := {(u, z, w) ∈ W : u < a, z < M1, w < M2 on Ω}, where M1 and

M2 are defined in (3.6).

Then W is a cone of E and D is a bounded open set in W. For any τ ∈ [0, 1],

we define Aτ : D 7→ W by

Aτ (u, z, w) = (−∆ +M)−1

 τF +Mu

τG+Mz

τH +Mw

 ,

where M is a sufficiently large constant with M > max{rM1,M1,M2}.
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It follows from the standard elliptic regularity theory that Aτ is a completely

continuous operator. Moreover, Aτ has no fixed point on ∂D. Let A = A1. Then

(u, z, w) is a solution of (3.4) in W if and only if it is a fixed point of A in D.

Now we start to calculate the indices of the trivial and semi-trivial fixed

points of A. It follows from the relationship between v and z that

(1) A has a trivial fixed point (0, 0, 0);

(2) A has a weak semi-trivial fixed point (θa, 0, 0) if and only if a > λ1;

(3) A has a weak semi-trivial fixed point (0, θb, 0) if and only if b > λ1;

(4) A has a weak semi-trivial fixed point (0, 0, θc) if and only if c > λ1;

(5) A has a strong semi-trivial fixed point (0, θb, θc) if and only if b, c > λ1;

(6) A has a strong semi-trivial fixed point (θa, 0, θ(a,c)) if and only if a, c >

λ1, where θ(a,c) is defined in (3.1);

(7) A has a strong semi-trivial fixed point (u, (1 + κu)v, 0) if (C1) or (C2)

holds, where (u, v) is a positive solution of (3.2).

Lemma 3.1. Assume a, c > λ1 and b 6= λ1. Then:

(a) degW(I −A, D) = 1,

(b) indexW(A, (0, 0, 0)) = 0.

Proof. By homotopic invariance of the degree and as (0, 0, 0) is the only

fixed point of A0 in D, we obtain

degW(I −A, D) = degW(I −A0, D) = indexW(A0, (0, 0, 0)).

It is obvious that indexW(A0, (0, 0, 0)) = 1 and the first conclusion holds.

For the second result. We let y = (0, 0, 0) and B = A′(0, 0, 0), thenWy =W,

Sy = {(0, 0, 0)}, and

B = (−∆ +M)−1

 M + a 0 0

0 M + b 0

0 0 M + c

 .

Since a, c > λ1 and b 6= λ1, it is easy to see that I − B has no non-trivial

kernel in Wy, and ra := r((−∆ +M)−1(M + a)) > 1, by Theorems 2.3 and 2.4.

Furthermore, ra is the principal eigenvalue of the operator (−∆ +M)−1(M + a)

with a corresponding eigenfunction φa > 0 and φa|∂Ω = 0. Set ta = 1/ra ∈ (0, 1),

then (φa, 0, 0) ∈ Wy \ Sy, but (I − taB)(φa, 0, 0) = (0, 0, 0) ∈ Sy. This shows

that B has property a, and the second conclusion follows from Theorem 2.6. �

Lemma 3.2. Assume a, c > λ1. Then we have indexW(A, (θa, 0, 0)) = 0

if λ1

(
− b+dθa

1+κθa

)
6= 0; indexW(A, (0, θb, 0)) = 0 if b > λ1 and a 6= λ1(rθb);

indexW(A, (0, 0, θc) = 0 if b 6= λ1.

Proof. We only prove that indexW(A, (θa, 0, 0)) = 0 since the proofs of the

other two are similar. Let y = (θa, 0, 0). Then we have Wy = C0(Ω) ×K ×K,
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Sy = C0(Ω)× {0} × {0}. Let B = A′(θa, 0, 0), then

B = (−∆ +M)−1


M + a− 2θa − rθa

1 + κθa
0

0 M +
b+ dθa
1 + κθa

0

0 0 M + c

 .

Let B(ξ, η, ζ) = (ξ, η, ζ) for some (ξ, η, ζ) ∈ Wy. Since b 6= g(a) and c > λ1,

η = ζ = 0, then ξ = 0 as λ1(2θa−a) > λ1(θa−a) = 0. It follows from Theorems

2.3 and 2.4 that rc = (−∆ + M)−1(M + c) > 1. Then we can show that B
has property a by a similar argument as in the proof of Lemma 3.1, and the

conclusion follows. �

Lemma 3.3. The following conclusions hold true:

(a) Assume b, c > λ1, then

(i) indexW(A, (0, θb, θc)) = 1 if a < λ1(rθb/(1 +mθc));

(ii) indexW(A, (0, θb, θc)) = 0 if a > λ1(rθb/(1 +mθc)).

(b) Assume a, c > λ1, then

(i) indexW(A, (θa, 0, θ(a,c))) = 1 if λ1(−(b+ dθa)/(1 + κθa)) > 0;

(ii) indexW(A, (θa, 0, θ(a,c))) = 0 if λ1(−(b+ dθa)/(1 + κθa)) < 0.

(c) Assume c > λ1, then indexW(A, S) = 0, where S = ∅ or S = {(u, (1 +

κu)v, 0)} with (u, v) a positive solution of (3.2).

Proof. (a) Let y = (0, θb, θc). Then we have Wy = K × C0(Ω) × C0(Ω),

Sy = {0} × C0(Ω)× C0(Ω). Let B = A′(0, θb, θc), then

B = (−∆ +M)−1


M + a− rθb

1 +mθc
0 0

(d− κb)θb2κθ2
b M + b− 2θb 0

nθ2
c 0 M + c− 2θc

 .

Let B(ξ, η, ζ) = (ξ, η, ζ) for some (ξ, η, ζ) ∈ Wy. Since a 6= λ1(rθb/(1 +mθc))

and ξ ∈ K, ξ = 0. Then η = ζ = 0 as λ1(2θb − b) > λ1(θb − b) = 0 and

λ1(2θc − c) > λ1(θc − c) = 0.

Firstly, we prove conclusion (i). We claim that B does not have property a.

On the contrary, suppose that B has property a. Then there exist t ∈ (0, 1)

and (φ1, φ2, φ3) ∈ Wy \ Sy such that (I − tB)(φ1, φ2, φ3)T ∈ Sy. Since Sy =

{0} × C0(Ω)× C0(Ω), φ1 6= 0 must hold. Then

r

(
(−∆ +M)−1

(
M + a− rθb

1 +mθc

))
≥ 1

t
> 1.
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Then it follows from Theorem 2.3 that λ1

(
−a+ rθb

1+mθc

)
< 0, i.e. a > λ1

(
rθb

1+mθc

)
,

which is a contradiction. So the claim is correct. By Theorem 2.6, we have

indexW(A, (θa, 0, 0)) = (−1)σ,

where σ is the sum of multiplicities of all eigenvalues of B that are greater than

1. Next, we will show σ = 0. To this end, suppose that 1/% > 1 is an eigenvalue

of B with the corresponding eigenfunction (ξ, η, ζ) ∈ Wy, i.e.,

(3.7)



−∆ξ +

(
M − %

(
M + a− rθb

1 +mθc

))
ξ = 0, x ∈ Ω,

−∆η + (M − %(M + b− 2θb))η = %(d− κb)θb2κθ2
bξ, x ∈ Ω,

−∆ζ + (M − %(M + c− 2θc))ζ = nθ2
cξ, x ∈ Ω,

ξ = η = ζ = 0, x ∈ ∂Ω.

Since 0 < % < 1,

λ1

(
M − %

(
M + a− rθb

1 +mθc

))
> −a+ λ1

(
rθb

1 +mθc

)
> 0.

We have ξ = 0, and then η = ζ = 0, what contradicts the fact that (ξ, η, ζ) is an

eigenvalue. Consequently, σ = 0 and conclusion (i) holds.

Secondly, we prove conclusion (ii). It follows from Theorems 2.3 and 2.4 that

ra = r

(
(∆ +M)−1

(
M + a− rθb

1 +mθc

))
> 1.

Then we can show that B has property a by a similar argument as in the proof

of Lemma 3.1, and the conclusion follows.

The proof of (b) is similar to the proof of (a), and we omit it. Now we give

the proof of (c). It is obvious that indexW(A, S) = 0 if S = ∅. So we assume

that S 6= ∅. Let E1 = C0(Ω) × C0(Ω), E2 = C0(Ω), W1 = K × K, W2 = K.

Define

A1(u, z, w) = (−∆ +M)−1

(
F +Mu

G+Mz

)
,

A2(u, z, w) = (−∆ +M)−1(H +Mz),

then A = (A1,A2). A direct calculation shows that A′2(u, (1 + κu)v, 0)|W2 =

(−∆ + M)−1(M + c). Since c > λ1, it follows from Theorems 2.3 and 2.4 that

r(A′2(u, (1 + κu)v, 0)|W2
) > 1, and the conclusion follows from Theorem 2.7. �

Now we establish the existence of positive solution to (1.4).

Theorem 3.4. Assume c > λ1. Then (1.4) (or equivalently (3.4)) admits at

least one positive solution if:

(a) λ1

(
− b+ dθa

1 + κθa

)
< 0 and a >

 λ1

(
rθb

1 +mθc

)
, if b > λ1;

λ1, if b ≤ λ1,
or
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(b) λ1

(
− b+ dθa

1 + κθa

)
> 0, λ1 < a < λ1

(
rθb

1 +mθc

)
, and b > λ1.

Proof. First we consider the case λ1

(
− b+dθa

1+κθa

)
< 0, a > λ1

(
rθb

1+mθc

)
and

b > λ1. Assume, on the contrary, that (3.4) has no positive solution. Then it

follows from the properties of degree that

degW(I −A, D) = indexW(A, (0, 0, 0))(3.8)

+ indexW(A, (θa, 0, 0)) + indexW(A, (0, θb, 0))

+ indexW(A, (0, 0, θc)) + indexW(A, (0, θb, θc))

+ indexW(A, (θa, 0, θ(a,c))) + indexW(A,S).

By Lemmas 3.1–3.3, the left hand side of (3.8) is equal to one, while the right

hand side of (3.8) is equal to zero. This is a contradiction, and thus (3.4) has

a positive solution.

Similarly, we can prove that (3.4) has a positive solution if λ1

(
− b+dθa

1+κθa

)
< 0,

a > λ1 and b < λ1 or λ1(− b+dθa
1+κθa

)
> 0, λ1 < a < λ1

(
rθb

1+mθc

)
, and b > λ1.

Now we prove that (3.4) has a positive solution if λ1

(
− b+dθa

1+κθa

)
< 0, a > λ1

and b = λ1. For fixed a > λ1, there exists a sequence {(bn, un, zn, wn)} such that

λ1

(
− bn + dθa

1 + κθa

)
< 0, bn < λ1, lim

n→∞
bn = λ1,

and (un, zn, wn) is a positive solution of (1.4) with b = bn. By the maximum

principle, there exists a constant C independent of n such that ‖un‖L∞(Ω) +

‖zn‖L∞(Ω) + ‖wn‖L∞(Ω) <∞. It follows from the regularity of elliptic equations

that (un, zn, wn) converges to (u0, z0, w0) in C2(Ω), and obviously (u0, z0, w0) is

a nonnegative solution of (3.4) with b = λ1. Assume, on the contrary, that (3.4)

has no positive solution when b = λ1. Then u0 ≡ 0 or z0 ≡ 0 or w0 ≡ 0. First

we assume that u0 ≡ 0. Let φn := zn/‖zn‖L∞(Ω), then (φn, un, zn) satisfies −∆φn =
φn

1 + κun

(
bn + dun −

zn
1 + κun

)
, x ∈ Ω,

φn = 0, x ∈ ∂Ω.

Since ∥∥∥∥ φn
1 + κun

(
bn + dun −

zn
1 + κun

)∥∥∥∥
L∞(Ω)

≤ C

for some constant C independent of n, then the regularity results of elliptic

equations imply that there exists a nonnegative function φ0 ∈ C2(Ω) with

‖φ0‖L∞(Ω) = 1 such that lim
n→∞

φn = φ0 in C2(Ω), and it satisfies{
−∆φ0 = φ0(λ1 − z0), x ∈ Ω,

φ0 = 0, x ∈ ∂Ω.
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Since φ0 is nonnegative and nontrivial, then φ0 > 0 in Ω by the strong maximum

principle, and so λ1 = λ1(z0), which means z0 ≡ 0. Let ψn = un/‖un‖L∞(Ω). It

follows from the first equation of (1.4) that −∆ψn = ψn

(
a− un −

rzn
(1 + κun)(1 +mwn)

)
, x ∈ Ω,

ψn = 0, x ∈ ∂Ω.

Then by a similar argument, one can show that there exists a positive function

ψ0 ∈ C2(Ω) such that

−∆ψ0 = aψ0, x ∈ Ω, ψ0 = 0, x ∈ ∂Ω,

which means a = λ1, a contradiction. If z0 = 0, one can also show that a = λ1

by a similar argument as above. Finally, if w0 = 0, then we can obtain c = λ1

by the last equation of (1.4) which contradicts c > λ1. �

Next, we make some comments on Theorem 3.4. For fixed c > λ1, we denote

S1 =

{
(a, b) ∈ R× R : λ1

(
− b+ dθa

1 + κθa

)
= 0, a ≥ λ1

}
and

S2 =

{
(a, b) ∈ R× R : a = λ1

(
rθb

1 +mθc

)
, b ≥ λ1

}
.

Then it follows from [23, Lemma 1.6] that S1 can be expressed as

S1 = {(a, b) : b = $(a) for a ≥ λ1},

where $( · ) is a C1-function with respect to a ∈ [λ1,∞) with the following

properties:

(1) $ is strictly monotone decreasing if κλ1 < d, while $ is strictly mono-

tone increasing if κλ1 > d.

(2) $(λ1) = λ1, lim
a→∞

$(a) = −∞ if κλ1 < d and lim
a→∞

$(a) =∞ if κλ1 > d.

(3) $′(λ1) = κλ1 − d.

Similarly, S2 can be expressed as

S2 = {(a, b) : a = τ(b) for b ≥ λ1},

where τ( · ) is a C1-function with respect to b ∈ [λ1,∞) with the following

properties:

(1) τ is strictly monotone increasing.

(2) τ(λ1) = λ1, lim
b→∞

τ(b) =∞.

(3) τ ′(λ1) =

∫
Ω

rφ3
1

1 +mθc
dx

/∫
Ω

φ3
1 dx, where φ1(x) is the positive eigen-

function corresponding to λ1 such that ‖φ1‖L2(Ω) = 1.
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We denote

S := {(a, b) ∈ R× R : τ−1(a) < b < $(a), a > λ1}

∪ {(a, b) : τ−1(a) < b < $(a), a > λ1}.

Then it follows from the properties of $ and τ that

(1) if κλ1 < d, then $(a) < τ−1(a) for all a > λ1;

(2) if κλ1 > d and κλ1 − d 6=
∫

Ω

φ3
1dx

/∫
Ω

rφ3
1

1 +mθc
dx, then S 6= ∅.

b

a
0

λ1

λ1

a=τ(b)

b=ϖ(a)

b

a0 λ1

λ1

a=τ(b)

b

a0 λ1

λ1

b=ϖ(a)a=τ(b)

b=ϖ(a) a=τ(b)

Figure 1. Possible coexistence regions. Left: κλ1 < d, middle: κλ1 > d
and κλ1 −d >

∫
Ω φ

3
1 dx/

∫
Ω(rφ3

1/(1 +mθc)) dx, right: κλ1 > d and κλ1 −d
<

∫
Ω φ

3
1 dx/

∫
Ω(rφ3

1/(1 +mθc)) dx.

Using the notations introduced above, we get the following results from The-

orem 3.4.

Corollary 3.5. Assume c > λ1. Then (1.4) (or equivalently (3.4)) admits

at least one positive solution if

(a) κλ1 < d and {(a, b) ∈ R× R : $(a) < b < τ−1(a), a > λ1} (see the first

graph of Figure 1); or

(b) κλ1 > d and (a, b) ∈ S (see the second and third graphs of Figure 1).

4. Global bifurcation and multiplicity of positive solutions

In this section we continue to study positive solutions of (1.4) (or equivalently

(3.4)) by means of the bifurcation theory. Assume b, c > λ1, then (3.4) has a

strongly semi-trivial solution (0, θb, θc). By linearizing (3.4) at (0, θb, θc), we

obtain the following eigenvalue problem:

(4.1)



∆φ+

(
a− rθb

1 +mθc

)
φ = λφ, x ∈ Ω,

∆ϕ+ ((d− κb)θb + 2κθ2
b )φ+ (b− 2θb)ϕ = λϕ, x ∈ Ω,

∆ψ + nθ2
cφ+ (c− 2θc)ψ = λψ, , x ∈ Ω,

φ = ϕ = ψ = 0, x ∈ ∂Ω.
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A necessary condition for bifurcation is that the principal eigenvalue of (4.1)

is zero, which occurs if a = λ1

(
rθb

1+mθc

)
. Let Φ be the positive eigenfunction

corresponding to a = λ1

(
rθb

1+mθc

)
. We assume that Φ is normalized so that

‖Φ‖L2(Ω) = 1. Since λ1(2θb − b) > 0, −∆ + 2θb − b is invertible. Define

Ψ = (−∆ + 2θb − b)−1[((d− κb)θb + 2κθ2
b )Φ].

Similarly, define

Υ = (−∆ + 2θc − c)−1[nθ2
cΦ].

With the functions defined above, we have the following result regarding the

bifurcation solutions of (3.4) from (0, θb, θc) at a = λ1

(
rθb

1+mθc

)
.

Lemma 4.1. Let b, c > λ1 be fixed. Then a = λ1

(
rθb

1+mθc

)
is a bifurcation value

of (3.4) where positive solutions bifurcate from the line of semi-trivial solutions

{(a, 0, θb, θc) : a > 0}; near
(
λ1

(
rθb

1+mθc

)
, 0, θb, θc

)
, there exists δ > 0 such that all

positive solutions of (3.4) lie on a smooth curve Γ1 = {(a(s), u(s), z(s), w(s)) :

0 < s < δ} and 

a(s) = λ1

(
rθb

1 +mθc

)
+ sa1 + sa2(s),

u(s) = sΦ + su1(s, x),

z(s) = θb + sΨ + sz1(s, x),

w(s) = θc + sΥ + sw1(s, x).

Here s 7→ (a2(s), u1(s, x), z1(s, x), w1(s, x)) is a smooth function from (0, δ) to

R×X ×X ×X for X = C1+σ(Ω) ∩ C0(Ω) with σ ∈ (0, 1) such that a2(0) = 0,

u1(0, x) = z1(0, x) = w1(0, x) = 0 and

(4.2) a1 =

∫
Ω

(
1− rκθb

1 +mθc

)
Φ3 dx+

∫
Ω

r

1 +mθc

(
Ψ− mθb

1 +mθc
Υ

)
Φ2 dx.

Proof. Denote ã := λ1

(
rθb

1+mθc

)
. Let X = C1+σ(Ω) ∩ C0(Ω) and Y =

Cσ(Ω) ∩ C(Ω). Define a nonlinear F : R×X ×X ×X 7→ Y × Y × Y by

F(a, u, z, w) =

 ∆u+ F (a, u, z, w)

∆z +G(u, z, w)

∆w +H(u, z, w)

 ,

where F , G, H are defined in (1.4). By a straightforward calculation, we obtain

F(u,z,w)(a, u, z, w)[ξ, η, ζ] =

 ∆ξ + Fuξ + Fzη + Fwζ

∆η +Guξ +Gxη +Gwζ

∆ζ +Huξ +Hzη +Hwζ

 ,

Fa(a, u, z, w) =

 u

0

0

 , Fa(u,z,w)[ξ, η, ζ] =

 ξ

0

0

 ,
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F(u,z,w)(u,z,w)(a, u, z, w)[ξ, η, ζ]2

=

 Fuuξ
2 + Fzzη

2 + Fwwζ
2 + 2(Fuzξη + Fuwξζ + Fzwηζ)

Guuξ
2 +Gzzη

2 +Gwwζ
2 + 2(Guzξη +Guwξζ +Gzwηζ)

Huuξ
2 +Hzzη

2 +Hwwζ
2 + 2(Huzξη +Huwξζ +Hzwηζ)

 .

At (a, u, z, w) = (ã, 0, θb, θc), it is easy to see that the kernel

N (F(u,z,w)(ã, 0, θb, θc)) = span{(Φ,Ψ,Υ)}

and the range

R(F(u,z,w)(ã, 0, θb, θc)) =

{
(α, β, γ) ∈ Y × Y × Y :

∫
Ω

α(x)Φ(x) = 0

}
.

Then,

Fa(u,z,w)(ã, 0, θb, θc)[Φ,Ψ,Υ] = (Φ, 0, 0) 6∈ R(F(u,z,w)(ã, 0, θb, θc))

by the fact that
∫

Ω
Φ2 dx = 1 6= 0. Thus we can apply Theorem 2.1 to conclude

that the set of positive solutions to (3.4) near (ã, 0, θb, θc) is a smooth curve

Γ1 = {a(s), u(s), z(s), w(s) : s ∈ (0, δ)},

where δ is a small positive constant, such that a(0) = ã, u(s) = sΦ + o(s),

z(s) = θb + sΨ + o(s) and w(s) = θc + sΥ + o(s). Moreover, by Theorem 2.1,

a1 = a′(0) = −
〈`,F(u,z,,w)(u,z,w)(ã, 0, θb, θc)[Φ,Ψ,Υ]2〉

2〈`,Fa(u,z,w)(ã, 0, θb, θc)[Φ,Ψ,Υ]〉
,

where ` is a liner functional on Y × Y × Y defined as

〈`, (α, β, γ)〉 =

∫
Ω

α(x)Φ(x) dx.

Thus,

a1 =

∫
Ω

(
1− rκθb

1 +mθc

)
Φ3 dx+

∫
Ω

r

1 +mθc

(
Ψ− mθb

1 +mθc
Υ

)
Φ2 dx. �

By Theorem 2.1, the curve Γ1 of bifurcating positive solutions is contained

in a connected component Σ of the set of positive solutions of (3.4). Our next

result is about Σ. To this end, denote

P1 := {φ ∈ X : φ(x) > 0, x ∈ Ω, ∂φ/∂ν < 0, x ∈ ∂Ω},

P := {(a, u, z, w) ∈ R+ ×X ×X ×X},

where X is defined in Lemma 4.1.

Theorem 4.2. Assume b, c > λ1 andλ1

(
− b+dθa

1+κθa

)
6= 0, the global bifurcation

curve Σ tends to ∞ in P .
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Proof. Denote ã := λ1

(
rθb

1+mθc

)
and Σ̃ := Σ \ {(ã, 0, θb, θc)}. We need to

prove only Σ̃ ⊂ P . On the contrary, suppose that Σ̃ is not contained in P , then

there exists a point (â, ũ, z̃, w̃) ∈ Σ̃ ∩ ∂P , which is the limit of a sequence of

points {(an, un, zn, wn)}∞n=1 ⊂ Σ ∩ P . It is obvious that ũ ∈ ∂P1, or z̃ ∈ ∂P1, or

w̃ ∈ ∂P1.

Suppose ũ ∈ ∂P1, then ũ ≥ 0 for x ∈ Ω and either ũ(x0) = 0 for some x0 ∈ Ω

or ∂ũ/ν(x0) = 0 for some x0 ∈ ∂Ω. Since ũ satisfies

−∆ũ = ũ

(
â− ũ− rz̃

(1 + κũ)(1 +mw̃)

)
, x ∈ Ω, ũ = 0, x ∈ ∂Ω,

it follows from the maximum principle that ũ ≡ 0. Similarly, we can show that

z̃ ≡ 0 if ṽ ∈ ∂P1 and w̃ ≡ 0 if w̃ ∈ ∂P . Since (â, ũ, z̃, w̃) ∈ Σ and c > λ1, we

have w̃ ≥ θc. Thus we have the following three cases:

(i) (ũ, z̃, w̃) = (0, θb, θc);

(ii) (ũ, z̃, w̃) = (0, 0, θc);

(iii) (ũ, z̃, w̃) = (θa, 0, θ(a,c)).

Next, we will prove that all of the above three cases cannot happen. Suppose (i)

holds. Let Un = un/‖un‖L∞(Ω), then Un satisfies

(4.3)
−∆Un =Un

(
an − un −

rzn
(1 + κun)(1 +mwn)

)
, x ∈ Ω,

Un = 0, x ∈ ∂Ω.

Thanks to the Lp-estimate and Sobolev embedding theorem, there exists a con-

vergent subsequence of {Un}∞n=1, which we relabel as the original one, such that

Un → U in C2(Ω) as n→∞, and U ≥ 0, 6≡ 0 in Ω, which satisfies ‖U‖L∞(Ω) = 1.

Taking limit in (4.3) as n→∞, we obtain

−∆U =

(
â− rθb

1 +mθc

)
U, x ∈ Ω, U = 0, x ∈ ∂Ω.

It follows from Theorem 2.4 that â = ã, which contradicts â 6= ã.

Suppose z̃ = 0 holds. Let Zn = zn/‖zn‖L∞(Ω), then Zn satisfies

(4.4) −∆Zn =
Zn

1 + κun

(
b+ dun −

zn
1 + κun

)
, x ∈ Ω, Zn = 0, x ∈ ∂Ω.

Similarly, by the Lp-estimate and Sobolev embedding theorem, there exists a con-

vergent subsequence of {Zn}∞n=1, which we relabel as the original one, such that

Zn → Z in C2(Ω) as n→∞, and Z ≥ 0, 6≡ 0 in Ω, which satisfies ‖Z‖L∞(Ω) = 1.

Suppose (ii) holds. Taking limit in (4.4) as n → ∞, we obtain b = λ1, which

contradicts b > λ1. Suppose (iii) holds. Taking limit in (4.4) as n → ∞, we

obtain λ1

(
− b+dθa

1+κθa

)
= 0, a contradiction. �

Next, we discuss the stability of the positive solutions obtained im Lem-

ma 4.1.
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Theorem 4.3. Assume the assumptions of Lemma 4.1 hold, and let a1 be

defined as in (4.2). If a1 6= 0, then there exists δ̃ ∈ (0, δ] such that for s ∈ (0, δ̃),

the positive solution (a(s), u(s), z(s), w(s)) got in Lemma 4.1 is not degenerate,

where δ is the constant from Lemma 4.1. Moreover, (u(s), z(s), w(s)) is unstable

if a1 < 0, and it is stable if a1 > 0.

Proof. We use the notations of the proof of Lemma 4.1. In order to study

the stability, we consider the following eigenvalue problem:
L(s)

 ξ(s)

η(s)

ζ(s)

 = µ(s)

 ξ(s)

η(s)

ζ(s)

 , x ∈ Ω,

ξ(s) = η(s) = ζ(s) = 0, x ∈ ∂Ω,

where

L(s) = −F(u,z,w)(a(s), u(s), z(s), w(s)) =
−∆−a(s)+2u(s)+

rz(s)
(1+mw(s))(1+κu(s))2

ru(s)
(1+κu(s))(1+mw(s)) −

rmu(s)z(s)
(1+κu(s))(1+mw(s))2

κbz(s)−dz(s)
(1+κu(s))2 −

2κz(s)2

(1+κu(s))3 −∆−
b+du(s)
1+κu(s) +

2z(s)
(1+κu(s))2 0

−
nw(s)2

(1+nu(s))2 0 −∆−c+
2w(s)

1+nu(s)

.
Furthermore,

lim
s→0
L(s) =

 −∆− ã+
rθb

1 +mθc
0 0

(κb− d)θb − 2κθ2
b −∆− b+ 2θb 0

−nθ2
c 0 −∆− c+ 2θc

 := L0.

Since λ1

(
− ã + rθb

1+mθc

)
= 0, λ1(−b + 2θb) > 0, and λ1(−c + 2θc) > 0, 0 is the

first eigenvalue of L0 with the corresponding eigenfunction (Φ,Ψ,Υ). Moreover,

the real parts of all other eigenvalues of L0 are positive and are apart from 0.

By perturbation of linear operator [13], we know that for s > 0 small L(s) has

a unique eigenvalue µ(s) such that lims→0 µ(s) = 0 and all other eigenvalues of

L(s) have positive real part and apart from 0.

Now we determine the sign of µ(s) for s > 0 small, applying Theorem 2.2.

Consider the following eigenvalue problem:
− F(u,z,w)(a, 0, θb, θc)

 φ(a)

ϕ(a)

ψ(a)

 = γ(a)

 φ(a)

ϕ(a)

ψ(a)

 , x ∈ Ω,

φ(a) = ϕ(a) = ψ(a) = 0, x ∈ ∂Ω.
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Then φ(a) satisfies

(4.5)

 −∆φ(a) +
rθb

1 +mθc
φ(a)− aφ(a) = γ(a)φ(a), x ∈ Ω,

φ(a) = 0, x ∈ ∂Ω.

Since γ(ã) = 0 and φ(ã) = Φ, then differentiating (4.5) with respect to a at

a = ã we obtain that

(4.6)

 −∆χ+
rθb

1 +mθc
χ− ãχ− Φ = γ′(ã)Φ, x ∈ Ω,

χ = 0, x ∈ ∂Ω,

where χ = φ′(ã). Multiplying both sides of (4.6) by Φ and integrating it over Ω,

we obtain

γ′(ã)

∫
Ω

Φ2 dx = −
∫

Ω

Φ2 dx+

∫
Ω

(
−∆χΦ +

rθb
1 +mθc

χΦ− ãχΦ

)
dx

= −
∫

Ω

Φ2 dx+

∫
Ω

χ

(
−∆Φ +

rθb
1 +mθc

Φ− ãΦ

)
dx = −

∫
Ω

Φ2 dx,

that is γ′(ã) = −1. Since a1 6= 0, then it follows from Theorem 2.2 that µ(s) 6= 0

for s > 0 small and

(4.7) lim
s→0

µ(s)

s
= −γ′(ã)a′(0) = a1.

Since all other eigenvalues of L(s) have positive real parts, then the conclusion

follows from (4.7). �

Combining the above preparations, we get the following multiplicity result.

Theorem 4.4. Assume b, c > λ1 and λ1

(
− b+dθa

1+κθa

)
< 0. Let ã = λ1

(
rθb

1+mθc

)
and a1 be defined as in (4.2). If a1 < 0, then there exists a positive constant

ε < ã−λ1 such that (1.4) (or equivalently (3.4)) has at least two positive solutions

if λ1 − ε < a < ã, and it has at least one positive solution if a ≥ ã− ε.

Proof. From Lemma 4.1, (3.4) has a curve Γ1 = {(a(s), u(s), z(s), w(s)) :

0 < s < δ} of positive solutions near (ã, o, θb, θc). Since a1 < 0, a(s) < ã for s > 0

small. Assume, on the contrary, that (3.4) has a unique positive solution (û, ẑ, ŵ)

when a < ã but near det a. Then it is obvious that (û, ẑ, ŵ) is the positive

solution bifurcating from (ã, o, θb, θc), which was obtained in Lemma 4.1, and it is

not degenerate by Theorem 4.3. Thus I −A(u,z,w)(û, ẑ, ŵ) : W(û,ẑ,ŵ) 7→ W(û,ẑ,ŵ)

is invertible, where A is the operator defined in Section 4. Since (û, ẑ, ŵ) is an

isolated interior point of D, indexW (A, (û, ẑ, ŵ)) = ±1. Notice that λ1 < a < ã

for s > 0 small, b, c > λ1 and λ1

(
− b+dθa

1+κθa

)
< 0. It follows from Lemmas 3.1–3.3
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that

1 = degW(A, D)

= indexW(A, (0, 0, 0)) + indexW(A, (θa, 0, 0)) + indexW(A, (0, θb, 0))

+ indexW(A, (0, 0, θc)) + indexW(A, (0, θb, θc)) + indexW(A, (θa, 0, θ(a,c)))

+ indexW(A, S) + indexW(A, (û, ẑ, ŵ))

= 0 + 0 + 0 + 0 + 1 + 0 + 0± 1,

which is a contradiction. Thus if a < ã and near ã, then there exist at least

two positive solutions of (3.4). Since u(s)(x) < a for all x ∈ Ω and there are

no positive solutions if a ≤ λ1, it follows from Theorem 4.2 that there exists

ε ∈ (0, ã − λ1) such that the projection of the closure of the global bifurcation

curve Σ is [a− ε,∞) (see Figure 2), and the conclusion follows. �

 ˜λ1
0 a

u

a  ã−ε

λ1

u=a

Figure 2. Backward bifurcation of u when a1 < 0.

Remark 4.5. If a, c, d, r,m > 0, b ∈ R and κ ≥ 0 are fixed, then Φ,Ψ are

fixed and Υ → ∞ uniformly on any compact subset of Ω as n → ∞. Hence,

there exists a constant n∗ > 0 large enough such that a1 < 0 if n > n∗.
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