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MULTIPLE NONSEMITRIVIAL SOLUTIONS

FOR A CLASS OF DEGENERATE QUASILINEAR

ELLIPTIC SYSTEMS

Ghasem A. Afrouzi — Armin Hadjian

Nicolaos B. Zographopoulos

Abstract. We prove the existence of multiple nonnegative nonsemitriv-
ial solutions for a degenerate quasilinear elliptic system. Our technical

approach is based on variational methods.

1. Introduction

In this paper, we prove the multiplicity of solutions for the following degen-

erate quasilinear elliptic system, defined on Ω,

(1.1λ)

−∇(ν1(x)|∇u|p−2∇u) =λa(x)|u|p−2u+ λb(x)|u|α|v|βv

+
µ(x)

(α+ 1)(δ + 1)
|u|γ−1|v|δ+1u,

−∇(ν2(x)|∇v|q−2∇v) =λd(x)|v|q−2v + λb(x)|u|α|v|βu

+
µ(x)

(β + 1)(γ + 1)
|u|γ+1|v|δ−1v,

(1.2λ) u|∂Ω = v|∂Ω = 0,
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where Ω is a bounded and connected subset of RN , N ≥ 2. The degeneracy of

this system is considered in the sense that the measurable, nonnegative diffusion

coefficients ν1, ν2 are allowed to vanish in Ω, (as well as at the boundary ∂Ω)

and/or to blow up in Ω.

Throughout this paper, we assume the following hypotheses:

(H) N > p > 1, N > q > 1, α ≥ 0 and β ≥ 0 satisfying (α+ 1)/p +

(β + 1)/q = 1, γ ≥ 0, δ ≥ 0 and p < γ + 1 or q < δ + 1 satisfying

(γ + 1)/p∗ + (δ + 1)/q∗ < 1.

The quantities p∗ and q∗ are defined in the next section.

(H1) The exponents α, β, γ and δ satisfy also the general condition

1

(α+ 1)(δ + 1)
+

1

(β + 1)(γ + 1)
< 1.

We introduce the function space

(N )p which consists of nonnegative weighted functions ν : Ω ⊂ RN → R such

that ν vanishes and/or tends to infinity at finite points at most, ν ∈
L1

loc(Ω), ν−1/(p−1) ∈ L1
loc(Ω) and ν−s ∈ L1(Ω), for some p > 1, s >

max {N/p, 1/(p− 1)} satisfying ps ≤ N(s+ 1).

Then for the weight functions ν1, ν2 we assume the following hypothesis:

(N ) There exist functions µ1 satisfying condition (N )p, for some sp, and µ2

satisfying condition (N )q, for some sq, such that

(1.3)
µ1(x)

c1
≤ ν1(x) ≤ c1 µ1(x) and

µ2(x)

c2
≤ ν2(x) ≤ c2 µ2(x),

almost everywhere in Ω, for some constants c1 > 1 and c2 > 1.

Furthermore, we suppose that the coefficient functions a(x), d(x), b(x) and

µ(x) satisfy the following conditions:

(Υ1) a is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), such that

a ∈ Lp∗/(p∗−p)(Ω) and either there exists Ω+
a ⊂ Ω of positive Lebesgue

measure, i.e. |Ω+
a | > 0 such that a(x) > 0, for all x ∈ Ω+

a , neither

a(x) ≡ 0, in Ω.

(Υ2) d is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), such that

d ∈ Lq∗/(q∗−q)(Ω) and either there exists Ω+
d ⊂ Ω of positive Lebesgue

measure, i.e. |Ω+
d | > 0 such that d(x) > 0, for all x ∈ Ω+

d , neither

d(x) ≡ 0 in Ω.

(Υ3) b(x) ≥ 0 almost everywhere in Ω, b 6≡ 0 and b ∈ Lω1(Ω)∩L∞(Ω), where

ω1 = [1− (α+ 1)/p∗ − (β + 1)/q∗]
−1

.

(Υ4) µ is sign changing (i.e. µ+ 6≡ 0, µ− 6≡ 0) and µ ∈ Lω2(Ω)∩L∞(Ω), where

ω2 = [1− (γ + 1)/p∗ − (δ + 1)/q∗]
−1

.

In addition the function µ(x) satisfies the following key condition:
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(Υ5)

∫
Ω

µ(x)|u1|γ+1|v1|δ+1 dx < 0,

where (u1, v1) is the positive normalized eigenfunction of the unper-

turbed system:

(1.4λ)
−∇(ν1(x)|∇u|p−2∇u) = λa(x)|u|p−2u+ λb(x)|u|α|v|βv, x ∈ Ω,

−∇(ν2(x)|∇v|q−2∇v) = λd(x)|v|q−2v + λb(x)|u|α|v|βu, x ∈ Ω,

(1.5λ) u|∂Ω = v|∂Ω = 0,

corresponding to the positive principal eigenvalue λ1.

As it was proved in [13] (see also Section 2, Theorem 2.4), system (1.4λ) is

in fact an eigenvalue problem which admits a positive principal eigenvalue λ1

and the corresponding normalized eigenfunctions (u1, v1) are positive, up to

singular and/or degenerate points, componentwise. Moreover, up to the sin-

gular/degenerate points of ν1 and ν2, they are also bounded and sufficiently

smooth.

Remark 1.1. An example of the weighted function µ(x) which satisfies both

conditions (Υ4) and (Υ5) may be the following; Let µ(x) be a smooth function

in Ω, which is zero at a neighbourhood of the singular/degenerate points and

µ(x) satisfies

(1.6)

∫
Ω

µ−(x)|u1|γ+1|v1|δ+1 dx >

∫
Ω

µ+(x)|u1|γ+1|v1|δ+1 dx,

for µ(x) = µ+(x) − µ−(x), i.e. µ+ and µ− are the positive and the negative

part of µ, respectively. More precisely, let zi, i = 1, . . . , n, be the finite singular

and/or degenerate points. Assume for some small enough ε, the spheres Bε(zi)

centered at zi. Since zi are finite we can find Ω̃ ⊂ Ω, such that

Ω̃ ∩
⋃
i

Bε(zi) = ∅.

Note that Ω̃ may be chosen such that, both ui and v1 are uniformly bounded

from above and uniformly bounded away from zero.

We define now µ to be continuous in Ω, such that µ(x) = 0, for x ∈
⋃
i

Bε(zi),

µ is positive in Ω \ Ω̃ ∪
⋃
i

Bε(zi), with µ(x) < δ, in Ω \ Ω̃ ∪
⋃
i

Bε(zi), δ small

enough and µ is negative in Ω̃, with sufficiently large L∞ norm, such that∫
Ω̃

|µ(x)||u1|γ+1|v1|δ+1 dx >

∫
Ω\Ω̃

µ+(x)|u1|γ+1|v1|δ+1 dx,

i.e. (1.6) holds.
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An example of the physical motivation of the assumptions (N ), (N )p may be

found in [4, p. 79]. These assumptions are related to the modelling of reaction

diffusion processes in composite materials occupying a bounded domain Ω, which

at some points they behave as perfect insulators. When at some points the

medium is perfectly insulating, it is natural to assume that ν1(x) and/or ν2(x)

vanish in Ω. For more information we refer to [13] and the references therein.

Multiplicity results for semilinear and quasilinear elliptic systems have re-

ceived a great deal of interest in recent years; see, for instance, the papers [1]–[3],

[5], [6], [8]–[10], [12] and the references therein.

We note that the procedure here is based on the arguments developed in [6]

and [8]. Following along the same lines as in [8], we will prove multiplicity of

nonsemitrivial solutions for the system (1.1λ)–(1.2λ).

2. The eigenvalue problem (1.4λ)–(1.5λ)

Let ν(x) be a nonnegative weight function in Ω which satisfies condition

(N )p. We consider the weighted Sobolev space D1,p
0 (Ω, ν) to be defined as the

closure of C∞0 (Ω) with respect to the norm

‖u‖D1,p
0 (Ω,ν) :=

(∫
Ω

ν(x)|∇u|p
)1/p

.

The space D1,p
0 (Ω, ν) is a reflexive Banach space. For a discussion about the

space setting we refer to [7] and the references therein. Let

p∗s :=
Nps

N(s+ 1)− ps
.

Lemma 2.1. Assume that Ω is a bounded domain in RN and the weight ν

satisfies (N )p. Then the following embeddings hold:

(a) D1,p
0 (Ω, ν) ↪→ Lp

∗
s (Ω) continuously for 1 < p∗s < N ,

(b) D1,p
0 (Ω, ν) ↪→ Lr(Ω) compactly for any r ∈ [1, p∗s).

The space setting for our problem is the product space

Z := D1,p
0 (Ω, ν1)×D1,q

0 (Ω, ν2)

equipped with the norm

‖z‖Z := ‖u‖D1,p
0 (Ω,ν1) + ‖v‖D1,q

0 (Ω,ν2), z = (u, v) ∈ Z.

Observe that inequalities (1.3) in condition (N ) implies that the functional spaces

D1,p
0 (Ω, ν1)×D1,q

0 (Ω, ν2) and D1,p
0 (Ω, µ1)×D1,q

0 (Ω, µ2) are equivalent.

In the sequel we denote by p∗ and q∗ the quantities p∗sp and p∗sq , respectively,

where sp and sq are induced by condition (N ). Also, we use ‖ · ‖1,p and ‖ · ‖1,q
for the norms ‖ · ‖D1,p

0 (Ω,ν1) and ‖ · ‖D1,q
0 (Ω,ν2), respectively.
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We introduce the functionals J,D,B,M : Z → R as follows:

J(u, v) :=
α+ 1

p

∫
Ω

ν1(x)|∇u|p dx+
β + 1

q

∫
Ω

ν2(x)|∇v|q dx,

D(u, v) :=
α+ 1

p

∫
Ω

a(x)|u|p dx+
β + 1

q

∫
Ω

d(x)|v|q dx,

B(u, v) :=

∫
Ω

b(x)|u|α+1|v|β+1 dx,

M(u, v) :=

∫
Ω

µ(x)|u|γ+1|v|δ+1 dx.

It is a standard procedure (see [8], [12]) to prove the following properties of these

functionals.

Lemma 2.2. The functionals J,D,B, and M are well defined. Moreover, J

is continuous and D, B and M are compact.

Next, we introduce the functionals Aλ, Iλ : Z → R in the following way:

Aλ(u, v) := J(u, v)− λD(u, v)− λB(u, v),

Iλ(u, v) := Aλ(u, v)− 1

(γ + 1)(δ + 1)
M(u, v).

The functionals Aλ and Iλ are well defined, and they are weakly lower semicon-

tinuous. Clearly, Iλ ∈ C1(Z,R).

Definition 2.3. We say that (u, v) is a weak solution of the system (1.1λ)–

(1.2λ) if (u, v) is a critical point of the functional Iλ, i.e.∫
Ω

ν1(x)|∇u|p−2∇u · ∇φdx =λ

∫
Ω

a(x)|u|p−2uφ dx+ λ

∫
Ω

b(x)|u|α−1|v|β+1uφ dx

+
1

(α+ 1)(δ + 1)

∫
Ω

µ(x)|u|γ−1|v|δ+1uφ dx,∫
Ω

ν2(x)|∇v|q−2∇v · ∇ψ dx =λ

∫
Ω

d(x)|v|q−2vψ dx+ λ

∫
Ω

b(x)|u|α+1|v|β−1vψ dx,

+
1

(β + 1)(γ + 1)

∫
Ω

µ(x)|u|γ+1|v|δ−1vψ dx

for any (φ, ψ) ∈ Z.

By a semitrivial solution, we mean any weak solution (u, v) ∈ Z of the form

(u, 0) or (0, v). Otherwise, the solution is called nonsemitrivial.

Concerning the eigenvalue problem (1.4λ)–(1.5λ) we have the following result,

which was proved in [13].

Theorem 2.4 ([13, Theorem 1.1]). The system (1.4λ)–(1.5λ) admits a posi-

tive principal eigenvalue λ1, given by

(2.1) λ1 = inf
D(u,v)+B(u,v)=1

J(u, v).
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The associated normalized eigenfunction (u1, v1) belongs to Z and each compo-

nent is nonnegative. In addition,

(a) the set of all eigenfunctions corresponding to the principal eigenvalue λ1

forms a one-dimensional manifold E1 ⊂ Z, which is defined by

E1 = {(c1 u1, c
p/q
1 v1) : c1 ∈ R}.

(b) λ1 is the only eigenvalue of (1.4λ)–(1.5λ) to which corresponds a com-

ponentwise nonnegative eigenfunction.

(c) λ1 is isolated in the following sense: there exists η > 0, such that the

interval (0, λ1 + η) does not contain any other eigenvalue than λ1.

Based on the properties of λ1, the authors in [11], proved certain bifurcation

results:

Definition 2.5. Let E = R× Z be equipped with the norm

(2.2) ‖(λ, u, v)‖E = (|λ|2 + ‖(u, v)‖2Z)1/2, (λ, u, v) ∈ E.

We say that the set

C = {(λ, u, v) ∈ E : (λ, u, v) solves (1.1λ), (u, v) 6= (0, 0)}

is a continuum of nontrivial solutions of (1.1λ), if it is a connected set in E

with respect to the topology induced by the norm (2.2). We say λ0 ∈ R is

a bifurcation point of the system (1.1λ) (in the sense of Rabinowitz), if there is

a continuum of nontrivial solutions C of (1.1λ) such that (λ0, 0, 0) ∈ C and C is

either unbounded in E or there is an eigenvalue λ̂ 6= λ0, such that (λ̂, 0, 0) ∈ C.

More precisely, from [11, Theorem 4.6 and Proposition 4.7] we have that

Theorem 2.6. The principal eigenvalue λ1 > 0 of the unperturbed problem

(1.4λ)–(1.5λ) is a bifurcation point (in the sense of Rabinowitz) of the perturbed

system (1.1λ). Moreover, there exists an η > 0 small enough, such that for each

(λ, u, v) ∈ C ∩ Bη(λ1, 0), we have u(x) ≥ 0 and v(x) ≥ 0, almost everywhere

in Ω.

Based now on the properties of the scalar eigenvalue problem, we may prove

the following properties of the solutions of (1.1λ)–(1.2λ).

Lemma 2.7. Let λ be close enough to λ1. Every nontrivial solution (u, v) of

(1.1λ)–(1.2λ) is nonsemitrivial.

Proof. First consider the following eigenvalue problems:

−∇(ν1(x)|∇u|p−2∇u) = λa(x)|u|p−2u, x ∈ Ω,(2.3λ)

u|∂Ω = 0,(2.4λ)



Solutions of Degenerate Quasilinear Elliptic System 391

and

−∇(ν2(x)|∇v|q−2∇v) = λd(x)|v|q−2v, x ∈ Ω,(2.5λ)

v|∂Ω = 0.(2.6λ)

It is known (see [7]) that the problem (2.3λ)–(2.4λ) ((2.5λ)–(2.6λ), resp.) has

a positive principal eigenvalue λ
′
(λ
′′
, resp.), which is characterized variationally

by

λ
′

= inf
u∈D1,p

0 (Ω,ν1)\{0}

∫
Ω

ν1(x)|∇u|p dx∫
Ω

a(x)|u|p dxλ′′ = inf
v∈D1,q

0 (Ω,ν2)\{0}

∫
Ω

ν2(x)|∇v|q dx∫
Ω

d(x)|v|q dx
, resp.

 .

This eigenvalues is simple and isolated and it is the only one having a positive

eigenfunction φ
′
(φ
′′
, resp.). Now, observe that the nonzero component of any

semitrivial solution of the system (1.1λ)–(1.2λ) corresponds to an eigenfunction

of (2.3λ)–(2.4λ) or (2.5λ)–(2.6λ). So it suffices to prove that λ1 < min{λ′ , λ′′}.
Suppose not. Then the system (2.4λ′ )–(2.5λ′ ) ((2.4λ′′ )–(2.5λ′′ ), resp.) would

have a solution (φ
′
, 0) ((0, φ

′′
), resp.). From the variational characterization

(2.1) of the eigenvalue λ1 this is a contradiction, and so the proof is complete.�

3. Main results

First, we introduce some notations. Let Λλ be the Nehari manifold associated

with (1.1λ)–(1.2λ); i.e.

Λλ := {(u, v) ∈ Z : 〈I ′λ(u, v), (u, v)〉 = 0}.

It is clear that Λλ is closed in Z and all critical points of Iλ must lie on Λλ. So,

(u, v) ∈ Λλ if and only if∫
Ω

ν1(x)|∇u|p dx− λ
∫

Ω

a(x)|u|p dx− λ
∫

Ω

b(x)|u|α+1|v|β+1 dx

=
1

(α+ 1)(δ + 1)

∫
Ω

µ(x)|u|γ+1|v|δ+1 dx,∫
Ω

ν2(x)|∇v|q dx− λ
∫

Ω

d(x)|v|q dx− λ
∫

Ω

b(x)|u|α+1|v|β+1 dx

=
1

(β + 1)(γ + 1)

∫
Ω

µ(x)|u|γ+1|v|δ+1 dx.
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Now, we define the following disjoint subsets of Λλ:

Λ+
λ :=

{
(u, v) ∈ Λλ :

∫
Ω

µ(x)|u|λ+1|v|δ+1 dx < 0

}
,

Λ0
λ :=

{
(u, v) ∈ Λλ :

∫
Ω

µ(x)|u|λ+1|v|δ+1 dx = 0

}
,

Λ−λ :=

{
(u, v) ∈ Λλ :

∫
Ω

µ(x)|u|λ+1|v|δ+1 dx > 0

}
.

Note that the condition (Υ5) implies that (u1, v1) 6∈ Λ−λ .

Lemma 3.1. The solution branch C bends to the right of λ1 at (λ1, 0, 0);

i.e. there exists ρ > 0, such that (λ, u, v) ∈ C and ‖u‖1,p + ‖v‖1,q < ρ, implies

λ > λ1.

Proof. Suppose not. Then, there exists a sequence (λn, un, vn) ∈ C, such

that (un, vn)→ 0 in Z, λn ≤ λ1, λn → λ1 and∫
Ω

ν1(x)|∇un|p dx − λn
∫

Ω

a(x)|un|p dx− λn
∫

Ω

b(x)|un|α+1|vn|β+1 dx(3.1)

=
1

(α+ 1)(δ + 1)

∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx,

∫
Ω

ν2(x)|∇vn|q dx − λn
∫

Ω

d(x)|vn|q dx− λn
∫

Ω

b(x)|un|α+1|vn|β+1 dx(3.2)

=
1

(β + 1)(γ + 1)

∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx.

We introduce the sequences ũn and ṽn in the following way:

(3.3) ũn =
un

(‖un‖p1,p + ‖vn‖q1,q)1/p
and ṽn =

vn
(‖un‖p1,p + ‖vn‖q1,q)1/q

which are bounded sequences. Indeed, we have

‖ũn‖p1,p + ‖ṽn‖q1,q = 1 for every n ∈ N.

Thus, we may assume (ũn, ṽn)⇀ (ũ0, ṽ0) in Z. Using (α+ 1)/p + (β + 1)/q= 1

in the condition (H), we have

∫
Ω

b(x)|ũn|α+1|ṽn|β+1 dx =

∫
Ω

b(x)|un|α+1|vn|β+1 dx

‖un‖p1,p + ‖vn‖q1,q
.

Moreover, the range of exponents and Lemma 2.1 implies∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx

‖un‖p1,p + ‖vn‖q1,q
≤
‖µ‖ω2

‖un‖γ+1
p∗ ‖vn‖δ+1

q∗

‖un‖p1,p + ‖vn‖q1,q
→ 0,
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as (un, vn)→ 0 in Z. Using (3.1) and (3.2), we obtain∫
Ω

(ν1(x)|∇ũn|p − λna(x)|ũn|p − λnb(x)|ũn|α+1|ṽn|β+1) dx→ 0,

∫
Ω

(ν2(x)|∇ṽn|q − λnd(x)|ṽn|q − λnb(x)|ũn|α+1|ṽn|β+1) dx→ 0,

as n→∞. Moreover, the compactness of the operators D and B implies that

λn

∫
Ω

a(x)|ũn|p dx→ λ1

∫
Ω

a(x)|ũ0|p dx,

λn

∫
Ω

d(x)|ṽn|q dx→ λ1

∫
Ω

d(x)|ṽ0|q dx,

λn

∫
Ω

b(x)|ũn|α+1|ṽn|β+1 dx→ λ1

∫
Ω

b(x)|ũ0|α+1|ṽ0|β+1 dx,

as n → ∞. Hence, (ũn, ṽn) → (ũ0, ṽ0) 6= (0, 0), since ‖(ũn, ṽn)‖Z = 1, for

every n ∈ N. Also, (ũ0, ṽ0) is a solution of (1.4λ1
)–(1.5λ1

). By Theorem 2.4(a),

λ1 is simple. Thus, ũ0 = kpu1 and ṽ0 = kqv1, for some positive constant k.

Multiplying equations (3.1) and (3.2) by (α + 1)/p and (β + 1)/q, respectively,

adding the resulting equations, and using condition (H), we deduce that

(3.4) Aλn(un, vn) = c1

∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx, for any n ∈ N,

where c1 = 1/(p(δ + 1)) + 1/(q(γ + 1)). From the variational characterization

(2.1) of the eigenvalue λ1, equation (3.4), and condition (Υ5) we conclude that

0 ≤ lim
n→∞

c1

∫
Ω

µ(x)|ũn|γ+1|ṽn|δ+1 dx = c2

∫
Ω

µ(x)|u1|γ+1|v1|δ+1 dx < 0,

for some c2 = c2(c1, k) > 0, which is a contradiction, and so the proof is com-

plete. �

Corollary 3.2. Suppose that (λ, u, v) ∈ C, such that (λ, u, v) is close

enough to (λ1, 0, 0); then (u, v) ∈ Λ+
λ .

Proof. Let (λn, un, vn) ∈ C, such that (un, vn)→ (0, 0) in Z and λn → λ1.

Then, using the same arguments as in Lemma 3.1 we may prove that∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx < 0, for n large enough;

i.e. (un, vn) ∈ Λ+
λ , when n is large enough. �

Lemma 3.3. There exists λ0 > λ1, such that for every λ ∈ (λ1, λ
0) the set

Λ−λ is closed in Z.
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Proof. First note that Λ−λ 6= ∅, since µ+ 6≡ 0. We have to prove that for

any (un, vn) ∈ Λ−λ such that (un, vn) → (u, v) in Z, we have (u, v) ∈ Λ−λ , when

λ ∈ (λ1, λ
0). Due to the compactness of the operator M , this will be the case if∫

Ω

µ(x)|ũn|γ+1|ṽn|δ+1 dx→
∫

Ω

µ(x)|u|γ+1|v|δ+1 dx > 0.

Assume that such a λ0 does not exist. Then, there exists a sequence (λn, un, vn),

with (un, vn) ∈ Λ−λ , such that

λn → λ1 and

∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx→ 0.

Since (un, vn) is a solution for the system (1.1λn)–(1.2λn), we have that∫
Ω

(ν1(x)|∇un|p − λna(x)|un|p − λnb(x)|un|α+1|vn|β+1) dx→ 0,

∫
Ω

(ν2(x)|∇ṽn|q − λnd(x)|vn|q − λnb(x)|un|α+1|vn|β+1) dx→ 0,

as n → ∞. Similar to Lemma 3.1, we may prove that the sequences {ũn} and

{ṽn} converge strongly to some (ũ0, ṽ0), and we have ũ0 = kpu1 and ṽ0 = kqv1,

for some positive constant k. The compactness of the operator M implies that

0 ≤ lim
n→∞

c3

∫
Ω

µ(x)|ũn|γ+1|ṽn|δ+1 dx = c4

∫
Ω

µ(x)|u1|γ+1|v1|δ+1 dx < 0,

for some positive constants c3 and c4, which is a contradiction. Thus, Λ−λ is

closed in Z. �

Lemma 3.4. The functional Iλ satisfies the (PS) condition on Λ−λ , whenever

λ is close enough to λ1.

Proof. Let the sequence (un, vn) ∈ Λ−λ be such that Iλ(un, vn) ≤ c and

I ′λ(un, vn) → 0, as n → ∞. We first prove that (un, vn) is a bounded sequence.

The quantity M(un, vn) is bounded, for all n ∈ N, since

Iλ(un, vn)−
〈
I ′λ(un, vn),

(
un
p
,
vn
q

)〉
=

[
1

p(δ + 1)
+

1

q(γ + 1)
− 1

(γ + 1)(δ + 1)

]
M(un, vn).

Therefore, Aλ(un, vn) must be bounded, too. Next, we claim that there exists

a positive constant σ, such that

Aλ(un, vn)

‖un‖p1,p + ‖vn‖q1,q
≥ σ > 0, for every n ∈ N,
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which would imply the boundedness of (un, vn) in Z. Suppose not. Then, there

exists a sequence (λn, un, vn), with (un, vn) ∈ Λ−λ , such that λn → λ1 and

Aλn(un, vn)

‖un‖p1,p + ‖vn‖q1,q
= Aλn(ũn, ṽn)→ 0,

where (ũn, ṽn) are the sequences introduced by (3.3). The boundedness of

(ũn, ṽn) implies that

(ũn, ṽn) ⇀ (ũ0, ṽ0)

in Z, for some (ũ0, ṽ0) ∈ Z. From the variational characterization (2.1) of λ1

and By the weak lower semicontinuity of Aλ we have

(3.5) 0 ≤ Aλ1
(ũ0, ṽ0) ≤ lim inf

n→∞
Aλn(ũn, ṽn) = 0.

We claim that (ũ0, ṽ0) 6= (0, 0). Otherwise, from the compactness of the func-

tionals D and B we have

lim
n→∞

D(ũn, ṽn) = lim
n→∞

B(ũn, ṽn) = 0.

Hence, from (3.5) we conclude that (ũn, ṽn)→ (0, 0) in Z, which contradicts the

fact that ‖(ũn, ṽn)‖Z = 1, for every n ∈ N.

Now, from (3.5) we must have that ũ0 = kpu1 and ṽ0 = kqv1, for some

positive constant k. Then from (Υ5) we have

0 <

∫
Ω

µ(x)|ũn|γ+1|ṽn|δ+1 dx→ c5

∫
Ω

µ(x)|u1|γ+1|v1|δ+1 dx < 0,

which is a contradiction. Thus (un, vn) is a bounded sequence. Using the com-

pactness of the functionals D, B, and M and following the procedure from [12,

Lemma 2.3] we obtain that (un, vn) has a convergent subsequence, and so the

proof is complete. �

Our main result is the following theorem.

Theorem 3.5. There exists λ∗ > λ1, such that the system (1.1λ)–(1.2λ) has

two nonnegative nonsemitrivial solutions, for every λ ∈ (λ1, λ
∗).

Proof. By Theorem 2.6 and Corollary 3.2, there exist a nonsemitrivial solu-

tion for the system (1.1λ)–(1.2λ), which belongs in Λ+
λ . We prove the existence of

a solution, which belongs in Λ−λ . Consider the set Λ−λ equipped with the metric

d(z̃1, z̃2) = ‖z̃1 − z̃2‖Z , for every z̃1 and z̃2 in Λ−λ . It is clear from Lemma 3.3,

that for λ∗ close to λ1, the set Λ−λ becomes a complete metric space. Using

condition (H), we observe that

Aλ(u, v) =
α+ 1

p

∫
Ω

(ν1(x)|∇u|p − λa(x)|u|p − λb(x)|u|α+1|v|β+1) dx

+
β + 1

q

∫
Ω

(ν2(x)|∇v|q − λd(x)|v|q − λb(x)|u|α+1|v|β+1) dx.
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Hence, for every (u, v) ∈ Λλ, using (α+ 1)/p+ (β + 1)/q = 1, we have

I(u, v) =

[
1

p(δ + 1)
+

1

q(γ + 1)
− 1

(γ + 1)(δ + 1)

] ∫
Ω

µ(x)|u|γ+1|v|δ+1 dx.

Since p < γ+ 1 or q < δ+ 1, we conclude that Iλ(u, v) > 0 whenever (u, v) ∈ Λ−λ
and Iλ is bounded below in Λ−λ , i.e.

inf
(u,v)∈Λ−λ

Iλ(u, v) ≥ 0.

On the other hand, the functional Iλ satisfies the (PS) condition in Λ−λ (by

Lemma 3.4). Thus, Ekeland’s variational principle implies the existence of

a solution for the system (1.1λ)–(1.2λ). This solution is nonnegative, since

Iλ(|u|, |v|) = Iλ(u, v), and in addition, Lemma 2.7 implies that it is also non-

semitrivial. �

Acknowledgements. The authors would like to thank the unknown referee

for his/her valuable comments and suggestions.

References

[1] L. Boccardo and D.G. de Figueiredo, Some remarks on a system of quasilinear elliptic

equations, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 309–323.

[2] G. Bonanno, S. Heidarkhani and D. O’Regan, Multiple solutions for a class of dirichlet

quasilinear elliptic systems driven by a (P,Q)-Laplacian operator, Dynam. Systems Appl.

20 (2011), 89–100.

[3] Y. Bozhkova and E. Mitidieri, Existence of multiple solutions for quasilinear systems

via Fibering method, J. Differential Equations 190 (2003), 239–267.

[4] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science

and Technology, Vol. I: Physical Origins and Classical Methods, Springer–Verlag, Berlin,

1985.

[5] A. Djellit and A. Tas, Existence of solutions for a class of elliptic systems in RN

involving the p-Laplacian, Electron. J. Differential Equations 56 (2003), 1–8.
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[7] P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degener-

ations and Singularities, Walter de Gruyter & Co., Berlin, 1997.
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