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AN ALGORITHMIC APPROACH TO ESTIMATING

THE MINIMAL NUMBER OF PERIODIC POINTS

FOR SMOOTH SELF-MAPS OF SIMPLY-CONNECTED

MANIFOLDS

Grzegorz Graff — Pawe l Pilarczyk

Abstract. For a given self-map f of M , a closed smooth connected
and simply-connected manifold of dimension m ≥ 4, we provide an al-

gorithm for estimating the values of the topological invariant Dm
r [f ],

which equals the minimal number of r-periodic points in the smooth
homotopy class of f . Our results are based on the combinatorial

scheme for computing Dm
r [f ] introduced by G. Graff and J. Jezierski

[J. Fixed Point Theory Appl. 13 (2013), 63–84]. An open-source imple-
mentation of the algorithm programmed in C++ is publicly available at

http://www.pawelpilarczyk.com/combtop/.

1. Introduction

Let M be a closed smooth connected and simply-connected manifold of di-

mension m ≥ 4. The problem of finding the minimal number of periodic points

in the homotopy class of a self-map f of M is one of the central questions in

periodic point theory.

J. Jezierski and the first author have recently developed a smooth version of

Nielsen periodic point theory, searching for

min{#Fix(gr) : g
s∼ f},
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where g
s∼ f means that the maps g and f are C1-homotopic. This line of

research is based on the construction of smooth topological invariants that are the

counterpart of the invariant NFr(f) which exists in the classical continuous ca-

tegory (cf. [12], [13]). In [6], [7], two counterparts of NFr(f) were defined for the

smooth category: Dm
r [f ] for simply-connected manifolds and its generalization

NJDm
r [f ] for those manifolds that are not simply-connected.

In this paper, we restrict our attention to simply-connected manifolds. Then

the only obstacle to minimizing the number of periodic points comes from their

fixed point indices. Nevertheless, the computation of the smooth invariant Dm
r [f ]

remains a highly nontrivial task. So far, the value of D3
r [f ] was found in some

special cases only; namely, it was determined for self-maps of S3 [8], and for self-

maps satisfying some additional conditions on S2 × I [7] and on the two-holed

3-dimensional closed ball [4]. In higher dimensions (that is, for m ≥ 4), Dm
r [f ]

was only found in the case in which r is a product of different primes (m = 4

in [9] and m ≥ 4 in [5]).

Since the general case seems to be too difficult to tackle, in what follows we

restrict our attention to odd r and to maps with fast growth of the Lefschetz

numbers of iterations, that is, satisfying our standing assumptions (I)–(II). Sim-

ple examples of such maps are self-maps of Sm with degree d, where |d| > 1;

more examples can be found in [15].

Under these assumptions, we apply the general combinatorial scheme in-

troduced in [5] to develop an algorithm and its implementation (a computer

program) which provide estimates for the invariant Dm
r [f ] for m ≥ 4 and for an

arbitrary odd r. Let us point out that such estimates provide important infor-

mation concerning periodic points. Namely, the estimate α ≤ Dm
r [f ] ≤ β implies

that: (i) every smooth map g smoothly homotopic to f has at least α r-periodic

points, (ii) there exists a smooth map g smoothly homotopic to f that has at

most β r-periodic points.

The paper is organized in the following way. In Section 2, we introduce the

invariant Dm
r [f ] and define the class of maps that are taken into consideration in

the paper. In Section 3, we formulate the combinatorial problem for obtaining an

upper bound on Dm
r [f ] and we recall known estimates for Dm

r [f ]. In Section 4,

we introduce terminology and definitions necessary to describe the proposed

solution to this problem. In Section 5, we introduce algorithms that can be used

for solving the problem. In Section 6, we give brief introduction to the software

implementation of the algorithms, and we discuss some specific examples.

2. Definition of the invariant Dm
r [f ]

Sequences of local indices of smooth maps play a crucial role in the definition

of Dm
r [f ], and we will call them DDm sequences (Dold differential sequences).
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By p-orbit we mean an orbit with minimal period p.

Definition 2.1. A sequence of integers {cn}∞n=1 is called a DDm(p) sequence

if there exists an open set U ⊂ Rm, a C1 map φ : U → Rm, and an isolated p-orbit

P of φ such that cn = ind(φn, P ). (Notice that cn = 0 if n is not a multiple of p).

For a given positive integer r, the finite sequence {cn}n|r is called a DDm(p|r)
sequence if cn = ind(φn, P ) for all n > 0 such that n|r.

For a fixed integer r ≥ 1, we define Dm
r [f ] as the minimal decomposition of

the sequence of Lefschetz numbers of iterations into DDm(p|r) sequences.

Definition 2.2. Let {L(fn)}n|r be a finite sequence of Lefschetz numbers.

We decompose {L(fn)}n|r into the sum:

L(fn) = c1(n) + . . .+ cs(n),

where ci is a DDm(li|r) sequence for i = 1, . . . , s. Each such decomposition

determines the number l = l1 + . . . + ls. We define the number Dm
r [f ] as the

smallest l which can be obtained in this way.

It turns out that Dm
r [f ] is a topological invariant equal to the minimal num-

ber of r-periodic points in the smooth homotopy class of f . The reader may

consult [5] for topological background related to the construction of the inva-

riant.

Theorem 2.3 ([7]). Let M be a closed smooth compact connected and simply-

connected manifold of dimension m ≥ 3, and let r ∈ N. Then

Dm
r [f ] = min{#Fix(gr) : g

s∼ f}.

Note that it was proved in [5] that for m ≥ 4, one may equivalently use

DDm(1|r) sequences in Definition 2.2 of Dm
r [f ].

Definition 2.4. Let k > 0 be an integer. The basic sequence regk(n) is

defined as

regk(n) =

k if k | n,
0 if k - n.

The Lefschetz numbers of iterations (and also sequences of indices of iter-

ations) can be represented in the form of so-called periodic expansion, as an

integral combination of basic periodic sequences (cf. [14]); namely:

L(fk) =

∞∑
k=1

bkregk(n), where bn =
1

n

∑
k|n

µ(k)L(f (n/k)),

and µ : N→ Z is the Möbius function defined by the following three properties:

µ(1) = 1, µ(k) = (−1)s if k is a product of s different primes, µ(k) = 0 otherwise.

Note that all the coefficients bn are integers (cf. [1], [2]).
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Let us fix a natural number r. For the divisors of r, we represent the sequence

of Lefschetz numbers of iterations in the form of periodic expansion

L(fn) =
∑
k|r

bkregk(n).

In the remainder of the paper, we are going to work under the following

Standing Assumptions.

(I) f : M → M is a smooth self-map of a smooth closed connected and

simply-connected m-manifold M , where m ≥ 4.

(II) r is odd and bk 6= 0 for all k 6= 1 dividing r.

All the forms of DDm(1) sequences were determined in [10], [11] (cf. also [3]).

The comparison of the periodic expansion of {L(fn)}n|r (for f satisfying our

Standing Assumptions (I) and (II)) with the periodic expansions of DDm(1)

sequences, makes it possible to determine a purely combinatorial formula for

Dm
r [f ].

3. Statement of the combinatorial problem

We use the combinatorial framework introduced in [5] in order to estimate

the invariant Dm
r [f ]. It is important to note that the only data that we need for

that purpose is the following:

Input data: r > 0 (odd), m ≥ 4 and b1 = L(f), all integers.

This input is preprocessed as follows. Define s > 0 such that m = 2s if m

is even or m = 2s+ 1 otherwise. Find a decomposition of r into the product of

prime numbers, that is, find a set of distinct prime numbers p1, . . . , pl (l > 0)

such that r = pa11 · . . . · p
al
l , where ai > 0 for all i ∈ {1, . . . , l}. Note that after

a rearrangement (if necessary), there exists w ∈ {0, . . . , l} such that ai > 1 if

i ≤ w and ai = 1 if i > w; in other words, r = pa11 · . . . · paww · pw+1 · . . . · pl. After

this preprocessing, the following data is passed for the algorithmic procedures:

Combinatorial input: s > 1, a1, . . . , al > 0, all integers.

The combinatorial procedure for finding an upper estimate d for Dm
r [f ] is

based on Definition 4.1 of an (s, a1, . . . , al, v)-collection as well as Definition 4.2

of a sharp (s, a1, . . . , al, v)-collection, and also on Theorem 3.2. The core Algo-

rithm 5.1 makes an attempt to construct a possibly small (in terms of minimiz-

ing v) (s, a1, . . . , al, v)-collection (but not necessarily optimal), and to try keep

it a sharp collection if possible. Note that b1 is not part of the input of this

algorithm, but is used later for the interpretation of its output. The algorithm

returns the following quantities:

Combinatorial output: An integer v > 0 and a binary value h ∈ {true,

false}, such that an (s, a1, . . . , al, v)-collection (see Definition 4.1) exists, and
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h = true if a sharp (s, a1, . . . , al, v)-collection (see Definition 4.2) was found or

h = false if the existence of such a sharp collection was not confirmed.

The following function translates the combinatorial output combined with

the input data to an upper bound d > 0 for Dm
r [f ] as follows:

Definition 3.1. Letm ≥ 4, b1, and v > 0 be integers. Let h∈{true, false}.
Define α(v, h,m, b1) as follows:

(a) If m is even:

If h = true or |b1| = v then α(v, h,m, b1) := v,

otherwise α(v, h,m, b1) := v + 1.

(b) If m is odd:

If h = true or |b1| ≤ v then α(v, h,m, b1) := v,

otherwise α(v, h,m, b1) := v + 1.

Output data: d := α(v, h,m, b1).

Theorem 3.2 (see Theorem 5.5 in [5]). Let v0 be the smallest integer such

that there exists an (s, a1, . . . , al, v)-collection (see Definition 4.1), and h0 = true

if and only if there exists a sharp (s, a1, . . . , al, v)-collection (see Definition 4.2).

Then Dm
r [f ] = α(v0, h0,m, b1).

Corollary 3.3. The number d = α(v, h,m, b1) is an upper bound for Dm
r [f ].

In addition to the upper bound d for Dm
r [f ], we take into account the fol-

lowing estimates:

Theorem 3.4 (see Theorem 6.6 in [5]). If l ≥ s and ai = 1 for all i ∈
{1, . . . , l}, that is, if r is a product of l distinct odd prime numbers, then define

two integers: k ≥ 0 and R ∈ {1, . . . , s}, such that l = ks + R. Then v0 =

(2l − 2R)/(2s − 1) + 1, and h0 = true if and only if s - l.

Theorem 3.5 (see Theorem 7.3 in [5]). Assume that r = pa11 · . . . ·paww ·pw+1 ·
. . . · pl, where w + s ≤ l. Denote the smallest integer greater than or equal to x

by dxe; this is so-called ceiling function. Then G ≤ v0 ≤ G+H, where

G = d(2w + (a1 + 1) · . . . · (aw + 1) · (2l−w − 1)− 1)/(2s − 1)e,

H = (a1 + 1) · . . . · (aw + 1)− 2w + d((a1 + 1) · . . . · (aw + 1)− 2w)/se.

Theorem 3.6 (see Lemma 7.1 in [5]).

v0 ≥ d((a1 + 1) · . . . · (al + 1)− 1)/(2s − 1)e.

4. Notation and definitions

Denote the set of natural numbers including 0 by N0. The cardinality of

a set A will be denoted by #A.
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A multiset is a generalization of a set which allows each element to appear

a specific number times. Formally, a multiset A may be defined as a function

A : I → N0, where I is some underlying domain. We say that a ∈ A if a ∈ I and

A(a) > 0. The multiplicity of a in A is either 0 if a /∈ I or A(a) otherwise. If

the multiplicity of a in A is positive then we say that a is an element of A and

we denote this as a ∈ A.

The notion of a multiset is very natural do describe (positive) primary factors

of a positive integer number. For example, 6125 = 5 · 5 · 5 · 7 · 7, so the primary

factors of 6125 can be informally denoted as {5, 5, 5, 7, 7}, which corresponds to

the multiset f : {5, 7} → N0 such that f(5) = 3 and f(7) = 2.

If we consider multisets in a fixed (large) domain D then it is convenient

to restrict our attention to functions D → N0. In other words, for I ⊂ D,

each multiset A : I → N0 can be extended to a function D → N0 by letting

A(a) := 0 for a ∈ D \ I. The common domain of all the multisets that are under

consideration simplifies formal definitions.

The union A∪B of multisets A : D → N0 and B : D → N0 is another multiset

C : D → N0 in which each element of A and B appears with the multiplicity

that is the maximum of the multiplicities with which it appears in A and in B.

Formally, C(a) := max{A(a), B(a)}. The union of multisets of primary factors

of two integer numbers is a multiset of their least common multiple.

We say that a multiset A : D → N0 is a subset of B : D → N0 if A(a) ≤ B(a)

for all a ∈ D. The multiset of (positive) primary factors of a positive integer x

is a subset of the multiset of primary factors of another positive integer y if and

only if x divides y.

We shall use the terms “family” and “collection” in the meaning of “set” in

order to indicate the following gradation: a set of multisets will be called a family

of multisets, and a set of families of multisets will be called a collection of families

of multisets (which sounds much better than a set of sets of multisets).

If A is a family of sets then the union of these sets will be denoted by⋃
A =

⋃
B∈A

B.

All the sets and multisets that appear in the algorithms are assumed to be finite,

even if this is not written explicitly.

In what follows, we shall assume D := N0 for all multisets, and we shall

explicitly define multisets on subsets of N0 to make it clear which elements may

appear in the multisets with positive multiplicity.

Let l > 0 be an integer. Given positive integers a1, . . . , al, denote the multiset

C : {1, . . . , l} 3 p 7→ ap ∈ N0 by C(a1, . . . , al), or by C alone if the numbers

a1, . . . , al are clear from the context.
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Definition 4.1. Let s, a1, . . . , al, and v be positive integers (l > 0). An

(s, a1, . . . , al, v)-collection is a collection A1, . . . , Av of families of multisets

Bkj : {1, . . . , l} → N0, Bkj ∈ Aj , k = 1, . . . ,#Aj ,

where #Aj ≤ s, j = 1, . . . , v, such that for every multiset C ⊂ C(a1, . . . , al)
there exists i ∈ {1, . . . , v} and a subset D of Ai such that C =

⋃
D.

Definition 4.2. An (s, a1, . . . , al, v)-collection is called sharp if #Ai < s for

some i ∈ {1, . . . , v}.

Denote the set of all the permutations of {1, . . . , k}, where k > 0 is an integer,

by P(k).

5. Algorithmic approach to solving the combinatorial problem

Computation of the smallest number v0 for which there exists an (s, a1, . . . ,

al, v0)-collection, and also determining whether there exists a sharp (s, a1, . . . ,

al, v0)-collection or not, seems to be a highly nontrivial task, even for small va-

lues of the parameters. Checking all the possible combinations of collections of

families of multisets and determining which of them satisfy the desired conditions

is beyond computation due to the huge number of such combinations. There-

fore, we provide an algorithmic method for constructing some (s, a1, . . . , al, v)-

collection, possibly small, but not necessarily optimal.

5.1. The greedy strategy. Our construction is based upon the “greedy”

strategy. The idea is to consider all the possible non-empty multisets contained

in C(a1, . . . , al), one by one, and to build the collection A = {A1, . . . , Av} grad-

ually. At each step, a multiset C is considered, and a previously constructed

collection is modified (if necessary) so that there exists an i ∈ {1, . . . , v} and

a subset D of Ai such that C =
⋃
D. The undeniable advantage of the greedy

strategy is that it turns a computationally expensive problem of checking all

the possibilities into a step-by-step approach, in which a solution is constructed

gradually. A disadvantage of such an approach is that even if the modifications

are optimal at each step, the final result may not be optimal.

Technically, the family of all the non-empty multisets which are subsets of C
can be easily constructed, e.g. by iterating a set of l counters that would count

the multiplicity of the corresponding elements from 0 to ap. Let S denote the

number of all the possible multisets of C.
Since the order in which the multisets C1, . . . , CS ⊂ C are taken may have

profound effect on the result achieved by a greedy-style algorithm, it is worth

to consider several different orders (e.g. using some randomization) and run the

algorithm on each re-ordered sequence of the multisets. (See also Conjecture 5.5.)
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The problem of modifying the collection A constructed so far in order to

have a specific additional multiset C ⊂ C represented by means of the union of

a subset of one of the sets in the collection A may also be solved in several ways.

The algorithm should aim at minimizing the size of A. A simple solution which

we propose is to add the set C to one of the sets if there is one whose size does

not yet exceed s, or to add a new set {C} to the collection. However, a more

effective algorithm might make more thorough modifications of the collection

constructed so far, but it must preserve the condition that all the previously

processed multisets are still represented, each as the unions of some subsets of

one of the sets in the collection.

5.2. The algorithms. We introduce a sequence of algorithms that com-

bined together provide a method for automatic construction of a possibly small

(s, a1, . . . , al, v)-collection. Pseudo-code of each algorithm is preceded by its out-

line and brief explanation of its purpose.

Algorithm 5.1 below computes a possibly small upper bound v for the number

v0 and a corresponding indicator h of whether a sharp collection was found. This

algorithm depends on a method for constructing a family of all the non-empty

multisets contained in a given multiset, which is straightforward, and on the

procedure ConstructCollection that constructs an (s, a1, . . . , al, v)-collection,

which is discussed in the sequel (see Algorithm 5.2). As an input, it takes the

parameters of the desired (s, a1, . . . , al, v)-collection, and a set of permutations

which are used for different runs of the construction procedure. The algorithm

returns the upper bound v for v0 that can be inferred from the constructed

collections, and the corresponding indicator h.

Algorithm 5.1 (Procedure ComputeUpperBound).

Input:

n > 0, a1, . . . , al > 0 – integers;

I ⊂ P(S) – a non-empty set of permutations of {1, . . . , S}, where S is

the number of all the non-empty multisets contained in C(a1, . . . , al);
Pseudocode:

construct an ordered family (C1, . . . , CS) of all the non-empty

multisets contained in C(a1, . . . , al);
for each ρ ∈ I do

Aρ := ConstructCollection (s, Cρ(1), . . . , Cρ(S));

v := min{#Aρ | ρ ∈ I};
h := true iff there exists ρ ∈ I such that #Aρ = v

and there exists A ∈ Aρ such that #A < s;

Output:

v – an integer number;

h ∈ {true, false}.
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Algorithm 5.2 which follows is a greedy framework for constructing an (s, a1,

. . . , al, v)-collection, given an ordered family of all the non-empty multisets that

are contained in C(a1, . . . , al). It depends on the procedure ProcessMultiset,

discussed below (see Algorithm 5.3), that processes a single multiset in that

ordered family and modifies the collection A if necessary. The algorithm returns

an (s, a1, . . . , al, v)-collection constructed on the basis of the input data.

Algorithm 5.2 (Procedure ConstructCollection).

Input:

s > 0 – natural numbers;

C1, . . . , Cq : {1, . . . , l} → N0 – multisets;

Pseudocode:

A := ∅;
for i := 1 to q do

A := ProcessMultiset (A, s, Ci);

Output:

A – a collection of families of multisets.

Algorithm 5.3 is the core of the greedy approach to the problem. It performs

one step of the overall algorithm. It analyzes a collection A = {A1, . . . , Av}
of families of multisets and verifies whether it contains a family Ai, with i ∈
{1, . . . , v}, such that the union of one of its subsets D ⊂ Ai equals the given

multiset C (which is assumed to be a subset of C(a1, . . . , al)). This verifica-

tion can be easily done by checking all the possible subsets of each of the sets

in A, although it might also be done in a slightly more efficient way. If the

collection A does not contain such a family then the algorithm runs the pro-

cedure ModifyCollection (see Algorithm 5.4) that modifies A in such a way

that this condition is satisfied for this and for all the previously queried multi-

sets. This procedure may modify the sets Ai ∈ A or may add new sets to the

collection A, but it must preserve the condition #A ≤ s for all A ∈ A.

Algorithm 5.3 (Procedure ProcessMultiset).

Input:

A – a collection of families of multisets;

s > 0 – an integer such that #A ≤ s for all A ∈ A;

C ⊂ C(a1, . . . , al) – a multiset;

Pseudocode:

for each A ∈ A do

if C =
⋃
D for some D ⊂ A then return B := A;

B := ModifyCollection (A, s, C);

Output:

B – a collection of families of multisets;
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Algorithm 5.4 implements the procedure ModifyCollection in the simplest

possible way, and it adds C to Av if #Av < s, or adds Av+1 := {C} to the

collection A otherwise. Note that there is a lot of room for improvement here,

but we do not discuss the details in this paper.

Algorithm 5.4 (Procedure ModifyCollection).

Input:

A = {A1, . . . , Av} – a collection of families of multisets;

s > 0 – an integer such that #A ≤ s for all A ∈ A;

C ⊂ C(a1, . . . , al) – a multiset;

Pseudocode:

if #Av < s then

B := {A1, . . . , Av ∪ {C}};
else

B := {A1, . . . , Av, {C}};
Output:

B – a collection of families of multisets;

5.3. Optimality of the result. Although the strategy suggested in Algo-

rithm 5.4 is very simple and straightforward, we speculate that it may actually

provide the optimal result if one tries applying it to all the non-empty subsets

of C(a1, . . . , al) in all the possible orders.

Conjecture 5.5. Algorithms 5.1–5.4 called with I = P(l), provide the

smallest possible integer v0 for which there exists a (s, a1, . . . , al, v0)-collection.

Moreover, if there exists a sharp (s, a1, . . . , al, v0)-collection then the algorithms

return h = true.

Unfortunately, even if Conjecture 5.5 was true, this fact would only have

a purely theoretical meaning, because the cost of doing the computation for all

the possible permutations of the family of all the non-empty multisets contained

in C(a1, . . . , al) is prohibitive even for relatively small input data.

6. Software implementation and examples

The algorithms discussed in Section 5 have been implemented in the C++

programming language and are publicly available at the address http://www.

pawelpilarczyk.com/combtop/. We first briefly discuss the features of the soft-

ware, and then show some results of its application.

The main program is called minper and its purpose is to construct a possibly

small and sharp (s, a1, . . . , al, v)-collection using the algorithms introduced in

Section 5, so as to minimize the upper bound d for Dm
r [f ] obtained in the output.



Algorithmic Estimates for Periodic Points 283

The program also computes the other bounds given in Theorems 3.4, 3.5

and 3.6 whenever applicable, and in this way provides complete information on

the reliable estimates for the invariant Dm
r [f ] that are discussed in this paper.

s a1, . . . , al result known bounds time [sec]

2 1, 1, 1, 2 9, true 8 ≤ v ≤ 10 0.54

2 1, 1, 2 4, false 4 ≤ v ≤ 6 0.14

2 4, 4, 4, 4 259, false 208 ≤ v 299

3 1, 1, 1, 4 9, true 6 ≤ v ≤ 10 1.70

3 1, 1, 3 3, true 3 ≤ v 0.28

3 4, 4, 4, 4 149, true 90 ≤ v 365

4 1, 1, 4 2, false 2 ≤ v 0.58

4 2, 3, 3, 4 38, true 16 ≤ v 84.3

4 4, 4, 4, 4 103, true 42 ≤ v 554

5 1, 2, 2, 2 4, true 2 ≤ v 6.91

5 1, 3 1, true 1 ≤ v 0.00

5 4, 4, 4, 4 75, true 21 ≤ v 849

6 2, 2, 2, 2 4, true 2 ≤ v 25.1

6 2, 2, 4 2, false 1 ≤ v 7.58

6 2, 3, 3 3, false 1 ≤ v 8.53

7 1, 1, 1, 2 1, true 1 ≤ v 0.00

7 1, 1, 4, 4 4, false 1 ≤ v 64.9

7 4, 4, 4 7, true 1 ≤ v 96.4

8 1, 2, 3, 4 2, false 1 ≤ v 157

8 2, 3, 4, 4 10, true 2 ≤ v 924

8 3 1, true 1 ≤ v 0.00

9 2, 2, 2, 4 2, true 1 ≤ v 338

9 3, 3, 3, 3 6, true 1 ≤ v 1171

9 3, 4, 4, 4 11, true 1 ≤ v 4344

Table 1. Results obtained by the program for sample values of s ≥ 2 and

a1, . . . , al > 0 using 10,000 pseudo-random permutations, together with
bounds known from Theorems 3.5 and 3.6, and the computation time

The source code is compatible with the GNU C++ compiler for optimal

portability and can be compiled with ease; precompiled binaries for a few systems

are also provided. The program minper is a command-line utility, that is, it must

be run from a text terminal emulator (a.k.a. command prompt). The program

accepts different forms of input parameters, either the general input (m ≥ 4,
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r > 0 odd, and b1), or the combinatorial input (s > 1, a1, . . . , al > 0), or

a combination of both (m ≥ 4, a1, . . . , al > 0, and optionally b1).

The program generates all the non-empty multisets contained in C(a1, . . . , al)
and can either take all the permutations of these multisets (which is feasible for

small numbers only), run the construction procedure for the identity permutation

only, or use pseudo-random permutations (their number can be requested at

program’s launch).

s l computed known

2 2 1, false 1, false

2 3 3, true 3, true

2 4 6, true 5, false

2 5 11, false 11, true

2 6 24, true 21, false

2 7 50, false 43, true

2 8 104, false 85, false

3 3 1, false 1, false

3 4 3, true 3, true

3 5 6, true 5, true

3 6 14, true 9, false

3 7 30, true 19, true

3 8 61, true 37, true

4 4 1, false 1, false

4 5 3, false 3, true

4 6 7, false 5, true

4 7 15, false 9, true

4 8 31, false 17, false

5 5 1, false 1, false

5 6 3, false 3, true

5 7 7, false 5, true

5 8 15, false 9, true

6 6 1, false 1, false

6 7 3, false 3, true

6 8 7, false 5, true

7 7 1, false 1, false

7 8 3, false 3, true

8 8 1, false 1, false

Table 2. Results obtained by the program for a1 = . . . = al = 1 and l ≥ s,

where l ∈ {1, . . . , 8} and s ∈ {2, . . . , 8}
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Depending on the information provided on the input, the program either

shows the combinatorial output v > 0 and h alone, or also displays an upper

bound d on Dm
r [f ] that follows from Corollary 3.3. The amount of information

shown by the program can be easily controlled by setting the verbosity parame-

ter. Technical description of the program (such as the command line syntax) is

provided at the project’s website.

Table 1 shows a few selected results obtained by the program, in comparison

with the bounds known from Theorems 3.5 and 3.6. 10,000 pseudo-random

permutations were passed to Algorithm 5.1, or all the possible permutations if

their number was smaller than 10,000. Computations were conducted for all the

values of s ∈ {2, . . . , 9}, l ∈ {1, . . . , 4}, and ai ∈ {1, . . . , 4} for all i = 1, . . . , l.

Due to the huge amount of collected data, only a few representative results

are included in Table 1, and a complete summary of these computations as well

as the actual information displayed by the program is available from the project’s

website. The number v computed by the program was always within the bounds

provided by Theorems 3.5 and 3.6. The computation time given in the table was

measured on a relatively modern PC (Quad-Core AMD OpteronTM Processor

8360 SE at 2.5 GHz).

Table 2 illustrates results obtained by the program in the case in which r is

a product of distinct primes and l ≥ s, and thus the exact answer is known by

Theorem 3.4. 10,000 pseudo-random permutations were passed to Algorithm 5.1,

or all the possible permutations if their number was smaller than 10,000.

A comparison of known and computed values indicates that in many cases the

number of pseudo-random permutations considered was not satisfactory. Since

it was in fact a tiny fraction of the number of all the possible permutations, this

does not yet suggest that Conjecture 5.5 is false. Unfortunately, the huge number

of all the permutations makes it practically impossible to refute Conjecture 5.5

by brute force method (checking all the permutations).
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[15] J. Llibre, J. Paranõs and J. A. Rodriguez, Periods for transversal maps on compact

manifolds with a given homology, Houston J. Math. 24 (1998), 397–407.

Manuscript received January 6, 2014

Grzegorz Graff
Faculty of Applied Physics and Mathematics
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