ATTRACTORS FOR SECOND ORDER NONAUTONOMOUS LATTICE SYSTEM WITH DISPERSIVE TERM

Xiaolin Xiang - Shengfan Zhou

Abstract

In this paper, we prove the existence of pullback attractor, pullback exponential attractor and uniform attractor for second order nonautonomous lattice system with dispersive term and time-dependent forces. Then we prove the existence of uniform exponential attractor for the system driven by quasi-periodic external forces.

1. Introduction

It is known that there are two important tools to study the asymptotic behavior of non-autonomous evolution equations (see [10], [6], [15]). The first one is the uniform attractor by introducing a so-called skew-product semiflows on a larger phase space, which allows one to embed a given non-autonomous system into an autonomous semiflow, and then to appeal to the general theory of autonomous semiflows. The second one is the pullback attractor (or kernel sections) directly for non-autonomous equations. The uniform attractor and pullback attractor are natural generalizations of the notion of global attractor for a non-autonomous dynamical system. However, these two attractors are usually infinite dimensional and sometimes attract orbits at a relatively slow

[^0]speed leading to take an unexpected long time to be reached, thus the uniform exponential attractor and the pullback exponential attractor having finite fractal dimension and attracting all bounded sets exponentially were introduced, and they have become appropriate alternatives to study the asymptotic behavior of non-autonomous dynamical systems.

Recently, there are several works about the existence of uniform attractor, pullback attractor, kernel sections, pullback and uniform exponential attractor for non-autonomous lattice dynamical systems (LDSs), which arise in many applied areas, see [1]-[4], [9], [17], [21], [22], [24], and the references therein. Of those works, Zhou and Han in [21] and [22] presented some sufficient conditions for the existence of pullback and uniform exponential attractor for the continuous process on Banach space and space of infinite sequences, and applied them to prove the existence of pullback exponential attractors for the first order and partly dissipative non-autonomous LDSs and uniform exponential attractors for the non-autonomous Klein-Gordon-Schrödinger and Zakharov LDSs. Motivated by [21], [22], in this article, we consider the pullback attractor, pullback exponential attractor, uniform attractor for the following second order non-autonomous lattice dynamical system with dispersive term and time-dependent forces

$$
\begin{equation*}
\ddot{u}_{i}+\beta(A \ddot{u})_{i}+\alpha \dot{u}_{i}+\gamma(A \dot{u})_{i}+\lambda u_{i}+(A u)_{i}+f_{i}\left(u_{i}\right)=g_{i}(t), \tag{1.1}
\end{equation*}
$$

and the uniform exponential attractor for second order non-autonomous lattice system driven by quasi-periodic external forces:

$$
\begin{equation*}
\ddot{u}_{i}+\beta(A \ddot{u})_{i}+\alpha \dot{u}_{i}+\gamma(A \dot{u})_{i}+\lambda u_{i}+(A u)_{i}+f_{i}\left(u_{i}\right)=a_{i} h_{i}(\widetilde{\sigma}(t)), \tag{1.2}
\end{equation*}
$$

where $i \in \mathbb{Z}, t \geq \tau, \tau \in \mathbb{R}, u=\left(u_{i}\right)_{i \in \mathbb{Z}}, u_{i} \in \mathbb{R}, \beta \geq 0, \gamma>0, \alpha>0, \lambda>0$, $a_{i} \in \mathbb{R}, g_{i} \in C(\mathbb{R}, \mathbb{R}), h_{i}, f_{i} \in C^{1}(\mathbb{R}, \mathbb{R}), \widetilde{\sigma}(t) \in \mathbf{T}^{n}$ (n-dimensional torus), A is a non-negative and self-adjoint linear operator with the decomposition $A=$ $\bar{D} D=D \bar{D}$, and D is defined by

$$
\begin{equation*}
(D u)_{i}=\sum_{l=-m_{0}}^{l=m_{0}} d_{l} u_{i+l}, \quad\left|d_{l}\right| \leq c_{0}, \quad \text { for all } u=\left(u_{i}\right)_{i \in \mathbb{Z}},-m_{0} \leq l \leq m_{0} \tag{1.3}
\end{equation*}
$$

and \bar{D} is the adjoint of D. If A is defined by $(A u)_{i}=2 u_{i}-u_{i-1}-u_{i+1}$, then (1.1) can be regarded as a discrete analogue of the following continuous fourth order partial differential equation in \mathbb{R} :

$$
\begin{equation*}
u_{t t}-\beta u_{x x t t}+\alpha u_{t}-\gamma u_{x x t}+\lambda u-u_{x x}+f(u, x)=g(x, t), \tag{1.4}
\end{equation*}
$$

which is a mathematical model for describing the spread of longitudinal strain waves in nonlinear elastic rods and weakly nonlinear ion-acoustic waves; see, e.g. [5], [11] and the references therein. The terms $-\beta u_{x x t t}$ and $-\gamma u_{x x t}$ are called the dispersive and the viscosity dissipative terms, respectively. In the autonomous case (i.e. g is independent of t) defined in a bounded domain and the stochastic
equation driven by additive noise defined on the unbounded domain, the wellposedness and the existence of attractors of (1.4) have been studied by [7], [8], [13] and the references therein.

For the second order autonomous and non-autonomous lattice systems (1.1) without dispersive term (i.e. $\beta=0$), Abdallah, Fan, Zhao and Zhou et al. have investigated the existence and finite-dimensionality of their global attractor and kernel sections, see [2], [3], [12], [14], [16]-[20], [23]. Here, by following the ideas of [21], [22], we consider the existence of pullback exponential attractor for system (1.1) and the existence of uniform exponential attractor for system (1.2) with $\beta \geq 0$.

The paper is organized as follows. In Section 2, we prove the existence of pullback attractor of system (1.1). In Section 3, we prove the existence of pullback exponential attractor for the system (1.1). In Section 4, we present the existence of uniform attractor for the system (1.1). In Section 5, we prove the existence of uniform exponential attractor for the system (1.2).

2. Pullback attractor

In this section, we consider the existence of pullback attractor of system (1.1) with $\beta>0$. Note that system (1.1) with initial data can be written as a vector form

$$
\left\{\begin{array}{l}
\ddot{u}+\beta A \ddot{u}+\alpha \dot{u}+\gamma A \dot{u}+\lambda u+A u+f(u)=g(t), \quad t>\tau, \tag{2.1}\\
u(\tau)=\left(u_{i, \tau}\right)_{i \in \mathbb{Z}}=u_{\tau}, \quad \dot{u}(\tau)=\left(u_{1 i, \tau}\right)_{i \in \mathbb{Z}}=u_{1 \tau},
\end{array} \quad \tau \in \mathbb{R},\right.
$$

where $u=\left(u_{i}\right)_{i \in \mathbb{Z}}, A \ddot{u}=\left((A \ddot{u})_{i}\right)_{i \in \mathbb{Z}}, A \dot{u}=\left((A \dot{u})_{i}\right)_{i \in \mathbb{Z}}, A u=\left(A u_{i}\right)_{i \in \mathbb{Z}}, f(u)=$ $\left(f_{i}\left(u_{i}\right)\right)_{i \in \mathbb{Z}}, g(t)=\left(g_{i}(t)\right)_{i \in \mathbb{Z}}$. Let

$$
l^{2}=\left\{u=\left(u_{i}\right)_{i \in \mathbf{Z}}: \sum_{i \in \mathbf{Z}} u_{i}^{2}<\infty, u_{i} \in \mathbb{R}\right\}
$$

be a Hilbert space with inner product $(u, v)=\sum_{i \in \mathbb{Z}} u_{i} v_{i}$ and norm

$$
\|u\|^{2}=(u, u)=\sum_{i \in \mathbb{Z}} u_{i}^{2} \quad \text { for } u=\left(u_{i}\right)_{i \in \mathbb{Z}}, v=\left(v_{i}\right)_{i \in \mathbf{Z}} \in l^{2} .
$$

Let

$$
\begin{equation*}
v=\dot{u}+\varepsilon u \tag{2.2}
\end{equation*}
$$

where ε is a small positive constant such that

$$
\min \left\{\alpha-2 \varepsilon, \gamma-\beta \varepsilon, \lambda-\alpha \varepsilon+\varepsilon^{2}, 1-\gamma \varepsilon+\beta \varepsilon^{2}\right\}>0
$$

then

$$
\begin{align*}
(I+\beta A) \dot{v}+(\alpha-\varepsilon) v & +\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) u \tag{2.3}\\
& +\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) A u+(\gamma-\beta \varepsilon) A v+f(u)=g(t)
\end{align*}
$$

By the semi-positivity of operator A on l^{2}, we know that the operator $(I+$ $\beta A)^{-1}$ exists, and $(I+\beta A)^{-1}$ is linear and bounded: $\left\|(I+\beta A)^{-1}\right\| \leq 1$. Let $E=l^{2} \times l^{2}$, a Hilbert space with usual inner product and norm. The system (2.1) is equivalent to the following first order evolution equation in E :

$$
\begin{equation*}
\dot{\varphi}+C(\varphi)=F(\varphi, t), \varphi(\tau)=\binom{u_{\tau}}{v_{\tau}}=\binom{c u_{\tau}}{u_{1 \tau}+\varepsilon u_{\tau}}, \quad t>\tau, \tau \in \mathbb{R} \tag{2.4}
\end{equation*}
$$

where

$$
\varphi=\binom{u}{v}, \quad F(\varphi, t)=\binom{0}{(I+\beta A)^{-1}[-f(u)+g(t)]}
$$

$$
\begin{aligned}
& C(\varphi) \\
& \quad=\binom{\varepsilon u-v}{(I+\beta A)^{-1}\left[(\alpha-\varepsilon) v+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) u+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) A u+(\gamma-\beta \varepsilon) A v\right]} .
\end{aligned}
$$

We make the following assumptions on g_{i}, f_{i} :
(H1) $g(t)=\left(g_{i}(t)\right)_{i \in \mathbb{Z}} \in \mathbf{G}$, where
$\mathbf{G}=\left\{g \in C_{b}\left(\mathbb{R}, l^{2}\right):\right.$ for every $\eta>0$, there exists $I(\eta) \in \mathbb{N}$ such that

$$
\left.\sup _{t \in \mathbb{R}} \sum_{|i|>I(\eta)} g_{i}^{2}(t)<\eta\right\}
$$

and $C_{b}\left(\mathbb{R}, l^{2}\right)$ denotes the space of all continuous bounded functions from \mathbb{R} into $l^{2},\| \| g\| \| \sup _{t \in \mathbb{R}}\|g(t)\| ;$
(H2) For any $i \in \mathbb{Z}, f_{i}$ satisfies:
$(\mathrm{H} 21) f_{i} \in C^{1}(\mathbb{R} ; \mathbb{R})$;
(H22) let $G_{i}(s)=\int_{0}^{s} f_{i}(r) d r, f_{i}(s) s \geq \nu G_{i}(s) \geq 0$, for all $s \in \mathbb{R}$ and for some small positive constant $\nu>0$;
(H23) there exist a function $K \in C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right)$and a $I_{0} \in \mathbb{N}$ such that

$$
\sup _{|i|>I_{0}} \max _{s \in[-r, r]}\left|f_{i}^{\prime}(s)\right| \leq K(r), \quad \text { for all } r \in \mathbb{R}_{+}
$$

Under assumptions (H1)-(H2), we see that for any $(\varphi, t) \in E \times \mathbb{R}, F(\varphi, t)-$ $C(\varphi) \in E$ and $F(\varphi, t)-C(\varphi)$ is locally Lipschitz from $E \times \mathbb{R}$ into E with respect to φ for t in compact sets of \mathbb{R}. Thus, for any $\varphi(\tau)=\left(u_{\tau}, v_{\tau}\right)^{T} \in E$, there exists a unique local solution $\varphi(t, \tau)=(u(t, \tau), v(t, \tau))^{T}$ of (2.4) such that $\varphi(\cdot, \tau) \in C\left(\left[\tau, \tau+T_{0}\right), E\right) \cap C^{1}\left(\left(\tau, \tau+T_{\max }\right), E\right)$ for some $T_{\max }>0$. Moreover, if $T_{\max }<+\infty$, then $\lim _{t \rightarrow T_{\max }}\|\varphi(t, \tau)\|_{E}=+\infty$. It follows from Lemma 2.1 below that the solution $\varphi(t, \tau)$ of (2.4) is bounded for all $t \geq \tau$ if $\varphi(\tau)$ belongs to a bounded set, thus the local solution $\varphi(t, \tau)$ of (2.4) exists globally in $[\tau,+\infty)$,
that is, $\varphi(\cdot, \tau) \in C([\tau,+\infty), E) \cap C^{1}((\tau,+\infty), E)$, implying that the solution maps

$$
W(t, \tau): \varphi(\tau)=\left(u_{\tau}, v_{\tau}\right) \rightarrow \varphi(t, \tau)=(u(t, \tau), v(t, \tau)), \quad t \geq \tau, \tau \in \mathbb{R}
$$

generate a continuous process $\{W(t, \tau)\}_{t \geq \tau}$ on E.
First, we prove the existence of a uniform absorbing set of $\{W(t, \tau)\}_{t \geq \tau}$.
Lemma 2.1. The process $\{W(t, \tau)\}_{t \geq \tau}$ has a uniform absorbing set $B_{0}=$ $B_{0}\left(0, r_{0}\right)=\left\{\varphi \in E:\|\varphi\|_{E} \leq r_{0}\right\} \subset E$ such that for any bounded subset $B \subset E$, there exists $T_{B} \geq 0$ yielding $W(t+\tau, \tau) B \subseteq B_{0}$ for all $t \geq T_{B}$, where

$$
\begin{gathered}
\left.r_{0}=\sqrt{\frac{2}{\mu \sigma_{0} \alpha}}\|g\| \right\rvert\,, \quad \mu=\min \left\{1, \lambda-\alpha \varepsilon+\varepsilon^{2}, \beta, 1-\gamma \varepsilon+\beta \varepsilon^{2}\right\} \\
\sigma_{0}=\min \left\{\alpha-2 \varepsilon, \frac{2(\gamma-\beta \varepsilon)}{\beta}, 2 \varepsilon, \varepsilon \nu\right\}
\end{gathered}
$$

Particularly, $\bigcup_{t \in \mathbb{R}} W(t, t-\tau) B_{0} \subseteq B_{0}$ for any $t \in \mathbb{R}$ and $\tau \geq T_{B_{0}}$.
Proof. Let $\varphi(t, \tau)=(u(t, \tau), v(t, \tau))^{T} \in E$ be a solution of (2.4). By computation, we have

$$
\begin{gathered}
(u, v)=\frac{1}{2} \frac{d}{d t}\|u\|^{2}+\varepsilon\|u\|^{2}, \quad(A u, v)=\frac{1}{2} \frac{d}{d t}\|D u\|^{2}+\varepsilon\|D u\|^{2} \\
(f(u), v) \geq \frac{d}{d t} \sum_{i \in \mathbb{Z}} G_{i}\left(u_{i}\right)+\varepsilon \nu \sum_{i \in \mathbb{Z}} G_{i}\left(u_{i}\right) \\
(g(t), v) \leq \frac{1}{2 \alpha}\| \| g\left\|^{2}+\frac{\alpha}{2}\right\| v \|^{2}
\end{gathered}
$$

Taking the inner product (\cdot, \cdot) of (2.3) with $v(t, \tau)$, we have

$$
\begin{equation*}
\frac{d}{d t} y+\sigma_{0} y \leq \frac{1}{\alpha}\| \| g \|^{2}, \quad \text { for all } t \geq \tau \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
y=\|v\|^{2}+\beta\|D v\|^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) & \|u\|^{2} \\
& +\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)\|D u\|^{2}+2 \sum_{i \in \mathbb{Z}} G_{i}\left(u_{i}\right) .
\end{aligned}
$$

Then applying Gronwall inequality to (2.5), we have

$$
y(t) \leq y(\tau) e^{-\sigma_{0}(t-\tau)}+\frac{1}{\sigma_{0} \alpha}\| \| g \|^{2}, \quad \text { for all } t \geq \tau
$$

By (1.3) and (H22)-(H23),

$$
\|D u(\tau)\|^{2}=\sum_{i \in \mathbb{Z}}(D u)_{i}^{2}(\tau) \leq\left(2 m_{0}+1\right)^{2} c_{0}^{2}\left\|u_{\tau}\right\|^{2}
$$

$$
\begin{aligned}
\sum_{i \in \mathbb{Z}} G_{i}\left(u_{i}(\tau)\right) & \leq \frac{1}{\nu} \sum_{i \in \mathbb{Z}} \max _{s \in\left[-\left\|u_{\tau}\right\|,\left\|u_{\tau}\right\|\right]}\left|f_{i}^{\prime}(s)\right| \cdot u_{i \tau}^{2} \\
& \leq \frac{1}{\nu} \widetilde{K}\left(\left\|u_{\tau}\right\|\right) \cdot\left\|u_{\tau}\right\|^{2}
\end{aligned}
$$

where

$$
\widetilde{K}\left(\left\|u_{\tau}\right\|\right)=\max \left\{\max _{|i| \leq I_{0}, s \in\left[-\left\|u_{\tau}\right\|,\left\|u_{\tau}\right\|\right]}\left|f_{i}^{\prime}(s)\right|, K\left(\left\|u_{\tau}\right\|\right)\right\} .
$$

Thus,
(2.6) $y(t) \leq\left(1+\beta \widetilde{C}_{0}+\lambda-\alpha \varepsilon+\varepsilon^{2}\right)\left\|v_{\tau}\right\|^{2} e^{-\sigma_{0}(t-\tau)}$

$$
+\left(\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \widetilde{C}_{0}+\frac{2}{\nu} \widetilde{K}\left(\left\|u_{\tau}\right\|\right)\right)\left\|u_{\tau}\right\|^{2} e^{-\sigma_{0}(t-\tau)}+\frac{1}{\sigma_{0} \alpha}\|g\| \|^{2}
$$

for all $t \geq \tau$, where $\widetilde{C}_{0}=\left(2 m_{0}+1\right)^{2} c_{0}^{2}$. It follows that the ball $B_{0}=\{\varphi \in E$: $\left.\|\varphi\|_{E} \leq r_{0}\right\}$ is a uniform absorbing set for the process $\{W(t, \tau)\}_{t \geq \tau}$ on E.

Next we consider the "end" estimate of solutions of (2.4).
Lemma 2.2. For any $\eta>0$, there exist $T_{0}\left(\eta, B_{0}\right)>0$ and $N_{0}\left(\eta, B_{0}\right)$ such that the solution $\varphi(t+\tau, \tau)=\left(\varphi_{i}(t+\tau, \tau)\right)_{i \in \mathbb{Z}}=\left(u_{i}(t+\tau, \tau), v_{i}(t+\tau, \tau)\right)_{i \in \mathbb{Z}} \in E$ of system (2.4) with $\varphi(\tau) \in B_{0}$ satisfies

$$
\sum_{|i|>N_{0}\left(\eta, B_{0}\right)}\left\|\varphi_{i}(t+\tau, \tau)\right\|_{E}^{2}=\sum_{|i|>N_{0}\left(\eta, B_{0}\right)}\left(u_{i}^{2}(t+\tau, \tau)+v_{i}^{2}(t+\tau, \tau)\right) \leq \eta,
$$

for $t \geq T_{0}\left(\eta, B_{0}\right)$.
Proof. Let $\tau \in \mathbb{R}$,

$$
\begin{aligned}
\varphi(t) & =\varphi(t+\tau, \tau)=W(t+\tau, \tau) \varphi(\tau) \\
& =(u(t+\tau, \tau), v(t+\tau, \tau))=(u(t), v(t)) \in E
\end{aligned}
$$

for $t \geq 0$, be a solution of (2.4) with $\varphi(\tau) \in B_{0}$. By (2.6),

$$
\begin{align*}
\|v(t)\|^{2}+\beta\|D v(t)\|^{2}+(\lambda-\alpha \varepsilon & \left.+\varepsilon^{2}\right)\|u(t)\|^{2} \tag{2.7}\\
& +\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)\|D u(t)\|^{2} \leq \mu r_{0}^{2} \leq r_{0}^{2}
\end{align*}
$$

for all $t \geq T_{B_{0}}$. Taking the inner product (\cdot, \cdot) of (2.2) and (2.3) with $\dot{u}(t, \tau)$, $\dot{v}(t, \tau)$, respectively, we have

$$
\begin{equation*}
\|\dot{u}\|^{2} \leq 2\|v\|^{2}+2 \varepsilon^{2}\|u\|^{2} \leq 2\left(1+\varepsilon^{2}\right) r_{0}^{2} \doteq 2 r_{1}^{2}, \quad \text { for all } t \geq \tau+T_{B_{0}} \tag{2.8}
\end{equation*}
$$

and, for all $t \geq T_{B_{0}}$,

$$
\begin{align*}
& \frac{1}{2}\|\dot{v}\|^{2}+\frac{1}{2} \beta\|D \dot{v}\|^{2} \leq\left(2\left(\alpha-\varepsilon+\lambda-\alpha \varepsilon+\varepsilon^{2}\right)\right. \tag{2.9}\\
& \left.\quad+\frac{\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)+(\gamma-\beta \varepsilon)}{\beta}+2 \widetilde{K}^{2}\left(r_{0}\right)\right) r_{0}^{2}+2\|\mid g\| \|^{2} \doteq r_{2}^{2}
\end{align*}
$$

Choosing a smooth increasing function $\theta \in C^{1}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ satisfies:

$$
\begin{cases}\theta(s)=0 & \text { for } 0 \leq s \leq 1 \tag{2.10}\\ 0 \leq \theta(s) \leq 1 & \text { for } 1 \leq s \leq 2 \\ \theta(s)=1 & \text { for } s \geq 2 \\ \left|\theta^{\prime}(s)\right| \leq M_{0} & \text { for } s \geq 0\end{cases}
$$

where $M_{0}>0$ is a constant. Let M be a fixed integer. Set $w_{i}=\theta(|i| / M) u_{i}$, $z_{i}=\theta(|i| / M) v_{i}$, for all $i \in \mathbb{Z}, y=(w, z)=\left(\left(w_{i}\right),\left(z_{i}\right)\right)_{i \in \mathbb{Z}}$. Here we have

$$
\begin{align*}
& \left|(D z)_{i}-\theta\left(\frac{|i|}{M}\right)(D v)_{i}\right|=\left|\sum_{l=-m_{0}}^{l=m_{0}} d_{l} z_{i+l}-\theta\left(\frac{|i|}{M}\right) \sum_{l=-m_{0}}^{l=m_{0}} d_{l} v_{i+l}\right| \tag{2.11}\\
& =\sum_{l=-m_{0}}^{l=m_{0}}\left|\left(\theta\left(\frac{|i+l|}{M}\right)-\theta\left(\frac{|i|}{M}\right)\right) d_{l} v_{i+l}\right| \leq \frac{M_{0} m_{0} c_{0}}{M} \sum_{l=-m_{0}}^{l=m_{0}}\left|v_{i+l}\right| .
\end{align*}
$$

Thus, by (2.7)-(2.9) and (2.11), for $t \geq T_{B_{0}}$,

$$
\begin{aligned}
& \left|\sum_{i \in \mathbb{Z}}(D \dot{v})_{i}\left((D z)_{i}-\theta\left(\frac{|i|}{M}\right)(D v)_{i}\right)\right| \\
& \quad \leq \frac{M_{0} m_{0} c_{0}}{M} \sum_{i \in \mathbb{Z}}\left(\sum_{l=-m_{0}}^{l=m_{0}}\left|d_{l} \dot{v}_{i+l}\right| \sum_{l=-m_{0}}^{l=m_{0}}\left|v_{i+l}\right|\right) \\
& \quad \leq \frac{M_{0} m_{0}\left(2 m_{0}+1\right)^{2} c_{0}^{2}}{2 M} \sum_{i \in \mathbb{Z}}\left(\dot{v}_{i}^{2}+v_{i}^{2}\right) \leq \frac{M_{0} m_{0} \widetilde{C}_{0}}{2 M}\left(2 r_{2}^{2}+r_{0}^{2}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{i \in \mathbb{Z}}(D u)_{i}\left[(D \dot{w})_{i}-\theta\left(\frac{|i|}{M}\right)(D \dot{u})_{i}\right] & \leq \frac{M_{0} m_{0}\left(2 m_{0}+1\right)^{2} c_{0}^{2}}{2 M} \sum_{i \in \mathbb{Z}}\left(u_{i}^{2}+\dot{u}_{i}^{2}\right) \\
& \leq \frac{M_{0} m_{0} \widetilde{C}_{0}}{2 M}\left(2 r_{1}^{2}+r_{0}^{2}\right)
\end{aligned}
$$

for $t \geq T_{B_{0}}$. Thus,

$$
\begin{aligned}
(A \dot{v}, z) & =\sum_{i \in \mathbb{Z}}(D \dot{v})_{i}\left[\theta\left(\frac{|i|}{M}\right)(D v)_{i}+(D z)_{i}-\theta\left(\frac{|i|}{M}\right)(D v)_{i}\right] \\
& \geq \frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D v)_{i}^{2}-\frac{M_{0} m_{0} \widetilde{C}_{0}}{2 M}\left(2 r_{2}^{2}+r_{0}^{2}\right), \\
(A v, z) & \geq \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D v)_{i}^{2}-\frac{M_{0} m_{0} \widetilde{C}_{0}}{M} r_{0}^{2}, \\
(A u, \dot{w}) & \geq \frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D u)_{i}^{2}-\frac{M_{0} m_{0} \widetilde{C}_{0}}{2 M}\left(2 r_{1}^{2}+r_{0}^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
(A u, w) & \geq \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D u)_{i}^{2}-\frac{M_{0} m_{0} \widetilde{C}_{0}}{M} r_{0}^{2} \\
(A u, z) & =(A u, \dot{w}+\varepsilon w) \\
& \geq \frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D u)_{i}^{2}+\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D u)_{i}^{2}-\frac{M_{0} m_{0} \widetilde{C}_{0}}{2 M}\left(2 r_{1}^{2}+3 r_{0}^{2}\right), \\
(u, z) & =\sum_{i \in \mathbb{Z}} u_{i} \theta\left(\frac{|i|}{M}\right)\left(\dot{u}_{i}+\varepsilon u_{i}\right)=\frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) u_{i}^{2}+\varepsilon \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) u_{i}^{2}, \\
(f(u), z) & \geq \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) G_{i}\left(u_{i}\right)+\varepsilon \nu \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) G_{i}\left(u_{i}\right), \\
(g(t), z) & \leq \frac{\alpha}{2} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) v_{i}^{2}+\frac{1}{2 \alpha} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) g_{i}^{2}(t) .
\end{aligned}
$$

Taking the inner product (\cdot, \cdot) of (2.3) with $z(t, \tau)$, we have that, for $t \geq T_{B_{0}}$,

$$
\begin{align*}
& \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(v_{i}^{2}+\beta(D v)_{i}^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) u_{i}^{2}\right) \tag{2.12}\\
& \quad+\frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)(D u)_{i}^{2}+2 G_{i}\left(u_{i}\right)\right) \\
& \quad+\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left((\alpha-2 \varepsilon) v_{i}^{2}+2(\gamma-\beta \varepsilon)(D v)_{i}^{2}+2 \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) u_{i}^{2}\right) \\
& \quad+\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(2 \varepsilon\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)(D u)_{i}^{2}+2 \varepsilon \nu G_{i}\left(u_{i}\right)\right) \\
& \leq
\end{align*}
$$

where

$$
\begin{aligned}
J_{0}=\left(\beta\left(2 r_{2}^{2}+r_{0}^{2}\right)+4(\gamma-\beta \varepsilon) r_{0}^{2}\right) & M_{0} m_{0} \widetilde{C}_{0} \\
& +\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)\left(2 r_{1}^{2}+r_{0}^{2}+2 \varepsilon r_{0}^{2}\right) M_{0} m_{0} \widetilde{C}
\end{aligned}
$$

Since $g(t)=\left(g_{i}(t)\right)_{i \in \mathbb{Z}} \in \mathbf{G}$, by the definition of \mathbf{G}, we have that for all $\eta>0$, there exists $N_{00}\left(\eta, B_{0}\right)$ such that

$$
\frac{1}{\alpha} \sup _{t \in \mathbb{R}} \sum_{|i| \geq M} g_{i}^{2}(t)+\frac{J_{0}}{M} \leq \frac{\mu \sigma_{0}}{2} \eta, \quad \text { for all } M \geq N_{00}\left(\eta, B_{0}\right)
$$

Write

$$
\begin{aligned}
y_{M}(t)= & \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(v_{i}^{2}+\beta(D v)_{i}^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) u_{i}^{2}\right) \\
& +\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)(D u)_{i}^{2}+2 G_{i}\left(u_{i}\right)\right)
\end{aligned}
$$

Then by (2.12),

$$
\begin{equation*}
\frac{d}{d t} y_{M}(t)+\sigma_{0} y_{M}(t) \leq \frac{\sigma_{0} \mu \eta}{2}, \quad \text { for all } M \geq N_{00}\left(\eta, B_{0}\right), t \geq T_{B_{0}} \tag{2.13}
\end{equation*}
$$

By the Gronwall inequality to (2.13) on $\left[\tau+T_{B_{0}}, \tau+t\right]\left(t \geq T_{B_{0}}\right)$, we have that for $M \geq \max \left\{I_{0}, N_{00}\left(\eta, B_{0}\right)\right\}, t \geq T_{B_{0}}$,

$$
\begin{aligned}
y_{M}(t)= & \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(v_{i}^{2}+\beta(D v)_{i}^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) u_{i}^{2}\right) \\
& +\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{M}\right)(D u)_{i}^{2}+2 G_{i}\left(u_{i}\right) \\
\leq & y\left(T_{B_{0}}\right) e^{-\sigma_{0}\left(t-T_{B_{0}}\right)}+\frac{\mu \eta}{2} \leq K_{1}\left(r_{0}\right) r_{0}^{2} e^{-\sigma\left(t-T_{B_{0}}\right)}+\frac{\mu \eta}{2}
\end{aligned}
$$

where

$$
K_{1}\left(r_{0}\right)=1+\beta\left(2 m_{0}+1\right)^{2} c_{0}^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \widetilde{C}_{0}+\frac{2}{\nu} K\left(\left\|r_{0}\right\|\right)
$$

Thus there exist $T_{0}\left(\eta, B_{0}\right)>T_{B_{0}}>0$ and $N_{0}\left(\eta, B_{0}\right)=2 \max \left\{I_{0}, N_{00}\left(\eta, B_{0}\right)\right\} \in$ \mathbb{N} such that for $t \geq T_{0}\left(\eta, B_{0}\right)$ and $M \geq N_{0}\left(\eta, B_{0}\right)$, we have

$$
\sum_{|i|>N_{0}\left(\eta, B_{0}\right)}\left(u_{i}^{2}(t)+v_{i}^{2}(t)\right) \leq \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(u_{i}^{2}(t)+v_{i}^{2}(t)\right) \leq \eta
$$

for all $t \geq T_{0}\left(\eta, B_{0}\right)$.
As a direct consequence of Lemmas 2.1, 2.2 and Theorem 4.2 of [16], we obtain the existence of a pullback attractor for the process $\{W(t, \tau)\}_{t \geq \tau}$.

Theorem 2.3. $\{W(t, \tau)\}_{t \geq \tau}$ possesses a pullback attractor $\{\mathcal{K}(t)\}_{t \in \mathbb{R}}$ with properties:
(a) for $t \in \mathbb{R}, \mathcal{K}(t)=\bigcap_{s \geq 0} \overline{\bigcup_{\tau \geq s} W(t, t-\tau) B_{0}}\left(\subseteq B_{0}\right)$ is compact;
(b) (invariance) $W(t, \tau) \mathcal{K}(\tau)=\mathcal{K}(t)$ for all $-\infty<\tau \leq t<\infty$;
(c) (pullback attraction) for any bounded set $B \subset E$ and $t \in \mathbb{R}$,

$$
\lim _{\tau \rightarrow+\infty} \mathrm{d}_{E}(U(t, t-\tau) B, \mathcal{K}(t))=0
$$

where d_{E} denotes the Hausdorff semi-distance between two sets of E.

3. Pullback exponential attractor

It is known from Theorem 2.3 that the process $\{W(t, \tau)\}_{t \geq \tau}$ possesses a pullback attractor $\{\mathcal{K}(t)\}_{t \in \mathbb{R}}$. Here a natural question is that whether these sets $\mathcal{K}(t), t \in \mathbb{R}$ are finite dimensional or not? How are the speed of their attracting orbits? The infinite dimensionality and relatively slow attracting speed of them will make us difficult in practical applications and numerical simulations. For this reason, we consider the existence of a pullback exponential attractor
for system (2.4) which has finite fractal dimension and attracts all bounded sets exponentially, moreover, includes the pullback attractor.

In this section, we assume that (H1)-(H2) hold and make a further assumption on the function K :
(H3) $K(0)=0$, where K is defined in (H23) of Section 2.
For any $t \in \mathbb{R}$, set

$$
Y(t)=\overline{\bigcup_{\tau \geq T_{B_{0}}} W(t, t-\tau) B_{0}} \subseteq B_{0}
$$

where B_{0} is the uniform absorbing set in Lemma 2.1, then

$$
W(t, \tau) Y(\tau) \subseteq Y(t) \subseteq B_{0}, \quad \text { for all } t \geq \tau
$$

Given any $\tau \in \mathbb{R}$ and any initial data $\varphi_{\tau}=\left(u_{\tau}, v_{\tau}\right), \psi_{\tau}=\left(x_{\tau}, y_{\tau}\right) \in Y(\tau)$, let

$$
\begin{aligned}
& \varphi(t)=W(t, \tau) \varphi_{\tau}, \psi(t)=W(t, \tau) \psi_{\tau} \\
& \phi(t)=\varphi(t)-\psi(t)=\left(\phi_{i}(t)\right)_{i \in \mathbb{Z}}=\left(\xi_{i}(t), \zeta_{i}(t)\right)_{i \in \mathbb{Z}}
\end{aligned}
$$

then $\varphi(t), \psi(t), \phi(t) \in C([\tau,+\infty), E)$ satisfy:

$$
\begin{equation*}
\|\varphi(t)\| \leq r_{0}, \quad\|\psi(t)\| \leq r_{0}, \quad\|\phi(t)\| \leq 2 r_{0}, \quad \text { for all } t \geq \tau \tag{3.1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\dot{\xi}=\zeta-\varepsilon \xi, \tag{3.2}\\
(1+\beta A) \dot{\zeta}+(\alpha-\varepsilon) \zeta+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) \xi \\
\quad+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) A \xi+(\gamma-\beta \varepsilon) A \xi+f(u)-f(x)=0, \quad t \geq \tau .
\end{array}\right.
$$

First we consider the Lipschitz property of $\{W(t, \tau)\}_{t \geq \tau}$ on $Y(\tau)$, for all $\tau \in \mathbb{R}$.

LEmma 3.1. There exists a continuous positive value function $L:[0,+\infty) \rightarrow$ $[0,+\infty)$ such that, for every $\tau \in \mathbb{R}$,

$$
\left\|W(t+\tau, \tau) \varphi_{\tau}-W(t+\tau, \tau) \psi_{\tau}\right\|_{E} \leq L(t) \cdot\left\|\varphi_{\tau}-\psi_{\tau}\right\|_{E}
$$

for all $\varphi_{\tau}, \psi_{\tau} \in Y(\tau)$, and

$$
\begin{equation*}
\lim _{t \rightarrow \tau+0} \sup _{\varphi_{\tau} \in Y(\tau)}\left\|W(t, \tau) \varphi_{\tau}-\varphi_{\tau}\right\|_{E}=0 \tag{3.3}
\end{equation*}
$$

Proof. It is easy to see that, for $t \geq \tau$,

$$
(f(u)-f(x), \zeta)=\sum_{i \in \mathbb{Z}} f_{i}^{\prime}\left(x_{i}+\vartheta_{i}\left(u_{i}-x_{i}\right)\right) \xi_{i} \zeta_{i} \leq \frac{\widetilde{K}^{2}\left(r_{0}\right)}{2 \alpha}\|\xi\|^{2}+\frac{\alpha}{2}\|\zeta\|^{2}
$$

Taking the inner product (\cdot, \cdot) of the second equation of (3.2) with $\zeta(t, \tau)$, we have

$$
\begin{aligned}
\frac{d}{d t}\left(\|\zeta\|^{2}+\beta\|D \zeta\|^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)\|\xi\|^{2}+(1-\gamma \varepsilon\right. & \left.\left.+\beta \varepsilon^{2}\right)\|D \xi\|^{2}\right) \\
\leq(2 \varepsilon-\alpha)\|\zeta\|^{2}+2(\beta \varepsilon-\gamma)\|D \zeta\|^{2}+\left(\frac{K^{2}\left(r_{0}\right)}{\alpha}\right. & \left.-2 \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)\right)\|\xi\|^{2} \\
& +2 \varepsilon\left(\gamma \varepsilon-1-\beta \varepsilon^{2}\right)\|D \xi\|^{2}
\end{aligned}
$$

for all $t \geq \tau$. Thus

$$
\begin{equation*}
\frac{d}{d t} Y \leq \sigma_{1} Y, \quad \text { for all } t \geq \tau \tag{3.4}
\end{equation*}
$$

where

$$
\begin{gathered}
Y=\|\zeta\|^{2}+\beta\|D \zeta\|^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)\|\xi\|^{2}+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)\|D \xi\|^{2} \\
\sigma_{1}=\max \left\{2 \varepsilon-\alpha, \frac{2(\beta \varepsilon-\gamma)}{\beta}, \frac{K^{2}\left(r_{0}\right) / \alpha-2 \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)}{\lambda-\alpha \varepsilon+\varepsilon^{2}}, 2 \varepsilon\left(\gamma \varepsilon-1-\beta \varepsilon^{2}\right)\right\} .
\end{gathered}
$$

Applying Gronwall's inequality to (3.4) on $[\tau, \tau+t],(t \geq 0)$, we have

$$
\|Y(t+\tau)\|_{E}^{2} \leq e^{\sigma_{1} t} Y(\tau), \quad t \geq 0
$$

thus,

$$
\begin{aligned}
\| W(t+\tau, \tau) \varphi_{\tau}-W(t+\tau, \tau) & \psi_{\tau} \|_{E}^{2} \\
& \leq \frac{1}{\mu} C_{1} e^{\sigma_{1} t} \cdot\left\|\varphi_{\tau}-\psi_{\tau}\right\|_{E}^{2} \doteq L(t) \cdot\left\|\varphi_{\tau}-\psi_{\tau}\right\|_{E}^{2}
\end{aligned}
$$

for all $t \geq 0$, where

$$
\begin{gathered}
C_{1}=\max \left\{1+\beta \widetilde{C}_{0},\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \widetilde{C}_{0}\right\} \\
L(t)=\frac{1}{\mu} C_{1} e^{\sigma_{1} t}, \quad \text { for all } t \geq 0
\end{gathered}
$$

It is easy to prove (3.3).
Then we consider the decomposition of solutions.
Lemma 3.2. There exist positive constants $\tau_{1}>0, \gamma_{1} \in[0,1 / 2$) and (for $\left.N_{1} \in \mathbb{Z}\right) 2\left(2 N_{1}+1\right)$-dimensional orthogonal projection $P_{N_{1}}: E \rightarrow E_{N_{1}}$, such that for every $\tau \in \mathbb{R}$ and $\varphi_{\tau}, \psi_{\tau} \in Y(\tau)$,

$$
\left\|\left(I-P_{N_{1}}\right)\left(W\left(\tau+\tau_{1}, \tau\right) \varphi_{\tau}-W\left(\tau+\tau_{1}, \tau\right) \psi_{\tau}\right)\right\|_{E} \leq \gamma_{1}\left\|\varphi_{\tau}-\psi_{\tau}\right\|_{E}
$$

Proof. For $i \in \mathbb{Z}$, let

$$
\omega_{i}=\theta\left(\frac{|i|}{M}\right) \phi_{i}=\left(\theta\left(\frac{|i|}{M}\right) \xi_{i}, \theta\left(\frac{|i|}{M}\right) \zeta_{i}\right)=\left(\vartheta_{i}, \varsigma_{i}\right), \quad \omega=\left(\omega_{i}\right)_{i \in \mathbb{Z}}
$$

where θ is as in (2.10) and $M>I_{0}$. We have

$$
\begin{aligned}
(A \dot{\zeta}, \varsigma) \geq & \frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \zeta)_{i}^{2}-\frac{M_{0} m_{0} \widetilde{C}_{0}}{2 M}\left(\|\dot{\zeta}\|^{2}+\|\zeta\|^{2}\right), \\
(A \zeta, \varsigma) \geq & \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \zeta)_{i}^{2}-\frac{M_{0} m_{0} \widetilde{C}_{0}}{M}\|\zeta\|^{2}, \\
(A \xi, \varsigma) \geq & \frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \xi)_{i}^{2}+\varepsilon \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \xi)_{i}^{2} \\
& -\frac{M_{0} m_{0} \widetilde{C}_{0}}{2 M}\left(\|\dot{\xi}\|^{2}+\|\xi\|^{2}+2 \varepsilon\|\xi\|^{2}\right), \\
(\dot{\zeta}, \varsigma)= & \frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) \zeta_{i}^{2}, \quad(\zeta, \varsigma)=\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) \zeta_{i}^{2} \\
(\xi, \varsigma)= & \sum_{i \in \mathbb{Z}} \xi_{i} \theta\left(\frac{|i|}{M}\right)\left(\dot{\xi}_{i}+\varepsilon \xi_{i}\right) \\
= & \frac{1}{2} \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) \xi_{i}^{2}+\varepsilon \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right) \xi_{i}^{2} \\
2((f(u)-f(x), \varsigma) \leq & \sum_{i \in \mathbb{Z}} \xi\left(\frac{|i|}{M}\right)\left(\frac{1}{\alpha}\left|f^{\prime}\left(x_{i}+\nu_{i}\left(u_{i}-x_{i}\right)\right)\right|^{2} \xi_{i}^{2}+\alpha \zeta_{i}^{2}\right) .
\end{aligned}
$$

By (3.2), we have

$$
\begin{aligned}
\|\dot{\xi}(t)\|^{2} \leq 2\|\zeta(t)\|^{2}+2 \varepsilon^{2}\|\xi(t)\|^{2} \leq C_{2}\left(\|\zeta(t)\|^{2}+\|\xi(t)\|^{2}\right), & \text { for all } t \geq \tau \\
\|\dot{\zeta}(t)\|^{2}+\beta\|D \dot{\zeta}(t)\|^{2} \leq C_{3}\left(\|\zeta(t)\|^{2}+\|\xi(t)\|^{2}\right), & \text { for all } t \geq \tau
\end{aligned}
$$

where $C_{2}=\max \left\{1,2 \varepsilon^{2}\right\}, C_{3}^{\prime}=\widetilde{C}_{0} /(2 \beta)$ and

$$
C_{3}=\max \left\{\alpha-\varepsilon, \lambda-\alpha \varepsilon+\varepsilon^{2},\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) C_{3}^{\prime},(\gamma-\beta \varepsilon) C_{3}^{\prime}, K^{2}\left(r_{0}\right)\right\}
$$

Thus, taking the inner product (\cdot, \cdot) of the second equation of (3.2) with $\varsigma(t, \tau)$, we have that, for all $t \geq \tau$,

$$
\begin{align*}
& \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(\zeta_{i}^{2}+\beta(D \zeta)_{i}^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) \xi_{i}^{2}+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)(D \xi)_{i}^{2}\right) \tag{3.5}\\
& \quad+\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left((\alpha-2 \varepsilon) \zeta_{i}^{2}+2(\gamma-\beta \varepsilon)(D \zeta)_{i}^{2}+2 \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) \xi_{i}^{2}\right) \\
& \quad+2 \varepsilon\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \xi)_{i}^{2} \\
& \leq \\
& \sum_{i \in \mathbb{Z}} \xi\left(\frac{|i|}{M}\right) \frac{1}{\alpha}\left|f^{\prime}\left(x_{i}+\vartheta_{i}\left(u_{i}-x_{i}\right)\right)\right|^{2} \xi_{i}^{2}+\frac{C_{4}}{M}\left(\|\xi\|^{2}+\|\zeta\|^{2}\right),
\end{align*}
$$

where $\vartheta_{i} \in(0,1), C_{4}$ is a positive constant independent of M. By the continuity of $K(s)$ and $K(0)=0($ see $(\mathrm{H} 23))$, there exists δ_{0} such that

$$
\Gamma^{2}\left(\delta_{0}\right) \leq \alpha \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)
$$

By Lemma 2.2 , for this $\delta_{0}>0$, there exist $N_{2}\left(\delta_{0}, B_{0}\right) \in \mathbb{N}, T_{1}\left(\delta_{0}, B_{0}\right)>0$ such that, for $t \geq T_{1}\left(\delta_{0}, B_{0}\right)+\tau$,

$$
\sup _{i>N_{2}\left(\delta_{0}, B_{0}\right)}\left\{\left|u_{i}\left(t, \tau ; \varphi_{\tau}\right)\right|,\left|x_{i}\left(t, \tau ; \psi_{\tau}\right)\right|\right\} \leq \delta_{0}
$$

implying that, for $|i|>N_{2}\left(\delta_{0}, B_{0}\right), t \geq T_{1}\left(\delta_{0}, B_{0}\right)+\tau$,

$$
\left|x_{i}(t)+\vartheta_{i}\left(u_{i}(t)-x_{i}(t)\right)\right| \leq\left(1-\vartheta_{i}\right)\left|x_{i}(t)\right|+\left|u_{i}(t)\right| \leq \delta_{0}, \quad \vartheta_{i} \in(0,1) .
$$

Thus, for $t \geq T_{1}\left(\delta_{0}, B_{0}\right)+\tau$,

$$
\sup _{|i|>N_{2}\left(\delta_{0}, B_{0}\right)}\left|f_{i}^{\prime}\left(x_{i}(t)+\nu_{i}\left(u_{i}(t)-x_{i}(t)\right)\right)\right|^{2} \leq \Gamma^{2}\left(\delta_{0}\right) \leq \alpha \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)
$$

Therefore, we obtain that for all $M \geq \max \left\{N_{2}\left(\delta_{0}, B_{0}\right), I_{0}\right\}$ and $t \geq T_{1}\left(\delta_{0}, B_{0}\right)+\tau$,

$$
\begin{equation*}
\frac{d}{d t} Y_{M}(t)+\sigma_{2} Y_{M}(t) \leq \frac{C_{4}}{M}\left(\|\xi(t)\|^{2}+\|\zeta(t)\|^{2}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& Y_{M}=\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(\zeta_{i}^{2}+\beta(D \zeta)_{i}^{2}+(\lambda-\alpha \varepsilon\right.\left.\left.+\varepsilon^{2}\right) \xi_{i}^{2}\right) \\
&+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \xi)_{i}^{2} \\
& \sigma_{2}=\min \left\{\alpha-2 \varepsilon, \frac{2(\gamma-\beta \varepsilon)}{\beta}, \varepsilon\right\}>0
\end{aligned}
$$

Applying Gronwall's inequality to (3.6) from $\tau+T_{1}\left(T_{1}=T_{1}\left(\delta_{0}, B_{0}\right)\right)$ to $\tau+t$ $\left(t \geq T_{1}\right)$, we have that, for $M \geq \max \left\{N_{2}\left(\delta_{0}, B_{0}\right), I_{0}\right\}$,

$$
\begin{align*}
\sum_{|i| \geq 2 M} & \left(\xi_{i}^{2}(\tau+t)+\zeta_{i}^{2}(\tau+t)\right) \leq \frac{1}{\mu} Y_{M}(\tau+t) \tag{3.7}\\
\leq & \frac{1}{\mu} e^{-\sigma_{2}\left(t-T_{1}\right)} Y_{M}\left(\tau+T_{1}, \tau ; \phi_{\tau}\right) \\
& +\frac{C_{4}}{M \mu} \int_{\tau+T_{1}}^{\tau+t} e^{-\sigma_{2}(\tau+t-r)}\left(\|\xi(r, \tau)\|^{2}+\|\zeta(r, \tau)\|^{2}\right) d r \\
\leq & \frac{1}{\mu^{2}}\left(C_{1} e^{\left(\sigma_{1}+\sigma_{2}\right) T_{1}} e^{-\sigma_{2} t}+\frac{1}{M} \frac{C_{1} C_{4}}{\sigma_{1}+\sigma_{2}} e^{\sigma_{1} t}\right) \cdot\left\|\varphi_{\tau}-\psi_{\tau}\right\|_{E}^{2}
\end{align*}
$$

for all $t \geq T_{1}$. Setting

$$
\begin{aligned}
\tau_{1} & =\max \left\{T_{1}\left(\delta_{0}, B_{0}\right), \frac{\ln \left(8 C_{1} e^{\left(\sigma_{1}+\sigma_{2}\right) T_{1}} / \mu^{2}\right)}{\sigma_{2}}\right\} \\
N_{1} & =\left\{2 N_{2}\left(\delta_{0}, B_{0}\right)+1,2 I_{0}+1, \frac{8 C_{1} C_{4}}{\mu^{2}\left(\sigma_{1}+\sigma_{2}\right)} e^{\sigma_{1} \tau_{1}}\right\}
\end{aligned}
$$

we have

$$
\gamma_{1}=\frac{1}{\mu} \sqrt{C_{1} e^{\left(\sigma_{1}+\sigma_{2}\right) T_{2}} e^{-\sigma_{2} \tau_{1}}+\frac{1}{N_{1}} \frac{C_{2} C_{4}}{\sigma_{1}+\sigma_{2}} e^{\sigma_{1} \tau_{1}}}<\frac{1}{2} .
$$

Thus, by (3.7), we have

$$
\left\|\left(I-P_{N_{1}}\right)\left(W\left(\tau+\tau_{1}, \tau\right) \varphi_{\tau}-W\left(\tau+\tau_{1}, \tau\right) \psi_{\tau}\right)\right\|_{E} \leq \gamma_{1}\left\|\varphi_{\tau}-\psi_{\tau}\right\|_{E} .
$$

From Lemmas 3.1, 3.2 and Theorem 2 of [21], we obtain the following result of existence of a pullback exponential attractor.

Theorem 3.3. Let (H1)-(H3) hold. Then the process $\{W(t, \tau)\}_{t \geq \tau}$ associated with (2.4) possesses a pullback exponential attractor $\{\mathcal{A}(t)\}_{t \in \mathbb{R}}$ with the following properties:
(a) for any $t \in \mathbb{R}, \mathcal{K}(t) \subseteq \mathcal{A}(t) \subseteq Y(t) \subseteq B_{0}$;
(b) the fractal dimension of $\mathcal{A}(t), \operatorname{dim}_{f} \mathcal{A}(t) \leq \ln N_{\varepsilon} /-\ln a_{\varepsilon}$;
(c) for any bounded set $B \subset E$,

$$
\begin{aligned}
& \quad \mathrm{d}_{E}(W(t, \tau) B, \mathcal{A}(t)) \leq \frac{L\left(\tau_{1}\right) r_{0} e^{\omega_{1} T_{B}}}{\left(a_{\varepsilon}\right)^{2}} e^{-\omega_{1}(t-\tau)}, \\
& \text { for }-\infty<\tau+T_{B}<t \leq+\infty
\end{aligned}
$$

(d) $\lim _{t \rightarrow s} \mathrm{~d}_{E}(\mathcal{A}(t), \mathcal{A}(s))=0,-\infty<s<\infty$, where

$$
a_{\varepsilon}=2\left(\gamma_{1}+\varepsilon L\left(\tau_{1}\right)\right), \quad \varepsilon=\frac{1-2 \gamma_{1}}{4 L\left(\tau_{1}\right)}, \quad \omega_{1}=\frac{-\ln a_{\varepsilon}}{\tau_{1}}
$$

and N_{ε} is the minimal number of closed balls of E with radius θ covering the closed unit ball $B_{N_{1}}(0,1)$ of $E_{N_{1}}=l_{N_{1}}^{2} \times l_{N_{1}}^{2}$ centered at 0 , here $l_{N_{1}}^{2}=\left\{u=\left(u_{i}\right)_{i \in \mathbb{Z}} \in l^{2}: u_{i}=0\right.$ for $\left.|i|>N_{1}\right\}$.

4. Uniform attractor

Another important concept describing the asymptotic behavior of non-autonomous dynamical systems is uniform attractor. In this section, we consider the existence of uniform attractor for the system (2.4).

Given a fixed function $g_{0} \in \mathbf{G} \subset C_{b}\left(\mathbb{R} ; l^{2}\right)$, take

$$
\mathcal{H}\left(g_{0}\right)=\left\{g_{0}(\cdot+h): h \in \mathbb{R}\right\} \subset C_{b}\left(\mathbb{R} ; l^{2}\right)
$$

as a symbol space, then $T(h) \mathcal{H}\left(g_{0}\right)=\mathcal{H}\left(g_{0}\right)$, where $T(h) g(\cdot)=g(\cdot+h)$, for all $g \in \mathcal{H}\left(g_{0}\right)$, for all $h \in \mathbb{R}_{+}$. From Section 2, for any $g \in \mathcal{H}\left(g_{0}\right)$ in (3.2), the solution $\varphi(t)=\left(\varphi_{i}(t)\right)_{i \in \mathbb{Z}}$ of (2.4) exists globally in $[\tau,+\infty)$, and maps of solutions

$$
W_{g}(t, \tau): \varphi_{\tau} \mapsto \varphi(t)=W_{g}(t, \tau) \varphi_{\tau} \in E, \quad \text { for all } t \geq \tau, g \in \mathcal{H}\left(g_{0}\right),
$$

generate a family of continuous processes $\left\{W_{g}(t, \tau)\right\}_{t \geq \tau, g \in \mathcal{H}\left(g_{0}\right)}$ on E which satisfying

$$
W_{g}(t+h, \tau+h)=W_{T(h) g}(t, \tau), \quad \text { for all } g \in \mathcal{H}\left(g_{0}\right)
$$

for all $t \geq \tau, \tau \in \mathbb{R}$ and all $h \in \mathbb{R}_{+}$.
We have the following theorem for the existence of a compact uniform (w.r.t. $\left.g \in \mathcal{H}\left(g_{0}\right)\right)$ attractor of the family of processes $\left\{W_{g}(t, \tau)\right\}_{t \geq \tau, g \in \mathcal{H}\left(g_{0}\right)}$ in E.

Theorem 4.1. Assume that (H1)-(H2) hold and $g_{0} \in \mathbf{G}$, then
(a) $\left\{W_{g}(t, \tau)\right\}_{g \in \mathcal{H}\left(g_{0}\right), t \geq \tau}$ possesses a uniform closed bounded absorbing ball

$$
\widetilde{B}_{0}=\widetilde{B}_{0}\left(0, r_{0}\right)=\left\{\varphi \in E:\|\varphi\|_{E} \leq r_{0}\right\} \subset E,
$$

where $\widetilde{r}_{0}=\sqrt{2 /\left(\mu \sigma_{0} \alpha\right)}\left\|\mid g_{0}\right\| \|$, such that, for any $\tau \in \mathbb{R}$ and each bounded set $B \subset E$, there exists $T_{B} \geq 0$ such that $\underset{g \in \mathcal{H}\left(g_{0}\right)}{\bigcup} W_{g}(t, \tau) B \subseteq \widetilde{B}_{0}$ for all $t \geq T_{B}+\tau$. In particular, there exists a time $T_{\widetilde{B}_{0}}>0$ such that

$$
\bigcup_{g \in \mathcal{H}\left(g_{0}\right)} W_{g}(t, \tau) \widetilde{B}_{0} \subseteq \widetilde{B}_{0}, \quad \text { for all } t \geq T_{\widetilde{B}_{0}}+\tau, \tau \in \mathbb{R} ;
$$

(b) Set $\widetilde{B}=\bigcup_{g \in \mathcal{H}\left(g_{0}\right)} \overline{\bigcup_{t \geq T_{\widetilde{B}_{0}}} W_{g}(t, 0) \widetilde{B}_{0}} \subseteq \widetilde{B}_{0}$. For any $\tau \in \mathbb{R}$ and any $\eta>0$, there exist $\widetilde{N}_{1}\left(\eta, \widetilde{B}_{0}\right) \in \mathbb{N}$ and $\widetilde{T}_{1}\left(\eta, \widetilde{B}_{0}\right) \geq 0$ such that for any $\varphi(\tau) \in \widetilde{B}$, the solution $\varphi(t)=\left(\left(u_{i}(t), v_{i}(t)\right)\right)_{i \in \mathbb{Z}}=W_{g}(t, \tau) \varphi(\tau)$ of (2.4) satisfies
$\sup _{g \in \mathcal{H}\left(g_{0}\right)} \sum_{|i|>\widetilde{N}_{1}\left(\eta, \widetilde{B}_{0}\right)}\left(u_{i}^{2}(t)+v_{i}^{2}(t)\right) \leq \eta, \quad$ for all $t \geq \widetilde{T}_{1}\left(\eta, \widetilde{B}_{0}\right)+\tau$.
(c) $\left\{W_{g}(t, \tau)\right\}_{g \in \mathcal{H}\left(g_{0}\right), t \geq \tau}$ possesses a uniform attractor $\mathcal{A} \subset \widetilde{B} \subset$ Ewith properties:
(c1) \mathcal{A} is closed;
(c2) $\lim _{t \rightarrow+\infty} \sup _{g \in \mathcal{H}\left(g_{0}\right)} \mathrm{d}_{E}\left(W_{g}(t, \tau) B, \mathcal{A}\right)=0$ for any fixed $\tau \in \mathbb{R}$ and any bounded set B of E;
(c3) \mathcal{A} is the minimal set (for inclusion relation) among those satisfying (c 2).

Proof. Noticing that for any $g \in \mathcal{H}\left(g_{0}\right),\| \| g\| \| \leq\| \| g_{0}\| \|$, thus (c1) and (c2) are similar to the proof of Lemmas 2.1 and 2.2. The proof of (c3) is obtained by Theorem 3.1 in [24].

5. Uniform exponential attractor

It is known from Theorem 3.1 in [24] that the uniform attractor \mathcal{A} with respect to $g \in \mathcal{H}\left(g_{0}\right)$ for the family of processes $\left\{W_{g}(t, \tau)\right\}_{g \in \mathcal{H}\left(g_{0}\right), t \geq \tau}$ on the state space E is just the projection of the global attractor $\Theta \subset E \times \mathcal{H}\left(g_{0}\right)$ on E of semigroup $\{S(t)\}_{t \geq 0}$ (skew-product semiflow) on a extended phase space $E \times \mathcal{H}\left(g_{0}\right):$

$$
S(t): E \times \mathcal{H}\left(g_{0}\right) \rightarrow E \times \mathcal{H}\left(g_{0}\right), \quad(\varphi, g) \rightarrow\left(W_{g}(t, 0) \varphi, T(t) g\right),
$$

for all $t \geq 0$. Thus the dimension of \mathcal{A} and Θ depend on the dimension of the symbol space $\mathcal{H}\left(g_{0}\right)$. In fact, generally, the dimension of \mathcal{A} and Θ is infinite dimensional when $\mathcal{H}\left(g_{0}\right)$ is infinite dimensional. So it is necessary to consider the existence of a uniform exponential attractor for system (2.4) which includes the uniform attractor and has finite fractal dimension and attracts all bounded sets exponentially. However, it is difficult to prove the existence of such uniform exponential attractor for system (2.4) with an infinite dimensional symbol space $\mathcal{H}\left(g_{0}\right)$. In this section, we consider the existence of a uniform exponential attractor for system (1.2) with quasi-periodic external force.

Let \mathbf{T}^{n} be the n-dimensional torus:

$$
\mathbf{T}^{n}=\left\{\rho=\left(\rho_{1}, \ldots, \rho_{n}\right): \rho_{j} \in[-\pi, \pi], \text { for all } j=1, \ldots, n\right\}
$$

with the identification

$$
\left(\rho_{1}, \ldots, \rho_{j-1},-\pi, \rho_{j+1}, \ldots, \rho_{n}\right) \sim\left(\rho_{1}, \ldots, \rho_{j-1}, \pi, \rho_{j+1}, \ldots, \rho_{n}\right)
$$

for all $j=1, \ldots, n$, and the topology and metric induced from the norm given by

$$
\|\rho\|_{\mathbf{T}^{n}}=\left(\sum_{j=1}^{n} \rho_{j}^{2}\right)^{1 / 2}, \quad \text { for all } \rho=\left(\rho_{1}, \ldots, \rho_{n}\right) \in \mathbf{T}^{n}
$$

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ be a fixed vector such that x_{1}, \ldots, x_{n} are rationally independent, i.e. if there exist integers k_{1}, \ldots, k_{n} such that $\sum_{j=1}^{n} k_{j} x_{j}=0$, then $k_{j}=0$ for $j=1, \ldots, n$. For $s \in \mathbb{R}$, define

$$
\widetilde{T}(s) \rho=(\mathbf{x} s+\rho) \bmod \left(\mathbf{T}^{n}\right), \quad \rho \in \mathbf{T}^{n}
$$

then $\{\widetilde{T}(s)\}_{s \in \mathbb{R}}$ is a translation group on \mathbf{T}^{n} with

$$
T(s) \mathbf{T}^{n}=\mathbf{T}^{n}, \quad \text { for all } s \in \mathbb{R}
$$

Consider the second order lattice system (1.2) with quasi-periodic external forces and initial data, which is equivalent to the following vector form:

$$
\begin{cases}\ddot{u}+\beta(A \ddot{u})+\alpha \dot{u}+\gamma(A \dot{u})+\lambda u+A u+f(u)=a h(\widetilde{\rho}(t)), & t>\tau \tag{5.1}\\ u(\tau)=\left(u_{i, \tau}\right)_{i \in \mathbb{Z}}, \quad \dot{u}(\tau)=\left(\dot{u}_{i, \tau}\right)_{i \in \mathbb{Z}}, & \tau \in \mathbb{R}\end{cases}
$$

where $\beta, \alpha, \gamma, \lambda, A, f$ are as in (2.1) of Section 2; $a h(\widetilde{\rho}(t))=\left(a_{i} h_{i}(\widetilde{\rho}(t))\right)_{i \in \mathbb{Z}}$, $\widetilde{\rho}(t)=\widetilde{T}(t) \rho=(\mathbf{x} t+\rho) \bmod \left(\mathbf{T}^{n}\right) \in \mathbf{T}^{n}, \rho \in \mathbf{T}^{n}$.

We make the following assumptions on $h_{i}, a_{i}, i \in \mathbb{Z}$ in (5.1):
(H4) for all $i \in \mathbb{Z}, h_{i}\left(0_{\mathbf{T}^{n}}\right)=0$ and there exists $k_{0}>0$ such that

$$
\left|h_{i}\left(\widetilde{\rho}_{1}\right)-h_{i}\left(\widetilde{\rho}_{2}\right)\right| \leq k_{0}\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}, \quad \rho_{1}, \rho_{2} \in \mathbf{T}^{n} .
$$

(H5) $a=\left(a_{i}\right)_{i \in \mathbb{Z}} \in l^{2}$.

The problem (5.1) can be written as

$$
\left\{\begin{array}{l}
\dot{u}=\varepsilon u-v, \\
(1+\beta A) \dot{v}+(\alpha-\varepsilon) v+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) u \\
\quad+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) A u+(\gamma-\beta \varepsilon) A v+f(u)=a h(\widetilde{\rho}(t)), \\
u(\tau)=\left(u_{i, \tau}\right)_{i \in \mathbb{Z}}, \quad \dot{u}(\tau)=\left(\dot{u}_{i, \tau}\right)_{i \in \mathbb{Z}},
\end{array}\right.
$$

that is,

$$
\begin{equation*}
\dot{\varphi}+C(\varphi)=\widetilde{F}(\varphi, t), \varphi(\tau)=\binom{u_{\tau}}{v_{\tau}}=\binom{u_{\tau}}{u_{1 \tau}+\varepsilon u_{\tau}}, \quad t>\tau, \tau \in \mathbb{R} \tag{5.2}
\end{equation*}
$$

where

$$
\widetilde{F}(\varphi, t)=\binom{0}{(1+\beta A)^{-1}[-f(u)+a h(\widetilde{\rho}(t))]}
$$

In the following, we assume (H2)-(H5) hold. By replacing $g(t)$ in Section 4 by $a h(\widetilde{\rho}(t))$, and by

$$
\|\mid a h(\widetilde{\rho}(t))\|^{2}=\sum_{i \in \mathbb{Z}} a_{i}^{2} h_{i}^{2}(\widetilde{\rho}(t)) \leq \sum_{i \in \mathbb{Z}} a_{i}^{2} k_{0}^{2}\|\rho\|_{\mathbf{T}^{n}}^{2} \leq n \pi^{2} k_{0}^{2}\|a\|^{2}
$$

similar to Theorem 4.1, we have the following theorem.
Theorem 5.1. (a) For any $\tau \in \mathbb{R}$, any initial data $\varphi(\tau)=(u(\tau), v(\tau)) \in E$ and $\rho \in \mathbf{T}^{n}$, there exists a unique solution of (5.2):

$$
\varphi(t)=(u(t), v(t)) \in C([\tau, \infty), E) \cap C^{1}((\tau, \infty), H), \quad t \geq \tau
$$

which generate a family of continuous processes $\left\{U^{\rho}(t, \tau)\right\}_{\rho \in \mathbf{T}^{n}, t \geq \tau}$ on E :

$$
U^{\rho}(t, \tau): \varphi(\tau) \mapsto \varphi(t), \quad t>\tau, \tau \in \mathbb{R}, \rho \in \mathbf{T}^{n}
$$

(b) The family of processes $\left\{U^{\rho}(t, \tau)\right\}_{\rho \in \mathbf{T}^{n}, t \geq \tau}$ possesses a uniform closed bounded absorbing ball $\mathcal{B}_{0}=\mathcal{B}_{0}\left(0, R_{0}\right) \subset H$ centered at 0 with radius $R_{0}=$ $\sqrt{2 n /\left(\mu \sigma_{0} \alpha\right)} \pi k_{0}\|a\|$.
(c) Set $\widetilde{\mathcal{B}}_{0}=\bigcup_{\rho \in \mathbf{T}^{n}} \overline{\bigcup_{t \geq T_{\mathcal{B}_{0}}} U^{\rho}(t, 0) \mathcal{B}_{0}} \subseteq \mathcal{B}_{0}$. For any $\tau \in \mathbb{R}$ and any $\eta>0$, there exist $N_{3}\left(\eta, R_{0}\right) \in \mathbb{N}$ and $T_{3}\left(\eta, R_{0}\right) \geq 0$ such that for any $\varphi(\tau) \in \widetilde{\mathcal{B}}_{0}$, the solution $\varphi(t)=\left(\left(u_{i}(t), v_{i}(t)\right)\right)_{i \in \mathbb{Z}}=U^{\rho}(t, \tau) \varphi(\tau)$ of (5.2) satisfies

$$
\sup _{\rho \in \mathbf{T}^{n}} \sum_{|i|>N_{3}\left(\eta, R_{0}\right)}\left(u_{i}^{2}(t)+v_{i}^{2}(t)\right) \leq \eta, \quad \text { for all } t \geq T_{3}\left(\eta, R_{0}\right)+\tau
$$

(d) The family of continuous processes $\left\{U^{\rho}(t, \tau)\right\}_{\rho \in \mathbf{T}^{n}, t \geq \tau}$ possesses a uniform attractor $\widetilde{\mathcal{A}} \subset \widetilde{\mathcal{B}} \subset H$.

Now we first verify the Lipschitz continuity of $\left\{U^{\rho}(t, \tau)\right\}_{\rho \in \mathbf{T}^{n}, t \geq \tau}$ and provide an estimation of the tail of the difference between two solutions of (5.2). Then we obtain the existence of a uniform exponential attractor of (5.2).

For $j=1,2, \varphi^{(j 0)} \in \widetilde{\mathcal{B}}_{0}, \rho_{j} \in \mathbf{T}^{n}$ and $t \geq 0$, let $\varphi^{(j)}(t)=U^{\rho_{j}}(t, 0) \varphi^{(j 0)}=$ $\left.{ }^{\left(u^{(j)}\right.}(t), v^{(j)}(t)\right)\left(\in \widetilde{\mathcal{B}}_{0}\right)$ be the solutions of (5.2). Set

$$
\Phi(t)=\varphi^{(1)}(t)-\varphi^{(2)}(t)=U^{\rho_{1}}(t, 0) \varphi^{(10)}-U^{\rho_{2}}(t, 0) \varphi^{(20)}=(\xi(t), \zeta(t))
$$

for all $t \geq 0$, we have

$$
\left\|\varphi^{(j)}(t)\right\| \leq R_{0}, \quad\|\Phi(t)\| \leq 2 R_{0}, \quad \text { for all } t \geq 0, j=1,2
$$

and

$$
\left\{\begin{array}{l}
\dot{\xi}=\zeta-\varepsilon \xi \tag{5.3}\\
(1+\beta A) \dot{\zeta}+(\alpha-\varepsilon) \zeta+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) \xi+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) A \xi \\
\quad+(\gamma-\beta \varepsilon) A \xi+f(u)-f(x)=a h\left(\widetilde{\rho}_{1}(t)\right)-a h\left(\widetilde{\rho}_{2}(t)\right), \quad t>0
\end{array}\right.
$$

LEmma 5.2. There exists a positive valued continuous function $L_{1}:[0,+\infty) \rightarrow$ $[0,+\infty)$ such that, for $t \geq 0$,
(5.4) $\left\|U^{\rho_{1}}(t, 0) \varphi^{(10)}-U^{\rho_{2}}(t, 0) \varphi^{(20)}\right\|_{E}$

$$
\leq L_{1}(t)\left(\left\|\varphi^{(10)}-\varphi^{(20)}\right\|_{H}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right)^{1 / 2}
$$

Proof. Note that $\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}$ is independent of t, and for any $t \geq 0$,

$$
\begin{aligned}
(f(u)-f(x), \zeta) & =\sum_{i \in \mathbb{Z}} f_{i}^{\prime}\left(x_{i}+\vartheta_{i}\left(u_{i}-x_{i}\right)\right) \xi_{i} \zeta_{i} \\
& \leq \frac{K^{2}\left(R_{0}\right)}{\alpha}\|\xi\|^{2}+\frac{\alpha}{4}\|\zeta\|^{2}, \\
\left(a h\left(\widetilde{\rho}_{1}(t)\right)-a h\left(\widetilde{\rho}_{2}(t)\right), \zeta\right) & =\sum_{i \in \mathbb{Z}} a_{i}\left(h_{i}\left(\widetilde{\rho}_{1}(t)\right)-h_{i}\left(\widetilde{\rho}_{2}(t)\right)\right) \zeta_{i} \\
& \leq \frac{k_{0}^{2}\|a\|^{2}}{\alpha}\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}+\frac{\alpha}{4}\|\zeta\|^{2} .
\end{aligned}
$$

Taking the inner product (\cdot, \cdot) of the second equation of (5.3) with $\zeta(t, \tau)$, we have

$$
\begin{equation*}
\frac{d}{d t} Z(t) \leq \sigma_{3} Z(t), \quad \text { for all } t \geq 0 \tag{5.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& Z=\|\zeta\|^{2}+\beta\|D \zeta\|^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)\|\xi\|^{2} \\
& +\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)\|D \xi\|^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}, \\
& \sigma_{3}=\max \left\{2 \varepsilon-\alpha, \frac{2(\beta \varepsilon-\gamma)}{\beta}, \frac{2 K^{2}\left(r_{0}\right) / \alpha-2 \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)}{\lambda-\alpha \varepsilon+\varepsilon^{2}}, \frac{k_{0}^{2}\|a\|^{2}}{\alpha}\right\} .
\end{aligned}
$$

Applying Gronwall's inequality to (5.5) on $[0, t](t \geq 0)$, we have

$$
\begin{aligned}
& \|\zeta(t)\|^{2}+\|\xi(t)\|^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2} \leq \frac{1}{\mu}\|Z(t)\|_{E}^{2} \\
& \quad \leq \frac{1}{\mu} C_{5} e^{\sigma_{3} t} \cdot\left(\|\Phi(0)\|_{E}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right) \doteq L_{1}(t) \cdot\left\|\varphi_{\tau}-\psi_{\tau}\right\|_{E}^{2}
\end{aligned}
$$

for all $t \geq 0$, where

$$
\begin{gathered}
C_{5}=\max \left\{1+\beta \widetilde{C}_{0},\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right)+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \widetilde{C}_{0}, 1\right\}, \\
L_{1}(t)=\frac{1}{\mu} C_{5} e^{\sigma_{3} t}, \quad \text { for all } t \geq 0 .
\end{gathered}
$$

Lemma 5.3. There exist $T^{*}>0$ and $M^{*} \in \mathbb{N}$ such that

$$
\begin{aligned}
&\left.\sum_{|i|>M^{*}}\left|\left(U^{\rho_{1}}\left(T^{*}, 0\right) \varphi^{(10)}-U^{\rho_{2}}\left(T^{*}, 0\right) \varphi^{(20)}\right) i_{i}^{2}\right|_{E}^{2}=\sum_{|i|>M^{*}}\left[\xi_{i}^{2}(t)+\zeta_{i}^{2}(t)\right)\right] \\
& \leq \frac{1}{128}\left(\left\|\varphi^{(10)}-\varphi^{(20)}\right\|_{E}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right)
\end{aligned}
$$

Proof. For $i \in \mathbb{Z}$, let

$$
\omega_{i}=\theta\left(\frac{|i|}{M}\right) \phi_{i}=\left(\theta\left(\frac{|i|}{M}\right) \xi_{i}, \theta\left(\frac{|i|}{M}\right) \zeta_{i}\right)=\left(\vartheta_{i}, \varsigma_{i}\right)
$$

$\omega=\left(\omega_{i}\right)_{i \in \mathbb{Z}}, \theta$ is as in (2.10) and $M>I_{0}$. Here

$$
\left(a h\left(\widetilde{\rho}_{1}(t)\right)-a h\left(\widetilde{\rho}_{2}(t)\right), \varsigma\right) \leq \sum_{i \in \mathbb{Z}} \xi\left(\frac{|i|}{M}\right)\left(\frac{k_{0}^{2} a_{i}^{2}}{\alpha}\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}+\frac{\alpha \zeta_{i}^{2}}{4}\right)
$$

and

$$
\|\dot{\zeta}(t)\|^{2}+\beta\|D \dot{\zeta}(t)\|^{2} \leq C_{3}\left(\|\zeta(t)\|^{2}+\|\xi(t)\|^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right)
$$

for all $t \geq 0$. Similar to (3.5), taking the inner product (\cdot, \cdot) of the second equation of (5.3) with $\varsigma(t, \tau)$, we have that for all $t \geq 0$,

$$
\begin{aligned}
& \frac{d}{d t} \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(\zeta_{i}^{2}+\beta(D \zeta)_{i}^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) \xi_{i}^{2}+\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right)(D \xi)_{i}^{2}\right) \\
& \quad+\sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left((\alpha-2 \varepsilon) \zeta_{i}^{2}+2(\gamma-\beta \varepsilon)(D \zeta)_{i}^{2}+2 \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) \xi_{i}^{2}\right) \\
& \quad+2 \varepsilon\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \xi)_{i}^{2} \\
& \leq \sum_{i \in \mathbb{Z}} \xi\left(\frac{|i|}{M}\right) \frac{1}{\alpha}\left|f^{\prime}\left(x_{i}+\vartheta_{i}\left(u_{i}-x_{i}\right)\right)\right|^{2} \xi_{i}^{2} \\
& \quad+\frac{C_{6}}{M}\left(\|\xi\|^{2}+\|\zeta\|^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right)+\frac{2 k_{0}^{2}}{\alpha}\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2} \sum_{i \in \mathbb{Z}} \xi\left(\frac{|i|}{M}\right) a_{i}^{2}
\end{aligned}
$$

where C_{6} is a constant independent of M. By the continuity of $K(s), K(0)=0$ and Lemma 5.2, there exist $\delta_{1}>0$, and $N_{4}\left(\delta_{1}, R_{0}\right) \in \mathbb{N}, T_{4}\left(\delta_{1}, R_{0}\right)>0$ such that

$$
\sup _{|i|>N_{2}\left(\delta_{1}, R_{0}\right)}\left|f_{i}^{\prime}\left(x_{i}+\vartheta_{i}\left(u_{i}-x_{i}\right)\right)\right|^{2} \leq \Gamma^{2}\left(\delta_{1}\right) \leq \alpha \varepsilon\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right), t \geq T_{4}\left(\delta_{1}, R_{0}\right) .
$$

Therefore, we obtain that for all $M \geq \max \left\{N_{4}\left(\delta_{1}, R_{0}\right), I_{0}\right\}$ and $t \geq T_{4}\left(\delta_{1}, R_{0}\right)$,

$$
\begin{align*}
\frac{d}{d t} Y_{M}+\sigma_{4} Y_{M} \leq & \frac{C_{6} C_{5}}{\mu M} e^{\sigma_{3} t} \cdot\left(\|\Phi(0)\|_{E}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right) \tag{5.6}\\
& +\frac{2 k_{0}^{2}}{\alpha}\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2} \sum_{i \in \mathbb{Z}} \xi\left(\frac{|i|}{M}\right) a_{i}^{2}
\end{align*}
$$

where

$$
\begin{aligned}
Y_{M}= & \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)\left(\zeta_{i}^{2}+\beta(D \zeta)_{i}^{2}+\left(\lambda-\alpha \varepsilon+\varepsilon^{2}\right) \xi_{i}^{2}\right) \\
& +\left(1-\gamma \varepsilon+\beta \varepsilon^{2}\right) \sum_{i \in \mathbb{Z}} \theta\left(\frac{|i|}{M}\right)(D \xi)_{i}^{2} \\
& \sigma_{4}=\min \left\{\alpha-2 \varepsilon, \frac{2(\gamma-\beta \varepsilon)}{\beta}, \varepsilon\right\}>0
\end{aligned}
$$

Integrating (5.6) from $T_{4}=T_{4}\left(\delta_{1}, R_{0}\right)$ to $t\left(>T_{4}\right)$, we have

$$
\begin{aligned}
\sum_{|i| \geq 2 M} & \left(\xi_{i}^{2}(t)+\zeta_{i}^{2}(t)\right) \leq \frac{1}{\mu} Y_{M}(t) \\
\leq & \frac{1}{\mu}\left(e^{-\sigma_{4}\left(t-T_{4}\right)} \cdot Y_{M}\left(T_{4}\right)+\frac{1}{M} \frac{C_{6} C_{5}}{\mu\left(\sigma_{4}+\sigma_{3}\right)} e^{\sigma_{3} t} \cdot\left(\|\Phi(0)\|_{H}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right)\right) \\
& +\frac{2 k_{0}^{2}}{\mu \alpha \sigma_{4}}\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2} \sum_{|i| \geq M} a_{i}^{2} \\
\leq & \frac{1}{\mu^{2}}\left(C_{5} e^{\left(\sigma_{3}+\sigma_{4}\right) T_{4}} e^{-\sigma_{4} t}+\frac{1}{M} \frac{C_{6} C_{5}}{\left(\sigma_{4}+\sigma_{3}\right)} e^{\sigma_{3} t}\right)\left(\|\Phi(0)\|_{H}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right) \\
& +\frac{2 k_{0}^{2}}{\mu \alpha \sigma_{4}} \sum_{|i| \geq M} a_{i}^{2} \cdot\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}
\end{aligned}
$$

By the condition (H5), there exists $M_{5} \in \mathbb{N}$ such that

$$
\frac{2 k_{0}^{2}}{\mu \alpha \sigma_{4}} \sum_{|i| \geq M} a_{i}^{2} \leq \frac{1}{512}, \quad M \geq M_{5}
$$

Letting

$$
\begin{align*}
T^{*} & =\max \left\{\frac{\left(\sigma_{3}+\sigma_{4}\right) T_{4}+2 \ln \left(1024 C_{5} / \mu^{2}\right)}{\sigma_{4}}, T_{4}\right\} \tag{5.7}\\
M^{*} & =\max \left\{M_{4}, M_{5}, I_{0}, \frac{1024 C_{6} C_{5}}{\mu^{2}\left(\sigma_{4}+\sigma_{3}\right)} e^{\sigma_{3} T^{*}}\right\} \tag{5.8}
\end{align*}
$$

we then have

$$
\begin{aligned}
& \frac{1}{\mu^{2}}\left(C_{5} e^{\left(\sigma_{3}+\sigma_{4}\right) T_{2}} e^{-\sigma_{2} T^{*}}+\frac{1}{M^{*}} \frac{C_{6} C_{5}}{\left(\sigma_{4}+\sigma_{3}\right)} e^{\sigma_{3} T^{*}}\right) \leq \frac{1}{512} \\
& \sum_{|i|>2 M^{*}}\left(\xi_{i}^{2}\left(T^{*}\right)+\zeta_{i}^{2}\left(T^{*}\right)\right) \leq \frac{1}{128}\left(\|\Phi(0)\|_{H}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right)
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \sum_{|i|>2 M^{*}}\left|\left(U^{\rho_{1}}\left(T^{*}, 0\right) \varphi^{(10)}-U^{\rho_{2}}\left(T^{*}, 0\right) \varphi^{(20)}\right)_{i}\right|^{2} \\
& \leq \frac{1}{128}\left(\left\|\varphi^{(10)}-\varphi^{(20)}\right\|_{H}^{2}+\left\|\rho_{1}-\rho_{2}\right\|_{\mathbf{T}^{n}}^{2}\right)
\end{aligned}
$$

By Lemmas 5.1-5.3 and Theorem 2.2 of [22], our main result of this section is as follows.

Theorem 5.4. If conditions (H2)-(H5) are satisfied, then the family of processes $\left\{U^{\rho}(t, \tau)\right\}_{\rho \in \mathbf{T}^{n}, t \geq \tau}$, possesses a uniform exponential attractor $\mathcal{M} \subset \widetilde{\mathcal{B}}$ with the following properties:
(a) \mathcal{M} is compact;
(b) $\mathcal{A} \subset \mathcal{M} \subset \mathcal{B}$, where \mathcal{A} is the uniform attractor;
(c) \mathcal{M} has a finite fractal dimension

$$
\operatorname{dim}_{f}(\mathcal{M}) \leq K_{0}\left(n+2\left(4 M^{*}+1\right)\right) \ln \sqrt{L_{1}\left(T^{*}\right)+1}+1
$$

where K_{0} is a constant, T^{*} and M^{*} are as in (5.7)-(5.8);
(d) there exist two positive constants k_{1} and k_{2} such that

$$
\sup _{\rho \in \mathbf{T}^{n}} \mathrm{~d}_{E}\left(U^{\rho}(t, \tau) \mathcal{B}, \mathcal{M}\right) \leq k_{1} e^{-k_{2}(t-\tau)}, \quad \text { for all } t \geq \tau, \tau \in \mathbb{R}
$$

Remark 5.5. Similar results in this article are still valid for non-autonomous lattice systems (1.1) and (1.2) defined on \mathbb{Z}^{l} with $l \geq 2$ and $\beta \geq 0$.

References

[1] A.Y. Abdallah, Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations 251 (2011), 1489-1504.
[2] Exponential attractors for second order lattice dynamical systems, Commun. Pure. Appl. Anal. 8 (2009), 803-813.
[3] , Long-time behavior for second order lattice dynamical systems, Acta Appl. Math. 106 (2009), 47-59.
[4] P.W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (2001), 143-153.
[5] J.L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Comm. 13 (1977), 149-155.
[6] T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64 (2006), 484-498.
[7] A.N. Carvalho and J.W. Cholewa, Local well posedness, asymptotic behavior and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time, Trans. Amer. Math. Soc. 361 (2009), 2567-2586.
[8] A.N. Carvalho, J.W. Cholewa and T. Dlotko, Strongly damped wave problems: bootstrapping and regularity of solutions, J. Differential Equations 244 (2008), 2310-2333.
[9] H. Chate and M. Courbage, Lattice Systems, Physica D 103 (1997), 1-612.
[10] V.V. Chepyzhov and M.I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications, American Math. Soc., 49, 2002.
[11] P.A. Clarkson, R.J. Leveque and R.A. Saxton, Solitary-wave interaction in elastic rods, Stud. Appl. Math. 75 (1986), 95-122.
[12] X. Fan and H. Yang, Exponential attractor and its fractal dimension for a second order lattice dynamical system, J. Math. Anal. Appl. 367 (2010), 350-359.
[13] R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. 14 (2013), 1308-1322.
[14] J. Oliveira, J. Pereira and M. Perla, Attractors for second order periodic lattices with nonlinear damping, J. Difference Equ. Appl. 14 (2008), 899-921
[15] G.R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc. 127 (1967), 241-283.
[16] C. Zhao and S. Zhou, Upper semicontinuity of attractors for lattice systems under singular perturbations, Nonlinear Anal. 72 (2010), 2149-2158.
[17] X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. B 9 (2008), 763-785.
[18] S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations 179 (2002), 605-624.
[19] , Attractors and approximations for lattice dynamical systems, J. Differential Equations 200 (2004), 342-368.
[20] _ Attractors for lattice systems corresponding to evolution equations, Nonlinearity 15 (2002), 1079-1095.
[21] S. Zhou and X. Han, Pullback exponential attractors for non-autonomous lattice systems, J. Dynam. Differential Equations 24 (2012), 601-631.
[22] _ Uniform exponential attractors for non-autonomous $K G S$ and Zakharov lattice systems with quasiperiodic external forces, Nonlinear Anal. 78 (2013), 141-155.
23] S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations 224 (2006), 172-204.
[24] S. Zhou, C. Zhao and X. Liao, Compact uniform attractors for dissipative non-autonomous lattice dynamical systems, Commun. Pure. Appl. Anal. 6 (2007), 1087-1111.

Xiaolin Xiang

Department of Mathematics
Zhejiang Normal University
Jinhua 321004, P.R. CHINA
and
Business School
Sichuan University
Chendu 610064, P.R. CHINA
E-mail address: scugsxxl@sina.com

Shengfan Zhou (corresponding author)
Department of Mathematics
Zhejiang Normal University
Jinhua 321004, P.R. CHINA
E-mail address: sfzhou@zjnu.cn

TMNA : Volume 46 - $2015-\mathrm{N}^{\mathrm{O}} 2$

[^0]: 2010 Mathematics Subject Classification. 60H15, 34D35, 35Q80.
 Key words and phrases. Second order lattice system, dispersive term, pullback attractor, pullback exponential attractor, uniform attractor, uniform exponential attractor.

 This work is supported by the National Natural Science Foundation of China under Grant No. 11471290, 11071165, 61271396, Zhejiang Natural Science Foundation under Grant No. LY14A010012 and Zhejiang Normal University Foundation under Grant No. ZC304014012.

