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COINCIDENCE OF MAPS ON TORUS FIBRE BUNDLES

OVER THE CIRCLE

João Peres Vieira

Abstract. The main purpose of this work is to study coincidences of fibre-

preserving self-maps over the circle S1 for spaces which are fibre bundles

over S1 and the fibre is the torus T . We classify all pairs of self-maps over
S1 which can be deformed fibrewise to a pair of coincidence free maps.

1. Introduction

Given a fibration M
p−→ S1 and fibre-preserving maps f, g : M →M over S1,

the question is if the pair (f, g) can be deformed by fibrewise homotopy over S1

to a coincidence free pair (f ′, g′).

This problem was motivated by the case in that f = Id, and in this case,

the question is if the map g can be deformed by fibrewise homotopy over S1 to

a fixed point free map g′, which has been considered by many authors, among

them see [4], [6], [8] and [9].

Let us consider fibre-preserving maps f, g : M → M , where M is a fibre

bundle over the circle S1 and the fibre is a closed surface S. These fibre bundles

are obtained from the space S × [0, 1] by identifying the points (x, 0) with the

points (φ(x), 1), where φ is a homeomorphism of the surface S. The cases when

f = Id and the fibre S is either the torus T or the Klein bottle K, were completely

solved in [8] and [9], respectively.
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In this work, we consider the fibre S = T . We denote the total space by

M(φ). We investigate when given fibre-preserving maps f, g : M(φ) → M(φ)

over S1, i.e. p ◦ f = p and p ◦ g = p, the pair (f, g) can be deformed by fibrewise

homotopy over S1 to a coincidence free pair (f ′, g′).

The set of homotopy classes of the pairs (f, g) such that (f |T , g|T ) can be

deformed to a coincidence free pair is given by Theorem 3.6.

This paper is organized into four sections. In Section 2 we prove that our

problem is equivalent to the existence of a section. This is given by Theorem 2.2.

We show that to find this section it is equivalent to find a lifting in an algebraic

diagram. This is the Proposition 2.10. We also present some results on the

torus T and fibre bundles over S1 and fibre T . These results include the Nielsen

number of a pair of maps of the torus and the fundamental group of the spaces

M(φ), M(φ) ×S1 M(φ) and M(φ) ×S1 M(φ) \ ∆ where ∆ is the diagonal in

M(φ)×S1M(φ), which is the pullback of p : M(φ)→M(φ) by p : M(φ)→M(φ).

In Section 3 we classify all T -bundles over S1. This is the Proposition 3.4. We

also obtain a presentation for the fundamental groups of M(φ), M(φ)×S1 M(φ)

and M(φ)×S1 M(φ) \∆.

In Section 4, we present a necessary and sufficient condition for the existence

of the lifting in the diagram

π1(F)

��

' π2(T, T \ 1)

π1(ES1(M(φ)))

q#

��

' π1(M(φ)×S1 M(φ) \∆)

π1(M(φ))

ψ
66

(f,g)#

// π1(M(φ)×S1 M(φ))

with base points suitable. These conditions are related to existence of solutions

of a system of equations involving the presentation of the groups above.

In Section 5, we classify all the pairs of maps (f, g), which can be deformed,

by a fibrewise homotopy over S1, to a pair of coincidence free maps (f ′, g′),

which is Theorem 5.1.

2. Preliminary and general results

2.1. Coincidence theory. Let f, g : X → Y be maps between finite CW-

complexes. Denote by Coin(f, g) = {x ∈ X | f(x) = g(x)}.
Suppose that x1, x2 are in Coin(f, g). Then we say that x1, x2 are Nielsen

equivalent according to f and g if there exists a path σ : [0, 1] → X such that

σ(0) = x1, σ(1) = x2 and f ◦ σ is homotopic to g ◦ σ relative to end points.
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We have that the above relation is an equivalence relation. So the set

Coin(f, g) is partioned in equivalence classes of this relation, called coincidence

classes.

A coincidence class F is called essential if given x in F and homotopies {ft},
{gt} of f = f0 and g = g0 there exist x′ in Coin(f1, g1) and a path γ : [0, 1]→ X

with γ(0) = x, γ(1) = x′ such that ft ◦ γ is homotopic to gt ◦ γ relative to end

points.

The coincidence Nielsen number N(f, g) of f and g is defined as the number

of essential coincidence classes. We have that N(f, g) is a homotopic invariant,

finite, and is a lower bound for the set Coin(f ′, g′) of each pair maps f ′, g′

homotopic to f and g, respectively. For more details see [7] and [18].

2.2. Presentation of groups. Let A and G be groups with presentations

given by A = 〈Y |S〉 and G = 〈X,R〉. Let

1 // A
l
// G̃

µ
// G // 1

be a fixed extension of G by A.

Let us denote Ỹ = {l(y) | y ∈ Y }. Let S̃ = {s̃ | s ∈ S} be the set of words

obtained of S by changing y to ỹ = l(y). For each x ∈ X we choose x̃ ∈ G̃ such

that µ(x̃) = x. Take X̃ = {x̃ | x ∈ X}.
We also consider for each r ∈ R the word r̃ in X̃ obtained from r substituting

x by x̃. Now, each r̃ is annulated by µ, because by the hypothesis µ(x̃) = x.

Therefore, for each r ∈ R we have r̃ ∈ ker (µ) = Im l. Since Im l is generated

by the set Ỹ , each r̃ can be written as a word, namely µr, in ỹ. Let us denote

R̃ = {r̃µ−1
r |r ∈ R}. Since Im l is a normal subgroup of G̃, each conjugate x̃ỹx̃−1,

where x̃ ∈ X̃ and ỹ ∈ Ỹ , belongs to Im l. Therefore x̃ỹx̃−1 is a word wxy in ỹ.

Let us denote T̃ = {x̃ỹx̃−1w−1
xy | x ∈ X and y ∈ Y }. With the above notation

we have

Theorem 2.1. The group G̃ = 〈X̃, Ỹ |R̃, S̃, T̃ 〉.

The proof of this theorem can be found in [11, Chapter 13].

2.3. The general problem. Let (Fi,Mi, B, pi) be fibre bundles and let

f, g : M1 →M2 be fibre-preserving maps over B, i.e. p2 ◦ f = p1 and p2 ◦ g = p1.

When the pair (f, g) is deformable over B to a pair of coincidence free maps

(f ′, g′) by a fibrewise homotopy over B?

We will give a formulation for the problem through a geometric diagram.

Now we define some spaces which are used in this work.

Let M2 ×B M2 = {(x, y) ∈ M × M | p2(x) = p2(y)} be the pullback of

p2 : M2 → B by p2 : M2 → B. By [4] the inclusion M2×BM2 \∆ ↪→M2×BM2,

where ∆ is the diagonal in X = M2 ×B M2, is replaced by the fibration F →
EB(M2)

q−→ M2 ×B M2, whose fibre is denoted by F , EB(M2) = {(x,w) ∈



510 J.P. Vieira

A × XI | i(x) = w(0)} has the same homotopy type from A = M2 ×B M2 \∆

and q is given by q(x,w) = w(1).

The next theorem gives an equivalent condition to our problem.

Theorem 2.2. The pair of maps (f, g) over B can be deformed to a coinci-

dence free pair (f ′, g′) by fibrewise homotopy over B if and only if there exists

a section σ in the diagram

(2.1)

F

��

F

��

EB(f, g)

q(f,g)

��

q(f,g)
// EB(M2)

q

��

M1

σ
::

1
// M1

(f,g)
// M2 ×B M2

where q(f,g) : EB(f, g)→M1 is the induced fibration from q by (f, g).

Proof. If exists σ on the above diagram, then we have a map θ : M1 →
EB(M2) given by θ = q(f,g) ◦ σ. Hence the map H : M1 × I →M2 ×B M2 given

by H(x, s) = θ2(x)(s) gives a fibrewise homotopy over B between a coincidence

free pair and (f, g). Here θ(x) = (θ1(x), θ2(x)).

Suppose that there exists a homotopy H : M1 × [0, 1] → M2 ×B M2 such

that H1 = (f, g) and H0 = (f ′, g′) where f ′(x) 6= g′(x), for all x ∈ M1. We

have that G0(x) = (H0(x), cH0(x)) belongs to (M2 ×B M2 \∆) × (M2 ×B M2)I

where cH0(x) is the constant path in M2 ×B M2 \ ∆ ⊂ M2 ×B M2 given by

cH0(x)(t) = H0(x) and q ◦ G0(x) = cH0(x)(1) = H0(x). Since q is a fibration,

then there exists a homotopy G : M1 × [0, 1] → EB(M2) which is the lifting

of H. We define σ(x) = (x,G1(x)). Now σ(x) belongs to EB(f, g) because

q ◦G1(x) = H1(x) = (f(x), g(x)). �

The following proposition relates our problem with a geometric diagram.

Proposition 2.3. With the above notation we have that the pair of maps

(f, g) can be deformed to a coincidence free pair (f ′, g′) by fibrewise homotopy

over B if and only if there exists a map h : M1 → M2 ×B M2 \∆ which makes

the diagram

M2 ×B M2 \∆

i

��

M1

h
88

(f,g)
// M2 ×B M2

homotopy commutative.
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Proof. Suppose that there exists a homotopy H : M1 × [0, 1]→M2 ×BM2

such that p2◦Ht(x) = p2(x), for all x ∈M1, for all t ∈ [0, 1]; H0(x) = (f(x), g(x))

and H1(x) = (f ′(x), g′(x)), where f ′(x) 6= g′(x), for all x ∈M1.

We define h : M1 → M2 ×B M2 \ ∆ by h(x) = (f ′(x), g′(x)). Since p2 ◦
f ′(x) = p1(x), p2 ◦ g′(x) = p1(x) and f ′(x) 6= g′(x), for all x ∈ M1, then

h(x) ∈ M2 ×B M2 \ ∆ and i ◦ h is homotopic to (f, g), i.e. the diagram is

homotopy commutative.

Let H : M1 × [0, 1] → M2 ×B M2 be the homotopy making the diagram

homotopy commutative: H0 = (f, g), H1 = ih. Now H is a fibrewise homotopy

between (f, g) and a coincidence free pair. �

Remark 2.4. (a) The fibre F has homotopy groups

πj−1(F) ∼= πj(M2×BM2,M2×BM2 \∆) = πj(X,A)

(see [5]).

(b) If the fibre F2 and the spaces M2 and B are closed manifolds, πj−1(F) ∼=
πj(X,A) ∼= πj(F2, F2\x) where x is a point in F2 (see [4, Proposition 2.1, p. 53]).

(c) Under conditions (b), if dimF2 = k > 2, the classical obstruction the-

ory can be used to find obstructions. The primary obstruction occurs to extend

the section from (k − 1)-skeleton to the k-skeleton of M2 and this obstruction

OB(f, g) ∈ Hk(M2; {πk−1(F)}). There may be other obstructions and the es-

sential reason to apply the obstruction theory is that π1(M2) acts in πk−1(F)

independently of the base point of F , because π1(F) = 0 (see [4, Proposition 2.2,

p. 54]).

(d) Under conditions (b), when the dimension of the fibre is 2 and F2 6= S2,

RP 2, there exists a well defined coefficient local system given by the action of

π1(M2) in H1(F), and so we can define the abelianized obstruction AB(f, g) ∈
H2(M2; {H1(F)}) (see [15]).

(e) When the fibre is the sphere S2, then π2(S2, S2 \ x) is isomorphic to

Z and the obstruction theory is applied because π1(M2) acts in π1(F) ' Z
independently of the base point of F .

2.4. Torus fibre bundle over S1. In this subsection M1 = M2 = M is

a torus-bundle over S1 and we will obtain types of torus-bundle over S1 using

homeomorphism of T .

Let φ : T → T be a homeomorphism which has one fixed point denoted by x0.

Without loss of generality we can assume this hypothesis because if φ : T → T

is a homeomorphism with φ(x1) = y1, then it follows from [16, Lemma 5.4,

chapter 5] that there exists a homeomorphism h : T → T isotopic to the identity

Id such that h(y1) = x1.

Let H : T×[0, 1]→ T be isotopy between h and Id with H0 = h and H1 = Id.

Defining G : T × [0, 1] → T by Gt(x) = Ht(φ(x)) we have that G is an isotopy
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between h ◦ φ and φ. We observe that h ◦ φ(x1) = h(y1) = x1. Therefore every

homeomorphism φ : T → T is isotopic to a homeomorphism preserving base

point.

We denote by M(φ) the quotient space obtained from T × [0, 1] where we

identify (x, 0) with (φ(x), 1). The elements of M(φ) we denote by 〈x, t〉.
We have that T → M(φ)

p−→ S1 = I/0∼1 is a trivial locally fibre bundle

where p is the projection given by p(〈x, t〉) = 〈t〉.

Proposition 2.5. Let φ1, φ2 : T → T be two homeomorphisms. Then M(φ1)

is homeomorphic to M(φ2) by a fibre-preserving homeomorphism over S1 if and

only if φ1 is isotopic to a conjugate of φ2.

Proof. Suppose that φ1 and h ◦ φ2 ◦ h−1 are isotopic. So we have a map

G : T × I → T such that G( · , 0) = φ1 and G( · , 1) = h ◦φ2 ◦ h−1. Let G′( · , t) =

h−1 ◦G( · , t), t ∈ {0, 1}. We have

G′( · , 1) ◦ φ1 = h−1 ◦ h ◦ φ2 ◦ h−1 ◦ φ1 = φ2 ◦ h−1 ◦ φ1 = φ2 ◦G′( · , 0).

Hence we have a homeomorphism over S1 between M(φ1) and M(φ2) given by

〈x, t〉 → 〈G′(x, t), t〉. For the converse suppose that there exists a fibre-preserving

homeomorphism over S1 which we will denote by h : M(φ1) → M(φ2). Then

h〈x, t〉 = 〈h1(x, t), t〉 and h1( · , 1)◦φ1 = φ2◦h1( · , 0). We define G : T×I → T by

G(x, t) = h1(x, 1)−1◦φ2◦h1(x, t). Then G(x, 0) = h1(x, 1)−1◦φ2h1(x, 0) = φ1(x)

and G(x, 1) = h1(x, 1)−1 ◦φ2h1(x, 1) and so φ1 is isotopic to a conjugate of φ2.�

Corollary 2.6. The classes of T -bundles over S1 are classified by the con-

jugacy classes of isotopic classes of homeomorphism which preserve base point.

Proof. As observed above we have that every homeomorphism φ : T →
T is isotopic to a homeomorphism which is base point preserving. So from

Proposition 2.5 the result follows. �

We use some homeomorphisms of the torus to describe all T -bundles over S1.

We also use the group structure of the torus T in order to simplify the analysis

of our algebraic problem.

Let T be defined as the quotient space R× R/Z× Z ' T and we denote by( x
y

)
and

[ x
y

]
the elements of R× R and T , respectively.

Let φ be a homeomorphism of T induced by a linear operator in R2 that

preserves Z×Z. We identify φ with the matrix of a linear operator with integer

coefficients and determinant either 1 or −1.

ThenM(φ) is the quotient space of T×[0, 1], where we are identifying
([ x
y

]
, 0
)

with
([
φ
( x
y

)]
, 1
)
.

The class of the element
([ x
y

]
, t
)

in the quotient is denoted by
〈[ x

y

]
, t
〉
.
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As observed above, the space M(φ) is a fibre bundle over the circle S1, where

the fibre is the torus T and the projection map p : M(φ)→ S1, is given by

p

(〈[
x

y

]
, t

〉)
= 〈t〉 ∈ [0, 1]/0 ∼ 1 ' S1.

2.5. The algebraic problem. In this subsection we will show that the

existence of a section over the 2-skeleton gives a deformation to a coincidence

free map. This will follow from the fact that the fibre (= torus) is a K(Z⊕Z, 1)

space.

We have that M(φ) is a CW-complex because it is a quotient space of the

CW-complex, T × [0, 1] by the CW-subcomplex, Q, given by Q = {(x, 0) ∼
(φ(x), 1) | x ∈ T}.

If f : M(φ) → M(φ) is a map over S1, we define f0 : T → T by f0(x) = y if

f(〈x, 0〉) = 〈y, 0〉. This map is well defined since 〈y1, 0〉 = 〈y2, 0〉 if and only if

y1 = y2.

Proposition 2.7. The map f0 satisfies the condition that φ ◦ f0 ◦ φ−1 is

homotopic to f0. Conversely, if f0 : T → T is a map which satisfies the condition

that φ ◦ f0 ◦ φ−1 is homotopic to f0, then there exists a map f : M(φ) → M(φ)

over S1 such that f restricted to the fibre is f0.

Proof. Define f1(x) = y if f(〈x, 1〉) = 〈y, 1〉. Since 〈x, 0〉 = 〈φ(x), 1〉, it

follows that 〈f0(x), 0〉 = 〈f1 ◦ φ(x), 1〉, which implies that f1 = φ ◦ f0 ◦ φ−1.

Now we observe that if t /∈ {0, 1} then f(〈x, t〉) = 〈g(x, t), t〉. Extending g to

a map g : T × I → T , by continuity, we have g(x, 0) = f0(x) and g(x, 1) = f1(x),

and the first part follows. For the converse, we define f : M(φ) → M(φ) by

f(〈x, t〉) = 〈H(x, t), t〉, where H is the homotopy between f0 and φ ◦ f0 ◦ φ−1.�

Proposition 2.8. If M = M(φ), then there exists a cross section σ (see

diagram (2.1)) over M if and only if it exists over the 2-skeleton of M .

Proof. Basically this follows from the fact that in these conditions the

theoretical fibre has homotopy groups equal to zero, except at level 1 (see Re-

marks 2.4(b)). Therefore, for the construction of the cross section according to

Theorem 2.2, once constructed in the 2-skeleton, all the other obstructions are

equal to zero. �

For the next proposition we are going to need Theorem 4.3.1 from [1, p. 265],

which says:

Theorem 2.9 (Criterion for 2-extendability). Let (X,L) be a relative CW-

complex, and p : X̃ → X a fibration with fibre F ⊂ X̃. Further, let X, L and F

be path-connected. A section u : L → L̃, where L̃ = p−1(L), can be extended to
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a section u′ over the 2-skeleton X2 = L ∪X2 exactly when i# : π1(F ) → π1(X̃)

is injective and when there is a homomorphism θ making the diagram

π1(L̃) // π1(X̃)

p#

##

π1(L)

u#

OO

// π1(X)

θ

OO

Id
// π1(X)

commutative. We can take such u′ that u′# = θ.

Given q : E → Y a fibration with fibre F path-connected and a map f : X →
Y , then construct the geometric pullback E∗ = {(x, y) ∈ X × E | f(x) = q(y)}

E∗

q1

��

q2
// E

q

��

X
f
// Y

We also can construct the algebraic pullback

π1(X) t π1(E) = {(α, β) ∈ π1(X)× π1(E) | f#(α) = q#(β)}.

We observe that if i1, given in the homotopy exact sequence of the fibration q

· · · // π1(F )
i1
// π1(E)

q#
// π1(Y ) // · · ·

is injective, then π1(E∗) is isomorphic to π1(X) t π1(E) because we have the

following diagram

π1(F )

Id

��

// π1(E∗)

(q1#,q2#) ≈
��

q1#
// π1(X)

Id

��

π1(F )
i2

// π1(X) t π1(E)
p1
// π1(X)

commutative, where i2(β) = (1, i1(β)) and p1(α, β) = α.

The following proposition reduces our problem to the existence of a lifting in

the corresponding diagram of fundamental groups.

Proposition 2.10. There is a cross section σ (see diagram (2.1)) over the

2-skeleton of M(φ) if and only if the following diagram of fundamental groups,

admits a lifting ψ:
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(2.2)

π1(F)

��

' π2(T, T \ 1)

π1(ES1(M(φ)))

q#

��

' π1(M(φ)×S1 M(φ) \∆)

π1(M(φ))

ψ
66

(f,g)#

// π1(M(φ)×S1 M(φ))

Proof. First we observe that there exists a homomorphism ψ which makes

the diagram of fundamental groups commutative if and only if there exists a ho-

momorphism θ which makes the diagram

π1(ES1(f, g))

q(f,g)#

��

q(f,g)#
// π1(ES1(M(φ)))

q#

��

π1(M(φ))

θ
77

Id
// π1(M(φ))

ψ
55

(f,g)#

// π1(M(φ))×S1 π1(M(φ))

commutative, because if there exists θ, then it is sufficient to define ψ = q(f,g)#◦θ.
As observed before Proposition 2.10 we have that π1(ES1(f, g)) is isomorphic to

π1(M(φ))tπ1(ES1(M(φ))) and therefore if there exists ψ it is sufficient to define

θ(x) = (x, ψ(x)).

Now we suppose that there exists a cross section σ in the diagram (2.1), so

there exists θ = σ# in the diagram above and therefore there exists ψ.

Now, if the diagram (2.2) of fundamental groups, admits a lifting ψ, by

the remark above there exists a homomorphism θ which makes the diagram

commutative. So, from the theorem (criterion for 2-extendibility) there exists

a cross section σ in the diagram (2.1). �

We remark that our problem is equivalent to an algebraic problem given

by Proposition 2.10. In this way, we should compute the homomorphisms and

groups in the diagram (2.2).

We consider M(φ)×S1M(φ) the pullback of p : M(φ)→ S1 by p : M(φ)→ S1

and pi : M(φ)×S1M(φ)→M(φ), i = 1, 2, the projections on the first and second

coordinates, respectively.

It is easy to see that each element of M(φ) ×S1 M(φ) is represented by

(〈x, t〉, 〈y, t〉) where x, y ∈ T .

For the calculation of the groups given in the diagram (2.2) we will reproduce

Propositions 1.7–1.9 from [8, pp. 5–6]:

Proposition 2.11. The fundamental group π1(M(φ), 〈x0, 0〉) is isomorphic

to the semi-direct product π1(T ) o Z. Further the action Z Γ−→ Aut(Π1(T ))
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which comes from the section s0 : S1 →M(φ) defined by s0(t) = 〈x0, t〉, is given

by c · α = cαc−1 = φ#(α), where c = p#〈s0〉 is the generator of π1(S1).

Proof. From the homotopy long exact sequence of the fibration, we have

a short exact sequence 1 → π1(T ) → π1(M(φ), 〈x0, 0〉) → π1(S1) → 1, which

splits because Z is free. Hence π1(M(φ), 〈x0, 0〉) is isomorphic to the semi-

direct product π1(T ) o Z. Further cαc−1 = φ#(α) because the class of the loop

s0(t) = 〈x0, t〉 is projected by p# in the generator c of π1(S1) and the juxtaposed

loop s0〈φ ◦ α, 1〉s−1
0 is homotopic to the loop 〈φ ◦ α, 0〉. In the quotient space

M(φ), this leads to c · α = cαc−1 = φ#(α), and the result follows. �

Let us denote 0 =
〈[

0
0

]
, 0
〉

and q =
〈[ q
q

]
, 0
〉

elements of M(φ). Then we

have the following

Proposition 2.12. The fundamental group π1(M(φ)×S1M(φ), (0,q)) is iso-

morphic to the semi-direct product π1(T ) o π1(M(φ),q). Further, the action of

π1(M(φ), q) on Aut(π1(T )), which comes from the section s1 : π1(M(φ),q) →
π1(M(φ)×S1M(φ), (0,q)), where s1 = (s0 ◦ p, 1M(φ))#, is given by β · α =

βαβ−1 = p#(β) · α. The last action is the one which comes from the bundle

p : (M(φ),q)→ S1, i.e. the action is given by the following composition:

π1(M(φ),q)
p#
// π1(S1)

Γ
// Aut(π1(T ))

where if we denote by c the generator of Π1(S1) then Γ(c) = φ# , so that if

p#(β) = ck then p#(β) · α = φk#(α).

Proof. We have that π1(M(φ)×S1M(φ), (0,q)) is isomorphic to the semi-

direct product π1(T ) o π1(M(φ),q), because the short exact sequence

1 // π1(T )
i1#
// π1(M(φ)×S1 M(φ), (0,q))

p2#
// π1(M(φ),q) // 1

splits and the homomorphism s1 = (s0 ◦ p, 1M(φ))# is a section and the iso-

morphism φ1 : π1(M(φ) ×S1 M(φ), (0,q)) → π1(T ) o π1(M(φ),q) is given by

φ1(γ) = (i1
−1
# (γ(s1 ◦ p2#)(γ−1)), p2#(γ)). �

To calculate π1(M(φ)×S1 M(φ) \∆), define a fibre bundle homeomorphism

h : M(φ)×S1 M(φ)→M(φ)×S1 M(φ) over M(φ) by the formula

h

(〈[
x

y

]
, t

〉
,

〈[
x′

y′

]
, t

〉)
=

(〈[
x

y

]
, t

〉
,

〈[
x′

y′

]
−
[
x

y

]
, t

〉)
.

The range of the subspace M(φ) ×S1 M(φ) \ ∆ by the homeomorphism h is

M(φ) ×S1 (M(φ) \ S1). The last space is the total space of the pullback of

p : M(φ)→ S1 by p|M(φ)\S1 : M(φ) \ S1 → S1, and the circle S1 in M(φ) is the
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image of c0(t) =
〈[

0
0

]
, t
〉

for all t ∈ [0, 1]. So, we have the commutative diagram:

(2.3)

T×T−∆ //

vv

T×(T\1)

��

uu
T //

��

T×T //

��

T×T

��

M(φ)×S1M(φ)\∆ //

ι

{{
��

M(φ)×S1 (M(φ)\S1)

(1,i)

zz

M(φ)
(f,g)
//

γ

33

M(φ)×S1M(φ)
h
// M(φ)×S1M(φ)

Therefore, the problem of existence of the section σ in the diagram (2.1) is

equivalent to the existence of a lifting γ.

Let S1 be the subset of M(φ) given by the elements
〈[

0
0

]
, t
〉
, 0 ≤ t ≤ 1. So

we have the fibre bundles p| : (M(φ) \ S1,q) → S1, where the fibre is T −
[

0
0

]
.

Another useful space is the pullback (M(φ)×S1(M(φ)\S1)), which fundamental

group is given by

Proposition 2.13. The fundamental group π1(M(φ)×S1(M(φ)\S1), (0,q))

is isomorphic to the semi-direct product π1(T ) o π1(M(φ) \ S1,q). Further, the

action of π1(M(φ)\S1,q) on Aut(π1(T )) is given by β ·α = βαβ−1 = p#(β) ·α,

where the last action is the one which comes from the bundle p| : M(φ)\S1 → S1

as in Proposition 2.12.

Proof. We proceed similarly to the proof of Proposition 2.12. In this situ-

ation the fibration provides the short exact sequence

0 // π1(T )
i1#
// π1(M(φ)×S1(M(φ) \ S1), (0,q))

p2#
// π1(M(φ) \ S1,q) // 0

and the homomorphism s2 = (s0 ◦ p| , 1M(φ)\S1))# is a section, and we define an

isomorphism

Φ2 : π1(M(φ)×S1(M(φ) \ S1), (0,q))→ π1(T ) o π1(M(φ) \ S1,q)

given by Φ2(γ) = (i1
−1
# (γ(s2 ◦ p2#(γ−1))), p2#(γ)). �

The above proposition points out the relevancy of knowing π1(M(φ) \ S1).
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Proposition 2.14. The existence of γ in the diagram (2.3) is equivalent to

the existence of Γ in the diagram

(2.4)

1

��

π1(F(M(φ) \ S1))

��

' π2(T, T \ 1)

π1(M(φ) \ S1)

��

π1(M(φ))

Γ
66

// π1(M(φ))

��

1

where the horizontal map is (p2 ◦ h ◦ (f, g))# : π1(M(φ)) → π1(M(φ)). Here

p2 : M(φ)×S1 M(φ)→M(φ) denotes the projection on the second factor.

Proof. By finding the same argument as in Proposition 2.10, the existence

of γ is equivalent to find a certain homomorphism Γ̃ at the level of the funda-

mental groups. Since M(φ) ×S1 (M(φ) \ S1) is the total space of the pullback

of the map p by p|M(φ)\S1 , by the universal property of the pullback and us-

ing the isomorphisms φ1 and φ2 in Propositions 2.12 and 2.13 respectively, it

is easy to show the equivalence of the existence of the lifting homomorphism in

diagram (2.3) and the lifting homomorphism Γ that makes the diagram (2.4)

commutative. In fact, given Γ̃, it is sufficient to define Γ(δ) = p2#(Γ̃(δ))

and given Γ defines Γ̃(δ) = Φ−1
2 (i1

−1
# (p2

−1
# (Γ(δ))(s2 ◦ Γ(δ−1))),Γ(δ)). We ob-

serve that once p2
−1
# (Γ(δ)), p2#(p2

−1
# (Γ(δ))(s2 ◦ Γ(δ−1))) = 1 is choosen, then

i1
−1
# (p2

−1
# (Γ(δ))(s2◦Γ(δ−1))) is uniquely determined. Thus Γ̃(δ) is well defined.�

3. Reductions on the torus

3.1. The generators of π1(T ) and the Nielsen number of the pair

(f, g), where f, g : T → T . Let T = S1 × S1 be the torus. Let us consider in

R2 the equivalence relation (x1, y1) ∼ (x2, y2) if x1 ≡ x2 mod (Z) and y1 ≡ y2

mod (Z). The quotient space is T , the equivalence class of (x, y) ∈ R2 is denoted

by
[ x
y

]
∈ T and the projection p : R2 → T is the universal covering.

We also know that π1(T ) = Z⊕Z and two maps f1, f2 : T → T are homotopic

if and only if f1# = f2#, i.e. the induced homomorphisms in π1(T ) are equal.

Once we fix a point, say 1 ∈ T , we have that π1(T, 1) is a group with two

generators a and b under the relation aba−1b−1 = 1.
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We remark that each element of π1(T, 1) can be represented by a word ambn

where m,n are in Z, because we have the equality ab = ba.

Suppose that f : T → T is a continuous map. Then f# : π1(T ) → π1(T ) is

a homomorphism of the form f#(a) = ambn and f#(b) = apbq and if we look at

π1(T ) = Z⊕ Z with generators a = (1, 0) and b = (0, 1), f# : Z⊕ Z → Z⊕ Z is

a homomorphism whose matrix with respect to the canonic basis {(1, 0), (0, 1)}
of Z⊕ Z is given by

(m p
n q

)
.

We denote f# by f(m,n, p, q) where m,n, p, q are the entries of the above

matrix. With this notation, we have:

Theorem 3.1. If f1, f2 : T → T are continuous maps with

fi# = fi(mi, ni, pi, qi), i = 1, 2,

then the Nielsen number

N(f1, f2) =

∣∣∣∣det

(
m1 −m2 p1 − p2

n1 − n2 q1 − q2

)∣∣∣∣.
For the proof see [2, pp. 122–125]. We also have the following proposition:

Proposition 3.2. If f1, f2 : T → T are continuous maps such that N(f1, f2)

= 0, then we can deform the pair (f1, f2) to a coincidence free pair (g1, g2).

Proof. Suppose that N(f1, f2) = 0. Then det
(m1−m2 p1−p2
n1−n2 q1−q2

)
= 0. We

consider maps gi : R2 → R2, i = 1, 2, given by

gi(x, y) = (mix+ piy + εi, nix+ qiy)

where ε1 = 0 and ε2 is irrational. Then gi induces a map gi : T → T such that

gi is homotopic to fi because gi induces in π1(T ) the same homomorphism that

fi induces.

Now, we are going to calculate the number of coincidences of the pair (g1, g2).

For this, it is sufficient to solve the system

m1x+ p1y ≡ m2x+ p2y + ε2 mod (Z),

n1x+ q1y ≡ n2x+ q2y mod (Z),

or

(m1 −m2)x+ (p1 − p2)y = ε2 + k1 for some k1 ∈ Z,

(n1 − n2)x+ (q1 − q2)y = k2 for some k2 ∈ Z.

Since N(f1, f2) = 0 we have that the rows of the matrix
(m1−m2 p1−p2
n1−n2 q1−q2

)
are

proportional. Without loss generality, suppose that there exists r such that

r(n1 − n2, q1 − q2) = (m1 −m2, p1 − p2).



520 J.P. Vieira

Certainly r is a rational number. So r(n1 − n2)x + r(q1 − q2)y = rk2 and

ε2 + k1 = rk2, which is a contradiction because ε2 is irrational. Therefore

Coin(g1, g2) = ∅. �

3.2. Reduction of bundles M(φ) and of maps M(φ) → M(φ). We

consider the question raised in Section 2: given fibre-preserving maps fi : M(φ)→
M(φ) over S1, i.e. p ◦ fi = p, i = 1, 2, when the pair (f1, f2) can be deformed to

a coincidence free pair, by a fibrewise homotopy over S1?

From Section 2 we know that our problem is equivalent to finding a lifting

to the following algebraic diagram:

π1(F)

��

' π2(T, T \ 1)

π1(ES1(M(φ)))

q#

��

' π1(M(φ)×S1 M(φ) \∆)

π1(M(φ))

ψ
66

(f1,f2)#

// π1(M(φ)×S1 M(φ))

with suitable base points. The base point of the domain of fi, i = 1, 2, is 0 =〈[
0
0

]
, 0
〉

and we can suppose that f1(0) = 0 and f2(0) = q, where q =
〈[ q
q

]
, 0
〉
.

Otherwise we can replace the map f2 by a map g2 homotopic to f2 which has

the property above.

We denote by Bi =
(mi pi
ni qi

)
the matrix of the induced homomorphisms of

the restriction of the maps fi to the fibre T , on the fundamental group.

Proposition 3.3. Let f1, f2 : M(φ) → M(φ) be maps such that (fi|T )# =

fi|T (mi, ni, pi, qi), i = 1, 2. We suppose that the pair (f1, f2) can be deformed,

by fibrewise homotopy over S1, to a pair of coincidence free maps (g1, g2). Then,

the Nielsen number N(f1|T , f2|T ) of f1 and f2 restricted to fibre T is zero and

therefore the vectors (m1−m2, p1− p2), (n1−n2, q1− q2) are linearly dependent

over Q.

Proof. If the pair (f1, f2) can be deformed, by fibrewise homotopy over

S1, to a pair of coincidence free maps (g1, g2), then the pair (f1|T , f2|T ) can

be deformed, by fibrewise homotopy over S1, to a pair of coincidence free maps

(g1|T , g2|T ).

If the Nielsen number N(f1|T , f2|T ) is different of zero then (g1|T , g2|T ) must

have at least a coincidence point, once it is a deformation of (f1|T , f2|T ). But

this is a contradiction. Therefore we must have N(f1|T , f2|T ) = 0.

By Theorem 3.1 we have

0 = N(f1|T , f2|T ) =

∣∣∣∣ det

(
m1 −m2 p1 − p2

n1 − n2 q1 − q2

)∣∣∣∣.
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Therefore the rows of the matrix
(m1−m2 p1−p2
n1−n2 q1−q2

)
are proportional. So, the vectors

(m1 −m2, p1 − p2), (n1 − n2, q1 − q2) are linearly dependent over Q. �

With the notation of the above proposition we observe that if the Nielsen

number N(f1|T , f2|T ) is different of zero, then it is not possible to deform the

pair (f1, f2) to a pair of coincidence free maps (g1, g2).

The next proposition provides a relationship between the matrices φ =(
a1 a3
a2 a4

)
and Bi for i = 1, 2.

Proposition 3.4.

(a) π1(M(φ),0) = 〈a, b, c0; [a, b] = 1, c0ac0
−1 = aa1ba2 , c0bc0

−1 = aa3ba4〉.
(b) Bi commutes with φ.

(c) If N(f1|T , f2|T ) = 0 then B2 − B1 has the eigenvalue 0 and eigenvector

v = (v1, v2) ∈ Z× Z associated to 0, such that gcd(v1, v2) = 1.

(d) If v is an eigenvector of B2−B1 associated to 0 then φ(v) also is an eigen-

vector of B2 −B1 associated to 0.

(e) Let us denote w = φ(v). We take the pair v, w if it generates Z × Z,

otherwise let w be another vector such that v, w span Z× Z. Define the

linear operator P : R × R → R × R by P (v) =
(

1
0

)
, P (w) =

(
0
1

)
. Con-

sider a homeomorphism of fibre bundles (also denoted by P ) P : M(φ)

→M(φ1), given by

P

(〈[
x

y

]
, t

〉)
=

〈[
P (

x

y

)]
, t

〉
, where φ1 = P ◦ φ ◦ P−1.

Then we have for B1
i = P ◦Bi ◦ P−1 that:

(i) If v and w = φ(v) span Z× Z then B1
i =

(m p
n q

)
for i = 1, 2.

(ii) Otherwise, φ(v) = λv with λ ∈ Z. Then B1
i =

(m pi
n qi

)
for i = 1, 2

and φ1 =
(
λ a3
0 a4

)
with λ = ±1 and a4 = ±1.

(iii) B1
i commutes with φ1 and the conditions (i) and (ii) determine the

table below

Case I φ1 =
(
a1 a3
a2 a4

)
B1

i =
(
m p
n q

)
Case IV φ1 =

(
1 a3
0 −1

)
B1

i =
(m pi

0 qi

)
detφ1=±1 and φ1B1

i =B1
i φ

1 a3(qi −m) = −2pi

Case II φ1 =
(

1 0
0 1

)
B1

i =
(m pi
n qi

)
Case V φ1 =

(−1 a3
0 −1

)
B1

i =
(m pi
n qi

)
a3(qi −m) = 0 and a3n = 0

Case III φ1 =
(

1 a3
0 1

)
B1

i =
(m pi

0 m

)
Case VI φ1 =

(−1 a3
0 1

)
B1

i =
(m pi

0 qi

)
a3 6= 0 a3(qi −m) = 2pi

Proof. (a) Let us consider the following loops in M(φ) with base point 0:

a(t) =

〈[
t

0

]
, 0

〉
, b(t) =

〈[
0

t

]
, 0

〉
and c0(t) =

〈[
0

0

]
, t

〉
,
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for t ∈ [0, 1]. From Proposition 2.11 it follows that π1(M(φ)) ∼= π1(T ) o Z, and

a presentation is π1(M(φ),0) = 〈a, b, c0; [a, b] = 1, c0ac0
−1 = aa1ba2 , c0bc0

−1 =

aa3ba4〉.
(b) Recall that Bi =

(mi pi
ni qi

)
is the matrix of the induced homomorphism

of the restriction of the maps fi to the fibre T on the fundamental group of

the fibre T , and fi are maps over S1. Then the induced homomorphisms fi#
on π1(M(φ),0) are given by fi#(a) = amibni , fi#(b) = apibqi and fi#(c0) =

ac1ibc2ic0. Since fi are maps over S1 it follows from Proposition 2.7 that Bi
commutes with φ.

(c) If N(f1|T , f2|T ) = 0 then we have that the rows of the matrix(
m2 −m1 p2 − p1

n2 − n1 q2 − q1

)
are proportional. Without loss generality, we shall to assume that there exists

r ∈ Q such that r(n2 − n1, q2 − q1) = (m2 −m1, p2 − p1). So

B2 −B1 =

(
r(n2 − n1) r(q2 − q1)

n2 − n1 q2 − q1

)
and since 0 is a root of the characteristic polynomial det((B2−B1)−λI2) = 0, it

follows that λ = 0 is an eigenvalue of B2−B1 and v = ((q1−q2)/L, (n2−n1)/L)

where L = gcd(q1 − q2, n2 − n1) is an eigenvector associated to the eigenvalue 0

such that gcd((q1 − q2)/L, (n2 − n1)/L) = 1. Now (d) follows from (b).

To prove (e) we observe that:

(i) if the pair (v, w = φ(v)) generates Z × Z, where v is an eigenvector of

B2 −B1 associated to 0, then

B1
1

(
1

0

)
= P ◦B1(v) = P ◦B2(v) = B1

2

(
1

0

)
and

B1
1

(
0

1

)
= P ◦B1(w) = P ◦B2(w) = B1

2

(
0

1

)
.

So B1
i =

(m p
n q

)
, for i = 1, 2.

(ii) Otherwise, if the pair (v, w) generates Z × Z with w 6= φ(v) and v an

eigenvector of B2 −B1 associated to 0, then

B1
1

(
1

0

)
= B1

2

(
1

0

)
=

(
m

n

)
and

B1
i

(
0

1

)
= P ◦Bi ◦ P−1

(
0

1

)
= P ◦Bi(w) =

(
pi
qi

)
,

therefore B1
i =

(m pi
n qi

)
, for i = 1, 2. In this case, since the pair (v, φ(v)) does not

generate Z× Z we have (z1, z2) = φ(v) = λv with λ ∈ Z.
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Indeed since v = (v1, v2) with gcd (v1, v2) = 1 there exists (r, s) ∈ Z × Z
such that rv1 + sv2 = 1 and therefore λrv1 + λsv2 = λ whence it follows that

rz1 + sz2 = λ ∈ Z. Then

φ1

(
1

0

)
= P ◦φ◦P−1

(
1

0

)
= P ◦φ(v) = P (λv) = λP (v) = λ

(
1

0

)
=

(
λ

0

)
and φ1 =

(
λ a3
0 a4

)
with λ = ±1 and a4 = ±1.

(iii) Since B1
i = P ◦ Bi ◦ P−1, φ1 = P ◦ φ ◦ P−1 and Bi commutes with φ

it follows that B1
i commutes with φ1. Now using the commutativity of B1

i with

φ1 the table follows. We remark that the Case I occurs when v and φ(v) span

Z× Z and in this case we take

v =

(
1

0

)
, φ(v) =

(
0

1

)
and φ1 =

(
a1 a3

a2 a4

)
and the remaining cases occur when the pair (v, w) generates Z×Z with w 6= φ(v)

and v is an eigenvector of B2 −B1 associated to 0. �

We will assume from now on that the Nielsen number N(f1|T , f2|T ) is zero.

We denote by

f1# = f1(m1, n1, p1, q1, c11, c21) : π1(M(φ),0)→ π1(M(φ),0),

f2# = f2(m2, n2, p2, q2, c12, c22) : π1(M(φ),0)→ π1(M(φ),q)

the homomorphisms that take a → am1bn1 , b → ap1bq1 , c0 → ac11bc21c0 and

a→ em2d
n2

, b→ ep2d
q2

, c0 → ec12d
c22
c, respectively. We emphasize that e, d, c

are defined in Subsection 3.3.

According to relations on π1(M(φ),0), mi, ni, pi, qi, c1i, c2i must satisfy

some equations. These equations are given by the

Proposition 3.5. Let fi : M(φ)→M(φ) be maps over S1, where φ belongs

to one of the cases from Proposition 3.4. If the Nielsen number N(f1|T , f2|T ) is

zero, then:

(a) the vectors (m1−m2, p1−p2), (n1−n2, q1−q2) are proportional over Q.

(b) a3ni = a2pi and a2(mi − qi) = (a1 − a4)ni.

(c) a3(mi − qi) = (a1 − a4)pi.

Conversely, given homomorphisms

fi(mi, ni, pi, qi, c1i, c2i) : π1(M(φ))→ π1(M(φ)),

where φ =
(
a1 a3
a2 a4

)
belongs to one of the cases from the Proposition 3.4, with

(mi, ni, pi, qi, a1, a2, a3, a4), i = 1, 2, satisfying the above conditions (a)–(c), then

there exist maps fi : (M(φ),0)→ (M(φ), zi) over S1 such that

fi# = fi(mi, ni, pi, qi, c1i, c2i), i = 1, 2,

and the Nielsen number N(f1|T , f2|T ) is zero.
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Proof. Since the Nielsen number N(f1|T , f2|T ) is zero, then (a) follows from

Proposition 3.3. The equations (b) and (c) follow from the commutativity of φ

and Bi.

Conversely, we consider the homomorphisms

fi(mi, ni, pi, qi, c1i, c2i) : π1(M(φ),0)→ π1(M(φ), zi)

where φ =
(
a1 a3
a2 a4

)
belongs to one of the cases of Proposition 3.4, with (mi, ni, pi,

qi, a1, a2, a3, a4), i = 1, 2 satisfying the equations (a)–(c). From the commutative

diagram

1 // π1(T )
i#

//

��

π1(M(φ),0)
p#

//

��

π1(S1) //

Id

��

1

1 // π1(T )
i#

// π1(M(φ), zi) p#
// π1(S1) // 1

where the vertical arrows are deriving from fi(mi, ni, pi, qi, c1i, c2i) we have that

p# ◦ fi(mi, ni, pi, qi, c1i, c2i) = p#.

Since all spaces are K(π, 1), then by [17, V, Theorem (4.3)], there exists

a bijection [(M(φ),0;M(φ), zi)]→ Hom(π1(M(φ),0)→ π1(M(φ), zi)) with z1 =

0 and z2 = q. So, for each i = 1, 2 there exists gi : (M(φ),0)→ (M(φ), zi). Simi-

larly, from the bijection [M(φ),0;S1, 〈0〉] → Hom(π1(M(φ),0) → π1(S1), 〈0〉)
there exist homotopies Hi : (M(φ)× I,0× I)→ (S1, 〈0〉) such that

Hi

(〈[
x

y

]
, t〉, 0

)
= p ◦ gi

〈[
x

y

]
, t

〉
, Hi

(〈[
x

y

]
, t〉, 1

)
= p

〈[
x

y

]
, t

〉
and gi# = fi(mi, ni, pi, qi, c1i, c2i).

For each i = 1, 2, Gi : (M(φ)×0,0×I)→ (M(φ), zi) defined byGi(0×I) = zi,

where z1 = 0 and z2 = q, makes the diagram below commutative:

(M(φ)× 0,0× I)

j

��

Gi
// (M(φ), zi)

p

��

(M(φ)× I,0× I)

Li

66

Hi

// (S1, 〈0〉 = 〈1〉)

Since p : (M(φ), zi)→ (S1, 〈0〉 = 〈1〉) is a fibration it follows that for each i = 1, 2

there exists Li : (M(φ)× I,0× I)→ (M(φ), zi) a lifting of Hi, i.e. p ◦ Li = Hi.

Remark that fi = Li( · , 1) : (M(φ),0) → (M(φ), zi) is over S1 and the in-

duced homomorphism on the fundamental groups coincides with fi(mi, ni, pi, qi,

c1i, c2i) because p◦fi = p◦Li( · , 1) = Hi( · , 1) = p and fi# = Li( · , 1)# = gi# =

fi(mi, ni, pi, qi, c1i, c2i).

Since (mi, ni, pi, qi, a1, a2, a3, a4) satisfies the equations (a)–(c) and

fi# = fi(mi, ni, pi, qi, c1i, c2i)
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then the Nielsen number N(f1|T , f2|T ) is zero. �

To facilitate future computations, we will describe the homomorphisms

fi# : π1(M(φ),0)→ π1(M(φ), zi),

on the fundamental groups, where z1 = 0, z2 = q, f1#, f2# maps a → am1bn1 ,

b→ ap1bq1 , and c0 → ac11bc21c0 and a→ em2d
n2

, b→ ep2d
q2

and c0 → ec12d
c22
c,

respectively.

Theorem 3.6. Let f1, f2 : M(φ)→M(φ) be maps over S1, where φ belongs

to one of the cases of Proposition 3.4. If the Nielsen number N(f1|T , f2|T ) of f1

and f2 restricted to the fibre T is zero then fi# : π1(M(φ),0)→ π1(M(φ), zi) is

given by the table:

Case I fi(m,n, p, q, c1i, c2i)

Case II fi(m,n, pi, qi, c1i, c2i), (p2 − p1, q2 − q1) 6= (0, 0) and p1 − p2, q1 − q2

are proportional over Q

Case III fi(m, 0, pi,m, c1i, c2i), p1 6= p2

Case IV

a3 = 2r fi(m, 0, pi, qi, c1i, c2i), q1 6= q2, (−r)(qi −m) = pi

a3 = 2r + 1 fi(m, 0, pi, qi, c1i, c2i), q1 6= q2, qi −m is even and − (2r + 1)[(qi −m)/2] = pi

Case V fi(m,n, pi, qi, c1i, c2i), (p2 − p1, q2 − q1) 6= (0, 0) and p1 − p2, q1 − q2

a3 = 0 are proportional over Q

a3 6= 0 fi(m, 0, pi,m, c1i, c2i), p1 6= p2

Case VI

a3 = 2r fi(m, 0, pi, qi, c1i, c2i), q1 6= q2 and r(qi −m) = pi

a3 = 2r + 1 fi(m, 0, pi, qi, c1i, c2i), q1 6= q2, qi −m is even and (2r + 1)[(qi −m)/2] = pi

Proof. The proof of this theorem follows from the relations (a)–(c) given

by Proposition 3.5. �

In the table above we have c1i, c2i, m, n, p, q, pi, qi, r ∈ Z. The table is given

for each i = 1, 2. So the pairs (f1#, f2#) are combinations in each one of the

cases. By example, in the Case II we have 4 possibilities. Since Coin(f1, f2) =

Coin(f2, f1), then we can reduce the number of cases to be studied.

3.3. The generators from the fundamental groups in the diagram

(2.4). The next theorem describes the groups and the homomorphisms of dia-

gram (2.4). Let us consider the following loops in M(φ) with the base point 0

and loops in M(φ) \S1 or M(φ) with the base point q with q small positive and[
0
0

]
6=
[ q
q

]
. For t ∈ [0, 1] we consider the following loops:

a(t) =

〈[
t

0

]
, 0

〉
, b(t) =

〈[
0

t

]
, 0

〉
, c0(t) =

〈[
0

0

]
, t

〉
,
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e(t) =

〈[
q + t

q

]
, 0

〉
, d(t) =

〈[
q

q + t

]
, 0

〉
, c(t) = 〈[γ(t)], t〉,

where γ(t) is (1 − t) ·
( q
q

)
+ t
(
φ
( q
q

))
if φ

( q
q

)
6=
(−q
−q
)
; otherwise, it is an arc

which runs counterclockwise around the origin from
( q
q

)
to
(−q
−q
)
. Here, we

suppose that φ
( q
q

)
belongs to the square centered at the origin (0, 0) with side

two. Finally, let W (t) be the circle around the origin having (q, q) as the base

point and oriented counterclockwise.

In π1(M(φ),0) we denote the homotopy classes of the loops a(t), b(t), c0(t)

by a, b, c0, respectively. In π1(M(φ) \ S1,q) we denote the homotopy classes of

the loops e(t), d(t), c(t) by e, d, c, respectively, and in π1(M(φ),q) we denote

the homotopy classes of the loops e(t), d(t), c(t) by e, d, c, respectively.

Theorem 3.7. Let φ and Bi be one of the six cases given by Proposition 3.4

and let (f1, f2)# be the homomorphism induced by (f1, f2) on the fundamental

groups. Then we have:

(a) π1(M(φ)×S1M(φ), (0,q )) = 〈a, b, e, d, ĉ; [a, b] = 1, [a, e] = 1, [a, d] =

1, [b, e] = 1, [b, d] = 1, [e, d] = 1, ĉ a ĉ−1 = aa1ba2 , ĉ b ĉ−1 = aa3ba4 , ĉ e ĉ−1

= ea1d
a2
, ĉ d ĉ−1 = ea3d

a4〉 where ĉ is the homotopy class of the loop

given by the pair of loops (c0(t), c(t)), d is the homotopy class of the loop

(0, d(t)), e is the homotopy class of the loop (0, e(t)), b is the homotopy

class of the loop (b(t),q) and a is the homotopy class of the loop (a(t),q).

(b)

π1(M(φ) \ S1,q)

Case II φ=
(

1 0
0 1

)
Bi =

(m pi
n qi

)
with p1 6= p2 or q1 6= q2

〈e, d, c; cec−1 = e, cdc−1 = d〉

Case III φ =
(

1 a3
0 1

)
Bi =

(m pi
0 m

)
with a3 6= 0 and p1 6= p2

〈e,d,c;cec−1=e,cdc−1=ea3d〉

Case IV φ=
(

1 a3
0 −1

)
Bi =

(m pi
0 qi

)
with a3(qi −m) = −2pi and q1 6= q2

if a3 ≥ −1 then 〈e, d, c; cec−1 = eW, cdc−1 = d−1ea3 〉

if a3 ≤ −2 then 〈e, d, c; cec−1 = We, cdc−1 = Wd−1ea3W−1〉

Case V φ=
(−1 a3

0 −1

)
Bi =

(m pi
n qi

)
with a3(qi −m) = 0, a3n = 0 and p1 6= p2 or q1 6= q2

if a3 ≥ 1 then 〈e, d, c; cec−1 = W−1e−1, cdc−1 = d−1ea3W 〉

if a3 ≤ 0 then 〈e, d, c; cec−1 = e−1W−1, cdc−1 = Wd−1ea3 〉

Case VI φ=
(−1 a3

0 1

)
Bi =

(m pi
0 qi

)
with a3(qi −m) = 2pi and q1 6= q2

〈e, d, c; cec−1 = e−1, cdc−1 = ea3dW−1〉

where W is homotopic to the loop e−1d−1ed.

(c) The homomorphism (p2 ◦ h ◦ (f1, f2))# is given by

a→ em2−m1d
n2−n1

, b→ e p2−p1d
q2−q1

, c0 → e c12−c11 d
c22−c21

c.
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(d) The homomorphism i# : π1(M(φ) \ S1,q)→ π1(M(φ),q) is given by

e→ e, d→ d, c→ c.

(e) The homomorphism Γ in the diagram (2.4) exists if and only if we can

find elements Z1, Z2, Z3 ∈ ker (π1(T \ 1) → π1(T )) such that Γ(a) =

Z1e
m2−m1dn2−n1 , Γ(b) = Z2e

p2−p1dq2−q1 , Γ(c0) = Z3e
c12−c11dc22−c21c

and the following equations hold:
[Γ(a),Γ(b)] = 1,

Γ(c0)Γ(a)Γ(c0
−1) = Γ(aa1ba2),

Γ(c0)Γ(b)Γ(c0
−1) = Γ(aa3ba4).

Proof. (a), (b) and (d) follows from [8, Theorem 2.2, p. 10].

(c) In fact,

(p2 ◦ h ◦ (f1, f2))#(a) = (p2 ◦ h)#(f1, f2)#(a) = (p2 ◦ h)#(f1#(a), f2#(a))

= (p2 ◦ h)#((f1|T )#(a), (f2|T )#(a))

= (p2 ◦ h)#([ f1|T (a(t)) ], [ f2|T (a(t)) ])

= (p2 ◦ h)#

([
f1|T

(〈[
t

0

]
, 0

〉)]
,

[
f2|T

(〈[
t

0

]
, 0

〉)])
= (p2 ◦ h)#

([〈[
B1

(
t

0

)]
, 0

〉]
,

[〈
[B2

(
t

0

)
+

(
q

q

)]
, 0

〉])
=

[
(p2 ◦ h)

(〈[
B1

(
t

0

)]
, 0

〉
,

〈[
B2

(
t

0

)
+

(
q

q

)]
, 0

〉)]
=

[
(p2)

(〈[
B1

(
t

0

)]
, 0

〉
,

〈[
B2

(
t

0

)
+

(
q

q

)
−B1

(
t

0

)]
, 0

〉)]
=

[〈[
B2

(
t

0

)
+

(
q

q

)
−B1

(
t

0

)]
, 0

〉]
=

[〈[(
(m2 −m1)t

(n2 − n1)t

)
+

(
q

q

)]
, 0

〉]
=

[〈[
q + (m2 −m1)t

q

]
, 0

〉]
·
[
〈[ q

q + (n2 − n1)t

]
, 0

〉]
= em2−m1d

n2−n1
,

(p2 ◦ h◦ (f1, f2))#(b) = (p2 ◦ h)#(f1, f2)#(b)

= (p2 ◦ h)#(f1#(b), f2#(b)) = (p2 ◦ h)#((f1|T )#(b), (f2|T )#(b))

= (p2 ◦ h)#([f1|T (b(t))], [f2|T (b(t))])
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= (p2 ◦ h)#

([
f1|T

(〈[
0

t

]
, 0

〉)]
,

[
f2|T

(〈[
0

t

]
, 0

〉)])
= (p2 ◦ h)#

([〈[
B1(

0

t

)]
, 0

〉]
,

[〈[
B2

(
0

t

)
+

(
q

q

)]
, 0

〉])
=

[
(p2 ◦ h)

(〈[
B1

(
0

t

)]
, 0

〉
,

〈[
B2

(
0

t
) +

(
q

q

)]
, 0

〉)]
=

[
(p2)

(〈[
B1

(
0

t

)]
, 0

〉
,

〈[
B2

(
0

t

)
+

(
q

q

)
−B1

(
0

t

)]
, 0

〉)]
=

[〈[
B2

(
0

t

)
+

(
q

q

)
−B1

(
0

t

)]
, 0

〉]
=

[〈[(
(p2 − p1)t

(q2 − q1)t

)
+

(
q

q

)]
, 0

〉]
=

[〈[
q + (p2 − p1)t

q

]
, 0

〉]
·
[〈[

q

q + (q2 − q1)t

]
, 0

〉]
= e p2−p1d

q2−q1

and

(p2 ◦ h ◦ (f1, f2))#(c0) = (p2 ◦ h)#(f1, f2)#(c0)

= (p2 ◦ h)#(f1#(c0), f2#(c0)) = (p2 ◦ h)#(ac11bc21c0, a
c12bc22c0)

= (p2 ◦ h)#

([〈[
c11t

c21t

]
, t

〉]
,

[〈[
c12t+ q

c22t+ q

]
, t

〉])
= [(p2 ◦ h)

([〈[
c11t

c21t

]
, t

〉]
,

[〈[
c12t+ q

c22t+ q

]
, t〉
])]

=

[
p2

(〈[
c11t

c21t

]
, t

〉
,

〈[
c12t+ q

c22t+ q

]
−
[
c11t

c21t

]
, t

〉)]
=

[〈[
c12t+ q

c22t+ q

]
−
[
c11t

c21t

]
, t

〉]
=

[〈[(
(c12 − c11)t

(c22 − c21)t

)
+

(
q

q

)]
, t

〉]
=

[〈[
q + (c12 − c11)t

q

]
, 0

〉]
·
[〈[

q

q + (c22 − c21)t

]
, 0

〉]
· [〈[γ(t)], t〉]

= e c12−c11d
c22−c21

c.

(e) Initially we observe that if Γ(a) = x then

i#(x) = i# ◦ Γ(a) = (p2 ◦ h ◦ (f, g))#(a) = em2−m1d
n2−n1

.

On the other hand, i#(em2−m1dn2−n1) = em2−m1d
n2−n1

. Therefore

xdn1−n2em1−m2 = Z1,
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where Z1 ∈ π1(F(M(φ) \ S1)) ' π2(T, T \ 1) = ker (π1(T \ 1) → π1(T )) and

Γ(a) = Z1e
m2−m1dn2−n1 . Similarly we prove for b and c0. Now the equations

[Γ(a),Γ(b)] = 1,

Γ(c0)Γ(a)Γ(c0
−1) = Γ(aa1ba2),

Γ(c0)Γ(b)Γ(c0
−1) = Γ(aa3ba4),

follow from the relations on π1(M(φ)).

Conversely, it is easy to show that if we can find elements Z1, Z2, Z3 ∈
ker(π1(T \ 1) → π1(T )) such that

Γ(a) = Z1e
m2−m1dn2−n1 , Γ(b) = Z2e

p2−p1dq2−q1 , Γ(c0) = Z3e
c12−c11dc22−c21c

and the following equations hold:
[Γ(a),Γ(b)] = 1,

Γ(c0)Γ(a)Γ(c0
−1) = Γ(aa1ba2),

Γ(c0)Γ(b)Γ(c0
−1) = Γ(aa3ba4).

then Γ makes the diagram (2.4) commutative. �

Proposition 3.8 (Case I). Let fi : M(φ)→M(φ) be maps over S1 where fi
corresponds to the case I of the table in Theorem 3.6, where (p2 − p1, q2 − q1) =

(0, 0). Then the pair (f1, f2) can always be deformed to a coincidence free pair

(g1, g2) by a fibrewise homotopy over S1.

Proof. Define a lifting for (p2 ◦ h ◦ (f1, f2))# by

Γ(a) = 1, Γ(b) = 1, Γ(c0) = ec12−c11dc22−c21c

and the result follows. �

Now we derive a necessary algebraic condition for (f1, f2) be deformable to

a pair of coincidence free maps.

Proposition 3.9. If fi : M(φ)→ M(φ) corresponds to the remaining cases

other than I of the table in Theorem 3.6, where (p2 − p1, q2 − q1) 6= (0, 0) and

(f1, f2) can be deformed to a coincidence free pair (g1, g2) by a fibrewise homotopy

over S1, then we must have that Z1 = 1. In this case in order to have the

homomorphism Γ it is necessary and sufficient to solve the equation:

Γ(c0)Γ(b)Γ(c0
−1) = Γ(aa3ba4) = Γ(aa3)Γ(ba4) = Γ(ba4).

Proof. In the remaining cases, since (m2 −m1, n2 − n1) = (0, 0) we have

that Γ(a) = Z1. But by Theorem 3.7(e), [Z1,Γ(b)] = 1. If Z1 6= 1 then we

must have Z1 = uα and Γ(b) = uβ , where u ∈ π2(T, T \ 1) which is a free non

abelian group. But this is impossible, since i# ◦ Γ(b) = (p2 ◦ h ◦ (f1, f2))#(b) =

e p2−p1d
q2−q1 6= 1, because (p2 − p1, q2 − q1) 6= (0, 0). On the other hand i# ◦
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Γ(b) = i#(uβ) = 1 since u ∈ π2(T, T \ 1). Therefore Z1 = 1. So Γ(a) = 1 and, as

in the remaining cases other than I, a2 = 0, the equations [Γ(a),Γ(b)] = 1 and

Γ(c0)Γ(a)Γ(c0
−1) = Γ(aa1ba2) are always satisfied. Therefore by Theorem 3.7(e),

in order to have the homomorphism Γ, it is necessary and sufficient to solve the

equation Γ(c0)Γ(b)Γ(c0
−1) = Γ(aa3ba4) = Γ(aa3)Γ(ba4) = Γ(ba4). �

We will call the equation

Γ(c0)Γ(b)Γ(c0
−1) = Γ(aa3ba4) = Γ(aa3)Γ(ba4) = Γ(ba4)

the main equation.

4. Generalities and properties of the main equation

In this section we first write in a more explicit form the main equation given

by Proposition 3.9, interpreted as an equation in the free non abelian group

π2(T, T\1). We derive some general results which are useful to solve the equation.

Then we study the main equation in the abelianized of π2(T, T \ 1). We derive

a necessary condition in order to have a solution.

4.1. Main equation. Let us consider the equation given by Proposition 3.9.

Let E,D be any elements such that j#(E) = j#(ec12−c11dc22−c21) and j#(D) =

j#(ep2−p1 dq2−q1), where j# : π1(T \ 1) → π1(T ) is the induced homomorphism

by the inclusion j : T \ 1→ T . Then we have:

Proposition 4.1. Let E and D be as above. Then the main equation given

by Proposition 3.9 can be written in one of the forms:

(a) X3EcX2Dc
−1E−1X−1

3 = (X2D)a4 ,

(b) X3 ·EcX2c
−1E−1 ·E(cDc−1D−a4)E−1 ·[E,Da4 ]·Da4X−1

3 D−a4 ·D(a4−1)/2

X−a42 D(1−a4)/2 = 1.

Furthermore, cDc−1D−a4 ∈ ker j# and the existence of a solution of the above

equation is independent of the choices of E and D, for X2, X3 ∈ ker j#.

Proof. (a) Since

j#(E) = j#(ec12−c11dc22−c21) and j#(D) = j#(ep2−p1dq2−q1)

then there exist αE , αD ∈ ker j# such that ec12−c11dc22−c21 = αEE and ep2−p1

dq2−q1 = αDD. Now the equation Γ(c0)Γ(b)Γ(c0
−1) = Γ(ba4) is

Z3e
c12−c11dc22−c21cZ2e

p2−p1dq2−q1c−1dc21−c22ec11−c12Z−1
3 = (Z2e

p2−p1dq2−q1)a4 .

Substituting ec12−c11dc22−c21 = αEE and ep2−p1dq2−q1 = αDD we obtain

Z3αEEcZ2αDDc
−1E−1α−1

E Z3
−1 = (Z2αDD)a4 .

We denote Z3αE = X3 and Z2αD = X2 and so we obtain the equation:

X3EcX2Dc
−1E−1X−1

3 = (X2D)a4 .
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(b) The equation above is the same as

X3EcX2c
−1E−1EcDc−1D−a4E−1EDa4E−1D−a4Da4X−1

3 (X2D)−a4 = 1

and therefore

X3 · EcX2c
−1E−1 · E(cDc−1D−a4)E−1 · [E,Da4 ] ·Da4X−1

3 (X2D)−a4 = 1.

Now it is sufficient to observe that

(X2D)−a4 = D−a4 ·D(a4−1)/2X−a42 D(1−a4)/2

since a4 = ±1.

To prove that cDc−1D−a4 ∈ ker j# it suffices to see that j#(cDc−1D−a4) =

cj#(D)c−1j#(D−a4) = 0, where the last equality is obtained using the action of

c and the fact that π1(T ) is abelian.

For the last part observe that any two choices of either E′s or D′s differ by

elements of ker j#. So, the equation given by Proposition 4.1 has a solution for

one choice if and only if it has a solution for the other choice and the result

follows. �

Motivated by the above proposition we define:

Definition 4.2. An input data for the main equation given by Proposi-

tion 3.9 consists in a quadruple (φ,Bi, E,D) such that

j#(E) = j#(ec12−c11dc22−c21) and j#(D) = j#(ep2−p1dq2−q1).

From Proposition 4.1 we see that the existence of a solution of the main

equation depends only in the input. Also, observe that the input defines the

maps fi.

By | · |e, | · |d : π1(T \1)→ Z we denote the homomorphisms which map a word

w ∈ π1(T \ 1) to the sum of the powers of the generator e and the sum of the

powers of d, respectively.

The next theorem shows, for a fixed group π1(M(φ)), that the existence of

solution for one equation implies the existence of the solution for other equations.

More precisely:

Theorem 4.3. Let φ and Bi be fixed.

(a) The equation given by Proposition 4.1 has a solution for a given E, D if

and only if it has a solution for wEcw−1c−1, wDw−1.

(b) The equations given in part (a) have |E|e = c12− c11, |E|d = c22− c21 of

the input related as follows:|wEcw−1c−1|e = |E|e + |wcw−1c−1|e,
|wEcw−1c−1|d = |E|d + |wcw−1c−1|d.

For the proof see [8, Theorem 3.3, p. 21].
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Corollary 4.4. Let H be the image of the homomorphism π1(T \ 1) →
Z ⊕ Z which maps α on the pair (|αcα−1c−1|e, |αcα−1c−1|d). If two input data

(φ,Bi, E,D) and (φ,Bi, E
′, D′) have the property that the pairs (c12 − c11, c22 −

c21) and (c′12 − c′11, c
′
22 − c′21) belong to the same equivalence class in Z⊕ Z/H,

then there is a solution for the equation with one of the inputs if and only if there

is a solution for the other.

Proof. Suppose that for the input data (φ,Bi, E,D) there is a solution,

and (φ,Bi, E
′, D′) is another input data such that (c12 − c11, c22 − c21) and

(c′12 − c′11, c
′
22 − c′21) belong to the same equivalence class in Z ⊕ Z/H. Then

there exists w ∈ π1(T \ 1) such that

(c′12 − c′11, c
′
22 − c′21)− (c12 − c11, c22 − c21) = (|wcw−1c−1|e, |wcw

−1c−1|d).

Let E be such that (|E|e, |E|d) = (c12 − c11, c22 − c21). Then the equation has

a solution for a suitable D. Define E′ = wEcw−1c−1. By Theorem 4.3(b),

(|E′|e, |E′|d) = (|wEcw−1c−1|e, |wEcw
−1c−1|d).

Therefore, for the input (φ,Bi, E
′, D′ = wDw−1) we also have a solution and

the result follows. �

Remark 4.5. Let φ and Bi be given and C be a set of representatives of

the equivalence classes of Z ⊕ Z/H. In order to analyze all the cases it suffices

to analyze the equation for the set of inputs (φ,Bi, E,D) such that (c12 − c11,

c22 − c21) runs over the set C.

4.2. Equation on the abelianized. Let π2 = π2(T, T \ 1) denote the

kernel of the map j# : 〈e, d〉 = π1(T \1)→ π1T = 〈e, d; [e, d] = 1〉 and B = [e, d].

We will study the equation given by Proposition 3.9 on the abelianized (π2)ab =

π2/[π2, π2] of π2 and also on some quotient of this group. Whenever the equation

in one of these quotient has no solution, we can infer that the original equation

has no solution. The group π2 is isomorphic to π1(F), where F → E(T \1)→ T

is the fibration obtained by making the inclusion T \ 1
j
↪→ T into a fibration. So

the group π1(T ) acts on H1(F) = π2/[π2, π2].

In [8, Proposition 3.5, p. 22] we proved the following proposition:

Proposition 4.6.

(a)

H1(F) ∼= Zπ1(T ) ∼=
⊕
x,y∈Z

Bexdy ,

where Bexdy = B(x,y) = A(exdy[e, d]d−ye−x) is a generator of a copy

of Z. Here A : π2(T, T \1) = π2 → π2/[π2, π2] = Zπ1(T ) is the projection

to the abelianized.
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(b) If, by means of this isomorphism, an element of H1(F) corresponds to

the generator 1w of the copy Z, indexed by an element w ∈ π1(T ), then

the action of α ∈ π1(T ) on Bw is the generator of the copy of Z indexed

by the product αw, namely Bαw.

We denote by E : Z(π1(T ))→ Z the augmentation homomorphism, i.e.

E(Bw) = 1 ∈ Z for all w ∈ π1(T ).

In [8, Theorem 3.6, p. 23] we proved the following theorem:

Theorem 4.7. The homomorphism E ◦ A satisfies:

(a) E ◦ A(αZα−1) = E ◦ A(Z) for all α ∈ π1(T \ 1) and Z ∈ π2(T, T \ 1).

(b) E ◦ A([ex1dy1 , ex2dy2 ]) = det

[
x1 x2

y1 y2

]
.

(c) E ◦ A([Zex1dy1 ,Wex2dy2 ]) = E ◦ A([ex1dy1 , ex2dy2 ])

for all Z,W ∈ π2(T, T \ 1).

(d) If c ∈ π1(M(φ) \ S1) as in diagram (2.4) then

E ◦ A(cZc−1) = [sign of det (φ)]E ◦ A(Z), for all Z ∈ π2(T, T \ 1).

Remark 4.8. A(αZα−1) = j#(α).A(Z), where j# : π1(T \1)→ π1(T ). So, if

j#(α) = embn and A(Z) = Bt1(x1,y1) then the action j#(α).A(Z) = Bt1(x1+m,y1+n).

Now we consider the equation given by Proposition 3.9. We will look at this

equation in the abelianized of π2(T, T \ 1), which is Zπ1(T ), and in a quotient of

Zπ1(T ), which is Z(H̃), where H̃ = Z⊕Z/〈(c12−c11, c22−c21), (p2−p1, q2−q1)〉.
Denote by A(x) the image of an element x ∈ π2(T, T \ 1) in Z(H̃). Then by [8,

Proposition 3.7, p. 24] we have:

Proposition 4.9. Let E and D as in Proposition 4.1. Then the main equa-

tion given in Proposition 3.9 is of the form

(a)

A(Z3) · A(EcZ2c
−1E−1) · A(E(cDc−1D−a4)E−1) · A([E,Da4 ])

· A(Da4Z−1
3 D−a4) · A(D(a4−1)/2Z−a42 D(1−a4)/2) = 1

in the abelianized Zπ1(T ), where Z2, Z3 ∈ π2(T, T \ 1), and

(b)

A(cZ2c
−1) · A(cDc−1D−a4) · A([E,Da4 ]) · A(Z−a42 ) = 1

in ZH̃, where Z2 ∈ π2(T, T \ 1).

By applying the homomorphism E to the left-hand side of the equation given

in Proposition 4.9(a) we obtain:
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Corollary 4.10.

[sign of det (φ)]E◦A(Z2)+E◦A(cDc−1D−a4)+E◦A([E,Da4 ])+E◦A(Z−a42 ) = 0.

5. The main result: solutions of the main equation

In this section we prove the main result of this work. The result is given as

follows:

Theorem 5.1. Given fibre-preserving maps fi : M(φ)→M(φ) over S1 then

the pair (f1, f2) can be deformed to a coincidence free pair (f ′1, f
′
2) by a fibrewise

homotopy over S1 if and only if one of the cases below holds:

(a) M(φ) is as in the case I and fi are arbitrary.

(b) M(φ) is as in one of the case II, III, IV and

det

(
c12 − c11 p2 − p1

c22 − c21 q2 − q1

)
= 0.

(c) M(φ) is as in the case V and

(p1 − p2)[(c21 − c22) + (q2 − q1) + 1] + (q2 − q1)[1 + (c11 − c12)] ≡ 0 mod 2

except in the cases listed in the table below:

a3 (p2 − p1, q2 − q1) (c12 − c11, c22 − c21) E D

2r > 0 (2s, 0) ≡ (0, 0) 1 e2s

2r < 0 (2s, 0) ≡ (0, 0) [d−1, e−1] e2s

2r + 1>0 (2s, 0) ≡ (0, 0) 1 e2s

2r + 1<0 (2s, 0) ≡ (0, 0) [d−1, e−1] e2s

0 (2s, 2k) ≡ (0, 0) 1 dke2sdk

(d) M(φ) is as in the Case VI and we have either

(I) a3 = 2r is even,

(q2 − q1)[(c12 − c11)− 1− (c22 − c21)r] ≡ 0 mod 2

except in the case where q2 − q1 = 2r1d1, where d1 is odd, and

c22 − c21 = 2r2d2, where d2 is odd with 1 < r1 ≤ r2 and c12 − c11 −
r(c22 − c21) ≡ 0 mod 2 or

(II) a3 is odd and

(t2 − t1)(1 + c22 − c21) ≡ 0 mod 2

except in the case 2(t2 − t1)/L = 2p + 1 and c22 − c21 = 2q where

L = gcd(2(t2 − t1), c22 − c21) is the greatest common divisor.
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The rest of the section is devoted to the proof of this result. We briefly

describe our approach to decide if an equation has a solution or not.

(1) First we compute the necessary condition given by Corollary 4.10 and

the set of equivalence classes as defined by Corollary 4.4

(2) Then we choose a set C of representatives of the equivalence classes in

Z ⊕ Z/H given by Corollary 4.4. For some (c12 − c11, c22 − c21) ∈ C we find

elements E,D which correspond to the input data (φ,Bi, E,D) and satisfies the

equation:

EcDc−1E−1D−a4 = 1.

This tells us that the equation given by Proposition 4.9(a), with E, D chosen as

above, admits the trivial solution Z2 = Z3 = 1, and allows us to write a sufficient

condition, in terms of the data, which guarantees to have a solution.

(3) For some classes (c12−c11, c22−c21) ∈ C we show that there is no solution

by the main equation in Zπ1(T ), which is the abelianized of π2(T, T \ 1), or in

ZH̃, where H̃ is Z⊕ Z/H such that H contains the subgroup 〈(c12 − c11, c22 −
c21), (p2 − p1, q2 − q1)〉. Then we will use Corollary 4.4 and Proposition 4.9.

Case I. It was solved in Proposition 3.8.

Case II. φ1 =

(
1 0

0 1

)
and Bi =

(
m pi
n qi

)
. The equation to be solved is

X3 · EcX2c
−1E−1 · E(cDc−1D−1)E−1 · [E,D] ·DX−1

3 D−1 ·X−1
2 = 1.

The condition given by Corollary 4.10, called the necessary condition, is

E ◦ A(cDc−1D−1) + E ◦ A([E,D]) = 0.

But for every D we have cDc−1D−1 = 1, because c acts as identity. So

E ◦ A([E,D]) = 0 = det

(
c12 − c11 p2 − p1

c22 − c21 q2 − q1

)
.

The sufficient condition is

det

(
c12 − c11 p2 − p1

c22 − c21 q2 − q1

)
= 0.

We consider L = gcd (p2 − p1, q2 − q1) and let (k1, k2) be such that (p2 −
p1, q2−q1) = L(k1, k2). If the above determinant is 0 then there exists t ∈ Z that

(c12− c11, c22− c21) = t(k1, k2). We take E = vt and D = vL, where v = ek1dk2 ,

and it is easy to verify that [E,D] = 1 and cDc−1D−1 = 1, so the equation

admits the trivial solution X2 = X3 = 1.

Case III. φ1 =

(
1 a3

0 1

)
with a3 6= 0 and Bi =

(
m pi
0 m

)
with p1 6= p2. The

equation to be solved is

X3EcX2c
−1E−1E(cDc−1D−1)E−1[E,D]DX3

−1D−1X2
−1 = 1.
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The necessary condition is

E ◦ A(cDc−1D−1) + E ◦ A([E,D]) = 0.

To compute E ◦ A(cDc−1D−1), we take D = ep2−p1 and for this D we have

cDc−1D−1 = 1. So, the above relation becomes:

E◦A([E,D]) = 0 = det

(
c12 − c11 p2 − p1

c22 − c21 0

)
= −(c22−c21)(p2−p1), p2 6= p1,

which implies c22 = c21.

The sufficient condition is c22 = c21. If this condition is satisfied we take

E = ec12−c11 and D = ep2−p1 and so [E,D] = 1. Therefore, the equation admits

the trivial solution X2 = X3 = 1.

Case IV. φ1 =
(

1 a3
0 −1

)
, B1

i =
(m pi

0 qi

)
and a3(qi −m) = −2pi with q1 6= q2.

The equation to be solved is

X3 · EcX2c
−1E−1 · E(cDc−1D)E−1 · [E,D−1] ·D−1X−1

3 D ·D−1X2D = 1.

The necessary condition is

E ◦ A(cDc−1D) + E ◦ A([E,D−1]) = 0.

In order to calculate this condition, first we consider a3 ≥ −1. Since p2 − p1 =

−a3(q2 − q1)/2 then 2 divides either a3 or q2 − q1. If 2 divides a3 consider

v = e−a3/2d, otherwise it must divide (q2 − q1) and consider v = de−a3d. From

the presentation group for a3 ≥ −1 we have cvc−1 = v−1.

Therefore, if either D = vq2−q1 or D = v(q2−q1)/2 then cDc−1D = 1 and so

E ◦ A(cDc−1D) = 0.

Let a3 ≤ −2 and consider the presentation which corresponds to this case.

Denoting by β = e−1d−1e, then the presentation is given by

〈e, d, c : cec−1 = βeβ−1, cdc−1 = βea3d−1β−1〉.

Take v as in the previous case; similar calculation shows:

cvc−1 = βdv−1d−1β−1 = [e−1, d−1]v−1[d−1, e−1].

So, if we take eitherD = vq2−q1 orD = v(q2−q1)/2, then cDc−1D = [[e−1, d−1], D]

and therefore E ◦A(cDc−1D) = 0. Since [E,D−1]D−1[E,D]D = 1 it follows that

E ◦ A([E,D−1]) = −E ◦ A([E,D]) = −det

(
c12 − c11 p2 − p1

c22 − c21 q2 − q1

)
.

So, the necessary condition is

E ◦ A([E,D−1]) = 0 = det

(
c12 − c11 p2 − p1

c22 − c21 q2 − q1

)
.
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To prove that

E ◦ A([E,D−1]) = 0 = det

(
c12 − c11 p2 − p1

c22 − c21 q2 − q1

)
is also a sufficient condition, first we will reduce the cases of E using the Corol-

lary 4.4 and finally we will find the solution of the equation for each reduced

case.

The image of the map π1(T \ 1) = 〈e, d〉 → Z⊕ Z given by

α→ (|αcα−1c−1|e, |αcα−1c−1|d)

is denoted by im(| · |e, | · |d). We have e 7→ (0, 0) d 7→ (−a3, 2), so

Z⊕ Z
im(| · |e, | · |d)

=
Z⊕ Z
〈(a3,−2)〉

.

This quotient is

Z⊕ Z
〈(a3,−2)〉

=


〈(a3,−2), (−r, 1)〉
〈(a3,−2)〉

' Z if a3 = 2r + 1,

〈(−1, 0), (r,−1)〉
〈(2r,−2)〉

' Z⊕ Z2 if a3 = 2r.

If a3 = 2r + 1 then a complete set of representatives of E is given by ele-

ments of the form (0, y), where these are the coordinates relative to the basis

((a3,−2), (−r, 1)) and so (c12 − c11, c22 − c21) = (−yr, y). These values must

satisfy the necessary condition:

det

(
−yr p2 − p1

y q2 − q1

)
= 0.

So y[r(q2−q1)+(p2−p1)] = 0. From the condition (2r+1)(q2−q1) = −2(p2−p1)

it follows that:

(a) If q2 − q1 = 0 then p2 − p1 = 0 and the result follows from the case I.

(b) If q2− q1 6= 0, follows that r(q2− q1) + (p2−p1) 6= 0 and therefore y = 0.

For a3 ≥ −1, take E = 1 and D = v(q2−q1)/2, where v = de−a3d, and for

a3 ≤ −2 take E = [d−1, e−1] and D = v(q2−q1)/2 where v = de−a3d, so in each

case we have EcDc−1E−1D = 1 and therefore the equation admits the trivial

solution.

If a3 = 2r then a complete set of representatives for E is given by ele-

ments of the form (x, y), where (x, y) are the coordinates relative to the basis

{(−1, 0), (r,−1)} and y means y module 2. So a set of representatives are the

elements of the form either (c12−c11, c22−c21) = (−x, 0) or (c12−c11, c22−c21) =

(−x+ r,−1).

From the necessary condition det
( c12−c11 p2−p1
c22−c21 q2−q1

)
= 0 and since 2r(q2 −q1) =

−2(p2 − p1) we have:

(a) If q2 = q1 then p1 = p2 and the result follows from Case I.
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(b) If q1 6= q2, substituting the representatives in the necessary condition we

conclude that x = 0.

So, for E and D below, we have EcDc−1E−1D = 1 and therefore the equation

admits the trivial solution.

a3 (c12 − c11, c22 − c21) E D

2r ≥ −1 (0, 0) 1 (e−rd)q2−q1

2r ≥ −1 (−r, 1) e−rd (de−r)q2−q1

2r ≤ −2 (0, 0) [d−1, e−1] (e−rd)q2−q1

2r ≤ −2 (−r, 1) e−re−1de (de−r)q2−q1

For the table above we observe that (−r, 1) and (r,−1) are in the same class in

〈(−1, 0), (r,−1)〉/〈(2r,−2)〉 ' Z⊕ Z2.

Case V. φ1 =
(−1 a3

0 −1

)
, B1

i =
(m pi
n qi

)
with a3(qi − m) = 0, a3n = 0 and

(p2 − p1, q2 − q1) 6= (0, 0). The equation to be solved is

X3 · EcX2c
−1E−1 · E(cDc−1D)E−1 · [E,D−1] ·D−1X−1

3 D ·D−1X2D = 1.

The necessary condition is

2E ◦ A(X2) + E ◦ A(cDc−1D) + E ◦ A([E,D−1]) = 0.

Observe that E ◦ A(cDc−1D) depends on the choice of D, but E ◦ A([E,D−1])

does not, since if D1 = αD and E1 = βE with α, β ∈ π2(T, T \ 1), then

E ◦ A(cD1c
−1D1) = 2E ◦ A(α) + E ◦ A(cDc−1D),

E ◦ A([E1, D
−1
1 ] = E ◦ A([E,D−1]).

From the above we conclude that the augmentation mod 2, denoted by (E ◦A)2,

is independent of D and in order to calculate this condition module 2, we can

take D = ep2−p1dq2−q1 and so (E ◦ A)2(cDc−1D) + (E ◦ A)2([E,D−1]) = 0 or

(p1 − p2)[(c21 − c22) + (q2 − q1) + 1] + (q2 − q1)[1 + (c11 − c12)] ≡ 0 mod 2.

Since [E,D−1]D−1[E,D]D = 1 follows that

E ◦ A([E,D−1]) = E ◦ A([D,E]) = det

(
p2 − p1 c12 − c11

q2 − q1 c22 − c21

)
.

If a3 6= 0,

cDc−1D =

e−1[d−1, ep1−p2 ]e if a3 < 0,

[d−1, ep1−p2 ] if a3 ≥ 1.

If a3 = 0,

cDc−1D = e−1[d−1, ep1−p2 ]e ep1−p2 [e−1, dq1−q2 ]ep2−p1 [ep1−p2 , dq1−q2 ]
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and therefore

E ◦ A(cDc−1D) =



det

(
0 p1 − p2

−1 0

)
if a3 6= 0,

det

(
0 p1 − p2

−1 0

)
+ det

( −1 0

0 q1 − q2

)

+ det

(
p1 − p2 0

0 q1 − q2

)
if a3 = 0.

So

E ◦ A(cDc−1D) =

(p1 − p2) if a3 6= 0,

(p1 − p2)[1 + (q1 − q2)] + (q2 − q1) if a3 = 0.

Therefore E ◦ A(cDc−1D) = (p1 − p2)[1 + (q1 − q2)] + (q2 − q1) for all a3 (note

that a3 6= 0 implies q2− q1 = 0). So (E ◦A)2(cDc−1D) + (E ◦A)2([E,D−1]) = 0

is equivalent to

(p1 − p2)[(c21 − c22) + (q2 − q1) + 1] + (q2 − q1)[1 + (c11 − c12)] ≡ 0 mod 2.

The image of the map Π1(T \ 1) = 〈e, d〉 → Z⊕ Z given by

α→ (|αcα−1c−1|e, |αcα−1c−1|d)

is denoted by im(| · |e, | · |d). We have e→ (2, 0), d→ (−a3, 2).

If a3 = 2r, where r ≥ 0, then

Z⊕ Z
im(| · |e, | · |d)

=
〈(1, 0), (−r, 1)〉
〈2(1, 0), 2(−r, 1)〉

' Z2 ⊕ Z2.

Let (|E|e, |E|d) = (c12−c11, c22−c21). If c22−c21 is odd, a set of representatives of

E is given by {(−r, 1), (−r+1, 1)} and if c22−c21 is even, a set of representatives

of E is either {(−2r + 1, 2), (0, 0)} or {(1, 0), (0, 0)}.
If a3 = 2r + 1 then

Z⊕ Z
im(| · |e, | · |d)

=
Z⊕ Z

〈2(1, 0), (−2r − 1, 2)〉
=
〈(1, 2), (0, 1)〉
〈(1, 2), (0, 4)〉

' 0⊕ Z4.

Let (|E|e, |E|d) = (c12−c11, c22−c21). If c22−c21 is odd, a set of representatives

of E is either {(0, 3), (0, 1)} or {(1, 1), (0, 1)} and if c22 − c21 is even, a set of

representatives of E is given by {(0, 0), (0, 2)}.
For a3 = 2r, where r ∈ Z, the sufficient condition is (c12 − c11, c22 − c21) 6≡

(0, 0), that is c12− c11 6≡ 0 mod 2 or c22− c21 6≡ 0 mod 2. For a3 = 2r+1, where

r ∈ Z, it is (c12 − c11, c22 − c21) 6≡ (0, 0), that is c22 − c21 6≡ 0 mod 4.
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For E and D specified below we have EcDc−1E−1D = 1, so the main equa-

tion admits trivial solution X2 = X3 = 1:

a3 = 2r > 0 c22 − c21 (p2 − p1, q2 − q1) (c12 − c11, c22 − c21) E D

r even odd (p2 − p1, 0) (−r, 1) ≡ (0, 1) d ep2−p1

r even odd (p2 − p1, 0) (−r + 1, 1) ≡ (1, 1) ed ep2−p1

r odd odd (p2 − p1, 0) (−r + 1, 1) ≡ (0, 1) d ep2−p1

r odd odd (p2 − p1, 0) (−r, 1) ≡ (1, 1) ed ep2−p1

even (2s, 0) (−2r + 1, 2) ≡ (1, 0) de−2r+1d esdesd−1

a3 = 2r < 0 c22 − c21 (p2 − p1, q2 − q1) (c12 − c11, c22 − c21) E D

r even odd (p2 − p1, 0) (−r, 1) ≡ (0, 1) e−1de ep2−p1

r even odd (p2 − p1, 0) (−r + 1, 1) ≡ (1, 1) de ep2−p1

r odd odd (p2 − p1, 0) (−r + 1, 1) ≡ (0, 1) e−1de ep2−p1

r odd odd (p2 − p1, 0) (−r, 1) ≡ (1, 1) de ep2−p1

even (2s, 0) (−2r + 1, 2) ≡ (1, 0) de−2rde esdesd−1

a3 =2r+1> 0 c22−c21 (p2−p1, q2−q1) (c12 − c11, c22 − c21) E D

odd (p2 − p1, 0) (0, 3) ≡ (1, 1) ed ep2−p1

odd (p2 − p1, 0) (0, 1) d ep2−p1

even (2s, 0) (0, 2) ≡ (−2r, 2) de−2rd esdesd−1

a3 =2r+1<0 c22−c21 (p2 − p1, q2 − q1) (c12 − c11, c22 − c21) E D

odd (p2 − p1, 0) (0, 3) ≡ (1, 1) de ep2−p1

odd (p2 − p1, 0) (0, 1) e−1de ep2−p1

even (2s, 0) (0, 2) ≡ (−2r, 2) de−2r−1de esdesd−1

a3 =0 (c12 − c11, c22 − c21) (p2 − p1, q2 − q1) E D

≡ (0, 1) p2 − p1 odd, or ep2−p1−2de ep2−p1−1dq2−q1e

q2 − q1 = 2k and p2 − p1 even ep1−p2+1de dkedkep2−p1−1

≡ (1, 0) q2 − q1 = 2k + 1, or d2ke d2kep2−p1d

q2 − q1 = 2k and p2 − p1 = 2s dq1−q2+2e esdesd2k−1

(1, 1) p2 − p1 = 2s or de esdq2−q1es

q2 − q1 = 2k de dkep2−p1dk

There is no solution for the remaining cases. To see this, let us consider E,

D as given below:

a3 (p2 − p1, q2 − q1) (c12 − c11, c22 − c21) E D

2r > 0 (2s, 0) ≡ (0, 0) 1 e2s

2r < 0 (2s, 0) ≡ (0, 0) [d−1, e−1] e2s

2r + 1>0 (2s, 0) ≡ (0, 0) 1 e2s

2r + 1<0 (2s, 0) ≡ (0, 0) [d−1, e−1] e2s

0 (2s, 2k) ≡ (0, 0) 1 dke2sdk

In order to prove that there is no solution for the cases above, we write the

term

EcDc−1DE−1[E,D−1] = EcDc−1E−1D

on the generators B(x,y) of the abelianized group Zπ1(T ).

For a3 6= 0 we have EcDc−1E−1D = [d−1, e−2s], so

A(EcDc−1E−1D) = A([d−1, (e−1)2s]) = B−1
(−1,−1)B

−1
(−2,−1)B

−1
(−3,−1) . . . B

−1
(−2s,−1)
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If A(X2) contains Bn(x,y) as a summand then

A(EcX2c
−1E−1) contains Bn(−x+a3y+a3−2,−y−2)

and

A(D−1X2D) contains Bn(x−2s,y).

Let H = 〈(2s, 0)〉 be the subgroup of π = π1(T ) ' Z ⊕ Z. Now look the

equation in Z(π/H). In Z(π/H) it reduces to:

A(EcX2c
−1E−1)A(EcDc−1E−1D)A(D−1X2D) = 1

and

A(EcDc−1E−1D) = A([d−1, (e−1)2s]) = B−1
(2s−1,−1)B

−1
(2s−2,−1) . . . B

−1
(0,−1)

In order to cancel the term B−1
(s−1,−1) or B−1

(2s−1,−1), we must have B(s−1,−1)

or B(2s−1,−1) as a summand in A(X2). Then

A(EcX2c
−1E−1) contains B(s−1,−1) or B(2s−1,−1),

A(D−1X2D) contains B(s−1,−1) or B(2s−1,−1).

So, the total exponent in B(s−1,−1) or B(2s−1,−1) is even, therefore it is impossible

to cancel with B−1
(s−1,−1) or B−1

(2s−1,−1).

For a3 = 0, we have EcDc−1E−1D = cDc−1D = [e−1d−1, d−ke−2sd−k], so

(cDc−1D)−1 = [d−ke−2sd−k, e−1d−1]

= [d−ke−2sd−k, e−1]e−1[d−ke−2sd−k, d−1]e,

and hence

cDc−1D = e−1[d−1, d−ke−2sd−k]e[e−1, d−ke−2sd−k]

= e−1d−k[d−1, e−2s]dke[e−1, d−ke−2s]d−ke−2s[e−1, d−k]e2sdk

= e−1d−k[d−1, e−2s]dke[e−1, d−k]d−ke−2s[e−1, d−k]e2sdk.

Using the formula [x, yn] = [x, y]y[x, y]y−1 . . . yn−1[x, y]y−n+1, for the commu-

tators [d−1, (e−1)
2s

] and [e−1, (d−1)
k
] (here we suppose that s > 0 and k > 0)

we have

[d−1, (e−1)
2s

] = [d−1, e−1]e−1[d−1, e−1]e . . . e−2s+1[d−1, e−1]e2s−1.

In Zπ we have A([d−1, e−1]) = A(d−1e−1ded−1e−1ed) = B−1
(−1,−1) and therefore,

A([d−1, (e−1)2s]) = B−1
(−1,−1)B

−1
(−2,−1)B

−1
(−3,−1) . . . B

−1
(−2s,−1).

Next,

[e−1, (d−1)
k
] = [e−1, d−1]d−1[e−1, d−1]dd−2[e−1, d−1]d2 . . . d−k+1[e−1, d−1]dk−1.

In Zπ we have

A([e−1, d−1]) = A(e−1d−1ede−1d−1de) = B(−1,−1)
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and therefore,

A([e−1, (d−1)
k
]) = B(−1,−1)B(−1,−2)B(−1,−3) . . . B(−1,−k).

Finally,

A(cDc−1D) = (B−1
(−2,−1−k)B

−1
(−3,−1−k) . . . B

−1
(−2s−1,−1−k))

· (B(−1,−1)B(−1,−2)B(−1,−3) . . . B(−1,−k))

· (B(−1−2s,−1−k)B(−1−2s,−2−k)B(−1−2s,−3−k) . . . B(−1−2s,−k−k)).

Let H = 〈(2s, 0), (0, 2k)〉 be the subgroup of π ' Z⊕ Z. Now look the equation

in Z(π/H). The equivalence classes admit B(x,y) as a set of representatives for

0 ≤ x ≤ 2s− 1 and 0 ≤ y ≤ 2k − 1. After projecting it on Z(π/H), we get

A(cDc−1D) = (B−1
(2s−2,k−1)B

−1
(2s−3,k−1) . . . B

−1
(0,k−1)B

−1
(2s−1,k−1))

· (B(2s−1,2k−1)B(2s−1,2k−2)B(2s−1,2k−3) . . . B(2s−1,2k−k))

· (B(2s−1,k−1)B(2s−1,k−2)B(2s−1,k−3) . . . B(2s−1,0)).

The term B−1
(s−1,k−1)B(2s−1,2k−1) is different from 1 since in this case s 6= 0 or

k 6= 0 and it is impossible to be cancelled using the variable X2 (certainly also

using the variable X3). In Z(π/H) it reduces to

A(cX2c
−1)A(cDc−1D)A(D−1X2D) = 1.

If A(X2) has the term B(s−1,k−1)B
−1
(2s−1,2k−1) then

A(cX2c
−1) has the term B(−s−1,−k−1)B

−1
(−2s−1,−2k−1).

In Z(π/H): A(cX2c
−1) has the term B(s−1,k−1)B

−1
(2s−1,2k−1) and

A(D−1X2D) has the term B(−s−1,−k−1)B
−1
(−1,−1) = B(s−1,k−1)B

−1
(2s−1,2k−1),

which shows that we cannot make powers of B(s−1,k−1) and B(2s−1,2k−1) to be

zero.

Case VI. φ =
(−1 a3

0 1

)
, Bi =

(m pi
0 qi

)
and a3(qi−m) = 2pi with q1 6= q2. The

equation to be solved is

X3 · EcX2c
−1E−1 · E(cDc−1D−1)E−1 · [E,D] ·DX−1

3 D−1 ·X−1
2 = 1.

The augmentation homomorphism E ◦A on the equation provides the condition

−2E ◦ A(X2) + E ◦ A(cDc−1D−1) + E ◦ A([E,D]) = 0.

This condition module 2 is (E ◦ A)2(cDc−1D−1) + (E ◦ A)2([E,D]) = 0 mod 2.

We divide in two subcases: a3 even and a3 odd.

Subcase a3 = 2r. Then 2r(q2 − q1) = 2(p2 − p1), φ =
(−1 2r

0 1

)
, Bi =(

m r(qi−m)
0 qi

)
with q2 − q1 6= 0.
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We summarize the data of this case by:

(φ,Bi, |E|e, |E|d) =

((
−1 2r

0 1

)
,

(
m r(qi −m)

0 qi

)
, c12 − c11, c22 − c21

)
.

To compute the necessary condition module 2, take v = erd and so cvc−1 =

e−1ve. Now, if D = vq2−q1 , then cDc−1D−1 = [e−1, vq2−q1 ] = [e−1, D] and

therefore

(E ◦ A)2(cDc−1D−1) + (E ◦ A)2([E,D])

= det

(
−1 r(q2 − q1)

0 q2 − q1

)
+ det

(
c12 − c11 r(q2 − q1)

c22 − c21 q2 − q1

)
≡ 0 mod 2

and so

(q2 − q1)[(c12 − c11)− 1− (c22 − c21)r] ≡ 0 mod 2.

To solve the equation for the input data

(φ,Bi, |E|e, |E|d) =

((
−1 2r

0 1

)
,

(
m r(qi −m)

0 qi

)
, c12 − c11, c22 − c21

)
is equivalent to solve for the input data

(φ′, B′i, |E′|e, |E′|d)

=

((
−1 0

0 1

)
,

(
m 0

0 qi

)
, (c12 − c11)− r(c22 − c21), c22 − c21

)
.

To see this, it is sufficient to consider the isomorphism ϕ : G1 → G2 given by

e→ e, d→ e−rd, c→ c,

where G1 = 〈e, d, c : cec−1 = e−1, cdc−1 = e−1e2rde〉 is the group for the first

data and G2 = 〈e, d, c : cec−1 = e−1, cdc−1 = e−1de〉 is the group for the second

data.

Now we consider the input data

(φ′, B′i, |E′|e, |E′|d)=

((
−1 0

0 1

)
,

(
m 0

0 qi

)
, (c12−c11)−r(c22−c21), c22−c21

)
satisfying the necessary condition

(q2 − q1)[(c12 − c11)− 1− (c22 − c21)r] ≡ 0 mod 2.

In this case the map π1(T \1))→ Z⊕Z given by α→ (|αcα−1c−1|e, |αcα−1c−1|d)
maps e 7→ (2, 0) and d 7→ (0, 0).

We consider the quotient group

Z⊕ Z/〈(2, 0)〉 =
〈(1, 0), (0, 1)〉
〈(2, 0)〉

' Z2 ⊕ Z.

So, it suffices to take E′ such that (|E′|e, |E′|d) = (0, c22 − c21), (|E′|e, |E′|d) =

(1, c22 − c21).
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If |E′|e = (c12−c11)−r(c22−c21) ≡ 1 mod 2, then the problem has a solution.

Take D′ = ϕ(D) = d(q2−q1) and E′ = dc22−c21 , so E′cD′c−1E′−1D′−1 = 1 and

the result follows.

If |E′|e = (c12 − c11)− r(c22 − c21) ≡ 0 mod 2, it follows from the necessary

condition that q2 − q1 is even, i.e. q2 − q1 = 2k. Let L = gcd(q2 − q1, c22 − c21)

be the greatest common divisor. If (q2 − q1)/L = 2p, then c22 − c21/L = 2q − 1

and in this case the equation has solution. Take v = cdc−1 = e−1de and note

that cvc−1 = d. Now, if D′ = (dLvL)p and E′ = v−L(vLdL)q then

E′cD′c−1E′−1D′−1 = E′(vLdL)pE′−1D′−1 = v−L(vLdL)pvLD′−1 = 1

and the result follows.

Now suppose q2 − q1 = 2r1d1, where d1 is odd and c22 − c21 = 2r2d2, where

d2 is odd with 1 < r1 ≤ r2 and (c12 − c11) − r(c22 − c21) ≡ 0 mod 2 where the

last condition is equivalent to c12 − c11 ≡ 0 mod 2, since c22 − c21 is even. Let

us show that in this case we have no solution.

Let D′ = dq2−q1 and E′ = dc22−c21 . Then

E′(cD′c−1D′−1)E′−1[E′, D′]

=E′cD′c−1E′−1D′−1 = dc22−c21cdq2−q1c−1dc21−c22dq1−q2

= dc22−c21e−1dq2−q1edc21−c22dq1−q2 = dc22−c21 [e−1, dq2−q1 ]dc21−c22 .

But, since A([e−1, d]) = B−1
(−1,0) and A([e−1, d−1]) = B(−1,−1) we have

A([e−1, dq2−q1 ]) =

B−1
(−1,0)B

−1
(−1,1)B

−1
(−1,2) . . . B

−1
(−1,q2−q1−1) if q2 − q1 ≥ 1,

B(−1,−1)B(−1,−2)B(−1,−3) . . . B(−1,q1−q2) if q2 − q1 ≤ −1.

Therefore,

A(E′cD′c−1E′−1D′−1)

=

B−1
(−1,c22−c21)B

−1
(−1,1+c22−c21) . . . B

−1
(−1,q2−q1−1+c22−c21) if q2 − q1≥1,

B(−1,−1+c22−c21)B(−1,−2+c22−c21) . . . B(−1,q1−q2+c22−c21) if q2 − q1≤−1.

The equation is

A(X3)A(E′cX2c
−1E′−1)A(E′cD′c−1E′−1D′−1)A(D′X−1

3 D′−1)A(X−1
2 ) = 1.

If we denote A(X2) = Bn(x,y) and A(X3) = Bm(z,w) we have A(cX2c
−1) =

B−n(−x−2,y), since cB(0,0)c
−1 = B−1

(−2,0). So, A(E′cX2c
−1E′−1)=B−n(−x−2,y+c22−c21)

and A(D′X−1
3 D′−1) = B−m(z,w+q2−q1).

In fact, consider the subgroup H = 〈(0, L)〉 of Z⊕ Z where L = gcd(q2 − q1,

c22 − c21) and (q2 − q1)/L = 2u + 1. Now, we look at the equation in Z(π/H).

In Zπ the equation

A(X3)A(E′cX2c
−1E′−1)A(E′cD′c−1E′−1D′−1)A(D′X−1

3 D′−1)A(X−1
2 ) = 1
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is given by

1 = Bm(z,w)B
−n
(−x−2,y+c22−c21)B

−1
(−1,c22−c21)B

−1
(−1,1+c22−c21)B

−1
(−1,2+c22−c21) . . .

B−1
(−1,q2−q1−1+c22−c21)B

−m
(z,w+q2−q1)B

−n
(x,y)

After projecting it on Z(π/H) we get

B−n(−x−2,y)B
−2u−1
(−1,0) B

−2u−1
(−1,1) . . . B

−2u−1
(−1,L−1)B

−n
(x,y) = 1.

In Z(π/H) we have that A(E′cX2c
−1E′−1) = B−n(−x−2,y). Therefore, the sum of

the powers of allB(−1,i), i = 0, . . . , L−1, which appears inA(E′cX2c
−1E′−1X−1

2 )

is even. On the other hand, this sum is −2u − 1 which is odd. So, there is no

solution.

Subcase a3 = 2r + 1. Then q2 − q1 = 2(t2 − t1) 6= 0 and therefore

p2− p1 = (2r+ 1)(t2− t1), φ =

(
−1 2r + 1

0 1

)
and Bi =

(
m (2r + 1)ti
0 2ti +m

)
.

We summarize the input data of this case by

(φ,Bi, |E|e, |E|d) =

((
−1 2r + 1

0 1

)
,

(
m (2r + 1)ti
0 2ti +m

)
, c12 − c11, c22 − c21

)
.

To compute the necessary condition module 2, take v = de2r+1d and so

cvc−1 = e−1d−1vde. Now, if D = vt2−t1 then cDc−1D
−1

= [e−1d−1, vt2−t1 ] =

[e−1d−1, D] and therefore

(E◦A)2(cDc−1D
−1

) + (E ◦ A)2([E,D])

= det

(
−1 (2r + 1)(t2 − t1)

−1 2(t2 − t1)

)
+ det

(
c12 − c11 (2r + 1)(t2 − t1)

c22 − c21 2(t2 − t1)

)
≡ 0 mod 2

and so (t2 − t1)[1 + (c22 − c21)] ≡ 0 mod 2.

To solve the equation for the input data

(φ,Bi, |E|e, |E|d) =

((
−1 2r + 1

0 1

)
,

(
m (2r + 1)ti
0 2ti +m

)
, c12 − c11, c22 − c21

)
is equivalent to solve for the input data

(φ′, B′i, |E′|e, |E′|d)

=

((
−1 1

0 1

)
,

(
m ti
0 2ti +m

)
, (c12 − c11)− r(c22 − c21), c22 − c21

)
.

To see this it is sufficient to consider the isomorphism ϕ : G1 → G2 given by

e→ e, d→ e−rd, c→ c,
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where G1 = 〈e, d, c; , cec−1 = e−1, cdc−1 = e−1e2r+1de〉 is the group for the first

data and G2 = 〈e, d, c; cec−1 = e−1, cdc−1 = e−1ede〉 is the group for the second

data.

Now, we consider the input data

(φ′, B′i, |E′|e, |E′|d)

=

((
−1 1

0 1

)
,

(
m ti
0 2ti +m

)
, (c12 − c11)− r(c22 − c21), c22 − c21

)
satisfying the necessary condition (t2 − t1)[1 + (c22 − c21)] ≡ 0 mod 2. In this

case the image of the map π1(T \ 1))→ Z⊕ Z given by

α→ (|αcα−1c−1|e, |αcα−1c−1|d)

maps e 7→ (2, 0) and d 7→ (−1, 0).

We consider the quotient group

Z⊕ Z
〈(2, 0), (−1, 0)〉

=
Z⊕ Z
〈(1, 0)〉

=
〈(1, 0), (0, 1)〉
〈(1, 0)〉

' 0⊕ Z.

So, it suffices to take E′ such that (|E′|e, |E′|d) = (a, c22 − c21), where a ∈ Z is

fixed and c22 − c21 ∈ Z.

If |E′|d = c22 − c21 ≡ 1 mod 2, i.e. c22 − c21 = 2u− 1, then the problem has

a solution. Take D′ = (ded)t2−t1 and E′ = (ded)ud−1 and so E′cD′c−1E′−1D′−1

= 1 and the result follows.

If |E′|d = c22−c21 ≡ 0 mod 2, i.e., c22−c21 = 2u it follows from the necessary

condition that t2 − t1 is even. Let L = gcd(2(t2 − t1), c22 − c21) be the greatest

common divisor. Since c22− c21 = 2u then L is even. If 2(t2 − t1)/L = 2d1 then

(c22 − c21)/L = 2l + 1, and in this case the equation has a solution.

Indeed, first we observe that if w1 = ded and w2 = cw1c
−1 = dde = dw1d

−1

then cw2c
−1 = w1 and so c(w1w2)xc−1 = (w2w1)x.

Now, if D′ = (w
L/2
1 w

L/2
2 )d1 and E′ = w

L/2
1 (w

L/2
2 w

L/2
1 )l then

E′cD′c−1E′−1D′−1 = 1

and the result follows.

If (q2−q1)/L = 2u+1 e c22−c21 = 2l we are going to prove that the equation

has no solution.

It is sufficient to prove that it has no solution for D′ = wt2−t11 and E′ = wl2,

where w1 = ded and w2 = dde. We have

E′cD′c−1E′−1D′−1 = wl2w
t2−t1
2 (wl2)−1wt1−t21 = [d, (ded)t2−t1 ],

where

A([d, (ded)t2−t1 ]) =

B−1
(0,1)B

−1
(1,3) . . . B

−1
(t2−t1−1,2(t2−t1)−1) for t2 − t1 ≥ 1,

B−1
(−1,−1)B

−1
(−2,−3) . . . B

−1
(t2−t1,2(t2−t1)+1) for t2 − t1 ≤ −1.
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The equation to be solved is

A(X3)A(E′cX2c
−1E′−1)A(EcDc−1E−1D−1)A(DX−1

3 D−1)A(X−1
2 ) = 1.

If A(X2) = Bn(x,y) and A(X3) = Bm(z,w) we obtain the following calculation for

the terms of the above equation:

A(X3) Bm(z,w)

A((E′cX2c
−1E′−1) B−n(−x−1+y+(c22−c21)/2,y+c22−c21)

A(EcDc−1E−1D−1) A([d, (ded)(t2−t1)])

A(DX−1
3 D−1) B−m(z+(t2−t1),w+2(t2−t1))

A(X−1
2 ) B−n(x,y)

We consider the subgroup H = 〈(1, 0), (0, L)〉 of Z ⊕ Z, where L = gcd(q2 −
q1, c22 − c21) = gcd(2(t2 − t1), 2l) and 2(t2 − t1)/L = (q2 − q1)/L = 2u + 1.

Now, we look at the equation in Z(π/H). So, for (t2 − t1) ≥ 1, in terms of

representatives classes, the equation in Zπ is

Bm(z,w)B
−n
(−x−1+y+(c22−c21)/2,y+c22−c21)B

−1
(0,1)B

−1
(1,3) . . . B

−1
((t2−t1)−1,2(t2−t1)−1)

B−m(z+(t2−t1),w+2(t2−t1))B
−n
(x,y) = 1.

After projecting it on Z(π/H) we get

B−n(x,y)B
−(2u+1)
(0,1) B

−(2u+1)
(1,3) . . . B

−(2u+1)
(L/2−1,2L/2−1)B

−n
(x,y) = 1.

In Z(π/H) we have that E′cX2c
−1E′−1 = B−n(x,y). Therefore, the sum of the

powers of allB(i−1,2i−1), for i = 1, . . . , L/2, which appears in E′cX2c
−1E′−1X−1

2 ,

is −2u, which is even. On the other hand, this sum is −(2u+ 1), which is odd.

So, there is no solution.

We note that, if t2 − t1 ≥ 1 then, for all i = 1, 2, . . . L/2, the B(i−1,2i−1) are

different classes in Z(π/H). In fact, if 1 ≤ i < j ≤ L/2 then (j−1, 2j−1)−(i−1,

2i− 1) = α(1, 0) +β(0, L) and we have no solution in Z because 1 ≤ j− i < L/2

and so L 6 | 2(j − i).
If t2 − t1 ≤ −1, the computation is the same, because in Z(π/H) we have

B−1
(−1,−1)B

−1
(−2,−3) . . . B

−1
(t2−t1,2(t2−t1)+1) = B−1

(0,1)B
−1
(1,3) . . . B

−1
(t1−t2−1,2(t1−t2)−1).
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