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ON THE SPACE OF EQUIVARIANT LOCAL MAPS

Piotr Bartłomiejczyk

Abstract. We introduce the space of equivariant local maps and present
the full proof of the splitting theorem for the set of otopy classes of such
maps in the case of a representation of a compact Lie group.

Introduction

The notion of equivariant local maps appears first [8] and, independently,
in [9]. The space of equivariant proper maps is introduced in [8] and [4]. In [7]
authors introduce the topology on the set of local maps in the nonequivariant
case. By the exponential law, this topology allows one to interpret otopies, which
generalize homotopies, as paths in the space of local maps and, in consequence,
to identify otopy classes of local maps with path-components of this space. In
this paper we introduce and study the space of equivariant local maps. It is
worth pointing out that the main motivation for studying the space of local
maps (both in the equivariant and the nonequivariant case) is that it forms the
natural environment for the topological degree theories (see [4]–[7] for details).
For most of the paper, we restrict ourselves to the case of a representation of
a compact Lie group.

The organization of the paper is as follows. Section 1 presents some prelim-
inaries. In Section 2 we introduce the space of equivariant local maps, prove
the exponential law for such maps and show that the inclusion of the space of
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equivariant proper maps into the space of equivariant local maps is a weak ho-
motopy equivalence. In Section 3 we prove that for free actions of compact Lie
groups of positive dimension the set of otopy classes is trivial. Section 4 contains
some facts concerning equivariant tubular neighbourhoods which will be needed
in the next section. In Section 5 we establish a natural decomposition of the set
of otopy classes of equivariant local maps with respect to a maximal orbit type.
This decomposition result appears implicitly in [4] and explicitly in [10]. As the
proofs given there are rather sketchy in some parts, we present here the full proof
of this result. Finally, in Section 6 we prove the splitting theorem for the set of
path-components of the space of equivariant (proper) local maps. Let us note
that results of this type are well-known in the equivariant homotopy theory (see
for example [1], [11]).

1. Preliminaries

The notation A b B means that A is a compact subset of B. For a topological
space X, let τ(X) denote the topology on X. Recall that if A, B are topological
spaces, then Map(A,B) denotes the set of all continuous maps of A into B

equipped with the usual compact-open topology i.e. having as subbasis all the
sets Γ(C,U) = {f ∈ Map(A,B) | f(C) ⊂ U} for C b A and U open in B.
For any pointed topological spaces A and B, let Map∗(A,B) be the subspace of
Map(A,B) consisting of all base-point preserving maps.

For any topological spaces X and Y , letM(X,Y ) be the set of all continuous
maps f : Df → Y such that Df is an open subset of X. Let R be a family of
subsets of Y . We define

Loc(X,Y,R) := {f ∈M(X,Y ) | f−1(R) b Df for all R ∈ R}.

We introduce a topology in Loc(X,Y,R) generated by the subbasis consisting of
all sets of the form

• H(C,U) := {f ∈ Loc(X,Y,R) | C ⊂ Df , f(C) ⊂ U} for C b X and
U ∈ τ(Y ),

• M(V,R) := {f ∈ Loc(X,Y,R) | f−1(R) ⊂ V } for V ∈ τ(X) and R ∈ R.

Elements of Loc(X,Y,R) will be called local maps. The natural base point of
Loc(X,Y,R) is the empty map. The set-theoretic union of two local maps f and
g with disjoint domains will be denoted by f t g. We define the space of proper
maps Prop(X,Y ) to be Loc(X,Y,K), where K = {K | K b Y }. Moreover, in the
case when R = {{y}} we will write Loc(X,Y, y) omitting double curly brackets.

Recall that the formula {[θ(f)](z)}(x) = f(z, x), where f is a function of
Z × X to Y , defines a one-to-one correspondence θ between the set of all (not
necessarily continuous) functions of Z × X to Y and the set of all functions
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of Z to the set of all functions of X to Y . This correspondence is called the
exponential function.

The following result called the exponential law for local maps was proved
in [7, Theorem 3.1]. Recall that Z∗ denotes the Alexandrov one-point compacti-
fication of Z.

Theorem 1.1. If Z and X are locally compact Hausdorff, then the exponen-
tial function

θ : Loc(Z ×X,Y,R)→ Map∗(Z∗,Loc(X,Y,R))

is a homeomorphism.

Assume V is a real finite dimensional orthogonal representation of a compact
Lie group G and H is a closed subgroup of G. Recall that Gx={g∈G | gx=x},
(H) stands for a conjugacy class of H and WH = NH/H, where NH is a nor-
malizer of H in G. Let Ω be an open invariant subset of V . We define the
following subsets of Ω:

ΩH = {x ∈ Ω | H ⊂ Gx},

ΩH = {x ∈ Ω | H = Gx},

Ω(H) = {x ∈ X | (H) = (Gx)}.

Let

Φ(G) = {(H) | H is a closed subgroup of G},

Iso(Ω) = {(H) ∈ Φ(G) | Ω(H) 6= ∅}.

The set Iso(Ω) is partially ordered. Namely, (H) ≤ (K) if H is conjugate to
a subgroup of K. Throughout the paper we will make use of the following well-
known facts (most of them are true in more general setting):

• Iso(Ω) is finite,
• WH is a compact Lie group,
• V H is a linear subspace of V and orthogonal representation of WH,
• the action of WH on ΩH is free,
• ΩH is open and dense in ΩH ,
• Ω(H) is a G-invariant submanifold of Ω,
• Ω(H) = GΩH and ΩH is closed in Ω(H),
• if (H) is maximal in Iso(Ω) then Ω(H) is closed in Ω.

2. Spaces of local and proper G-maps

Assume that G is a topological group and X, Y are two G-spaces. We will
denote by MapG(X,Y ) the subset of Map(X,Y ) consisting of all maps f such
that

f(gx) = gf(x) for all x ∈ X and g ∈ G
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endowed with the relative topology. Elements of MapG(X,Y ) are called equi-
variant maps or G-maps. Moreover, if G-spaces X and Y are pointed then
Map∗G(X,Y ) denotes the subspace of MapG(X,Y ) consisting of all base-point
preserving maps. Similarly, let LocG(X,Y,R) (resp. PropG(X,Y )) be the sub-
space of Loc(X,Y,R) (resp. Prop(X,Y )) consisting of equivariant maps with
invariant domains and equipped with the induced topology.

Elements of LocG(X,Y,R) will be called equivariant local maps or local G-
maps. Assume that G acts diagonally on Cartesian products of spaces and by
conjugation on all mapping spaces. That is, for a map f and g ∈ G we define
g · f by (g · f)(x) = gf(g−1x).

The next result is an immediate consequence of Theorem 1.1.

Theorem 2.1. Assume that X, Y , Z are G-spaces. If Z and X are locally
compact Hausdorff, then the exponential function

θ : LocG(Z ×X,Y,R)→ Map∗G(Z∗,LocG(X,Y,R))

is a G-homeomorphism.

Corollary 2.2. Assume that X, Y , Z are G-spaces. If Z is compact Haus-
dorff and X is locally compact Hausdorff, then the exponential function

θ : LocG(Z ×X,Y,R)→ MapG(Z,LocG(X,Y,R))

is a G-homeomorphism.

Remark 2.3. It is worth pointing out that in this paper, in fact, we use the
above results only in the case when G acts trivially on Z. Observe that in this
case we have

Map∗G(Z∗,LocG(X,Y,R)) = Map∗(Z∗,LocG(X,Y,R)),

MapG(Z,LocG(X,Y,R)) = Map(Z,LocG(X,Y,R)).

Assume V is a real finite dimensional orthogonal representation of a compact
Lie group G. Throughout the paper Rk denotes a trivial representation of G.
Let Ω be an open invariant subset of Rk ⊕ V .

Let us introduce the following notation:

FG(Ω) := LocG(Ω, V, 0), PG(Ω) := PropG(Ω, V ).

Let I = [0, 1]. We assume that the action of G on I is trivial. Any element of
LocG(I×Ω, V, 0) is called an otopy and any element of PropG(I×Ω, V ) is called
a proper otopy. By Corollary 2.2, each otopy (resp. proper otopy) corresponds
to a path in FG(Ω) (resp. PG(Ω)) and vice versa.

Given a (proper) otopy h : Λ ⊂ I × Ω→ V we can define for each t ∈ I sets
Λt = {x ∈ Ω | (t, x) ∈ Λ} and maps ht : Λt → V with ht(x) = h(t, x). Note that
from the above ht may be the empty map. If h is a (proper) otopy, we say that
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h0 and h1 are (proper) otopic. Of course, (proper) otopy gives an equivalence
relation on FG(Ω) (PG(Ω)). The set of (proper) otopy classes will be denoted by
FG[Ω] (PG[Ω]). Observe that if f ∈ FG(Ω) and V is an open invariant subset of
Df such that f−1(0) ⊂ V , then f and f |V are otopic. In particular, if f−1(0) = ∅
then f is otopic to the empty map.

Observe that, by Theorem 2.1, there are natural homeomorphisms

(2.1) FG(Rm × Ω) ≈ Ωm(FG(Ω)) and PG(Rm × Ω) ≈ Ωm(PG(Ω)),

and, in consequence, isomorphisms

(2.2) FG[Rm × Ω] ≈ πm(FG(Ω)) and PG[Rm × Ω] ≈ πm(PG(Ω)).

In particular, FG[Ω] ≈ π0(FG(Ω)) and PG[Ω] ≈ π0(PG(Ω)).
We omit the proof of the next proposition, since it is very similar to the proof

of Proposition 5.1 in [7]. The crucial observation here is that that all otopies
that appear in that proof are equivariant if so are the respective maps.

Proposition 2.4. Let Ω be an open invariant subset of Rk ⊕ V . Then the
map PG[Ω]→ FG[Ω] induced by the inclusion is a bijection.

We can now formulate the main result of this section.

Theorem 2.5. Let Ω be an open invariant subset of Rk ⊕ V . Then the in-
clusion PG(Ω) ↪→ FG(Ω) is a weak homotopy equivalence.

Proof. Using (2.1), (2.2) and Proposition 2.4 and repeating the reasoning
used in the proof of Theorem 5.1 in [7], we are done. �

Remark 2.6. Let us denote by Map∗G(Sk+V , SV ) the space of pointed equi-
variant maps between representation spheres i.e. one-point compactifications of
representations Rk ⊕ V and V , respectively. The set of G-homotopy classes of
such maps will be denoted by [Sk+V ;SV ]∗G. Observe that the function

κ : PG(Rk ⊕ V )→ Map∗G(Sk+V , SV )

given by κ(f) := f+, where

f+(x) =

f(x) if x ∈ Df ,

∗ otherwise,

establishes a natural homeomorphism

PG(Rk ⊕ V ) ≈ Map∗G(Sk+V , SV ).

By the above and Proposition 2.4, we obtain the following sequence of bijections

(2.3) FG[Rk ⊕ V ] ≈ PG[Rk ⊕ V ] ≈ [Sk+V ;SV ]∗G.
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3. Free actions of compact Lie groups of positive dimension

Assume V is a real finite dimensional orthogonal representation of a compact
Lie group G. The following result is an immediate consequence of Proposition 3.2
and Theorem 3.4, which will be proved below.

Theorem 3.1. If dimG > 0, Ω is an open invariant subset of V and G acts
freely on Ω then the set FG[Ω] has a single element.

All manifolds considered are without boundary. Assume that E and M are
smooth (i.e., C1) manifolds of dimensions q and m respectively and p : E → M

is a smooth vector bundle of rank n. We will identify M with the zero section
of E. A local cross section of a bundle p : E →M is a continuous map s : U → E,
where U is open inM , s−1(M) is compact and p◦s = idU . Let Γloc(M,E) denote
the set of all local cross sections of E over M . A fiber otopy is a continuous map
h : Λ→ E such that Λ is open in I ×M , h−1(M) is compact and p(h(t, x)) = x

for all (t, x) ∈ Λ. Let s′, s′′ ∈ Γloc(M,E). We say that s′ and s′′ are fiber
otopic provided there is a fiber otopy h such that h0 = s′ and h1 = s′′, where
ht(x) = h(t, x). Let Γloc[M,E] denote the set of fiber otopy classes of local cross
sections of p : E →M .

Proposition 3.2. If n > m then Γloc[M,E] has a single element.

Roughly speaking, the proof of Proposition 3.2 is based on two simple obser-
vations

• under our assumption on dimensions a generic section does not meet the
zero section,

• a section with no zeroes is fiber otopic to the empty section.

In this proof we will need the following transversality result for sections of
a smooth vector bundle, which can be easily derived from the transversality
theorem for maps.

Lemma 3.3. Arbitrarily close (in the C1 sense) to any smooth local cross
section of a smooth vector bundle there exists a local cross section. which is
transverse to to the zero section.

Proof of Proposition 3.2. Let [s] ∈ Γloc[M,E]. Without loss of genera-
lity we can assume that s is smooth. Notice that it suffices to show that s is fiber
otopic to a nowhere vanishing local cross section, because any nowhere vanishing
local cross section is fiber otopic to the empty section. It follows from Lemma 3.3
that there is a smooth local cross section s̃ which is transverse to the zero section
and C1-close to s (so fiber otopic to s). By the definition of transversality and
the assumption on dimensions, s̃−1(M) is empty, which completes the proof. �
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Let Ω be an open invariant subset of V , G acts freely on Ω, M := Ω/G,
E := (Ω× V )/G. The trivial vector bundle Ω× V → Ω factorizes to the vector
bundle p : E →M with the typical fiber F = Rn. We omit the proof of the next
result since it is very similar to that of Proposition 7.2 in [12].

Theorem 3.4. The function Φ: FG(Ω) → Γloc(M,E) given by Φ(f) := sf ,
where sf ([x]) := [x, f(x)], is bijective. Moreover, Φ induces a bijection between
FG[Ω] and Γloc[M,E].

Remark 3.5. It is easy to see that the above theorem also holds if Ω is an
open invariant subset of Rk ⊕ V with trivial action of G on Rk and free action
of G on Ω.

The following slight generalization of Theorem 3.1 follows immediately from
Proposition 3.2 and Remark 3.5.

Theorem 3.6. If dimG > k and Ω is an open invariant subset of Rk ⊕ V
(G acts trivially on Rk) and G acts freely on Ω then the set FG[Ω] has a single
element.

4. Equivariant tubular neighbourhoods

Let V be real finite dimensional orthogonal representation of a compact
Lie group G. Assume that M is a G-invariant submanifold of V . Let Nx :=

(TxM)⊥ ⊂ V . Let us denote by ν(M) the normal bundle i.e.

ν(M) := {(x, v) | x ∈M, v ∈ Nx} ⊂M × V

and by ν(M, ε) the ε-disc bundle of the normal bundle ν(M) i.e.

ν(M, ε) := {(x, v) ∈ ν(M) | |v| < ε}.

For U ⊂M let Uε denote the set {x+ v | x ∈ U, v ∈ Nx, |v| < ε}. The follow-
ing result is an immediate consequence of the invariant tubular neighbourhood
theorem (see for example section 2.4.3 in [2]).

Lemma 4.1. Let U ⊂ M be open, bounded and invariant. There is ε>0

such that the map n : ν(M, ε)� U → Uε, given by n(x, v) = x + v, is a G-
diffeomorphism.

Remark 4.2. The above lemma guarantees that if ε is small enough then
each element of Uε has a unique representation of the form x+ v, where x ∈ U
and v ∈ Nx.

Lemma 4.3. Let f ∈ FG(Ω) and M = Ω(H). Assume that

• (H) is maximal in Iso(Ω),
• U is open in Df ∩M ,
• n : ν(M, ε)� U → Uε is a diffeomorphism.
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Then, for every (x, v) ∈ ν(M, ε)� U and α ∈ R, if f(x) + αv = 0, then α = 0 or
v = 0.

Proof. Assume that α 6= 0. Let K := Gx. Hence (K) = (H). As x ∈ V K

we have f(x) = −αv ∈ V K . Since V K is a linear subspace of V , v ∈ V K and, in
consequence, x+ v ∈ V K ∩ Uε ⊂ Ω(H) ∩ Uε (the last inclusion follows from the
maximality of (H)). Therefore v = 0 by Remark 4.2. �

5. Separation of zeros of maximal orbit type

Assume V is a real finite dimensional orthogonal representation of a compact
Lie group G and Ω is an open invariant subset of V . In the remainder of this
section we also assume that (H) is maximal in Iso(Ω). The main goal if this
section is to show that, under the above assumptions, there is a natural bijection
between the sets FG[Ω] and FWH [ΩH ]×FG[Ω \Ω(H)]. The naive approach sug-
gests to define this bijection simply by taking the otopy classes of the respective
restrictions i.e. by the formula

[f ] 7→ ([f�Df∩ΩH ], [f�Df\Ω(H)
])

Unfortunately, f�Df\Ω(H)
does need not to be a local G-map. For this reason, we

first have to perturbate the map f within its otopy class so that the restriction
of the perturbation to the set Df \ Ω(H) would be a local G-map. Roughly
speaking, our perturbation does not change f on Ω(H) and separates zeros of
maximal orbit type, which lie on Ω(H), from all other zeros of f . The precise
definition of this bijection requires to introduce some notation and definitions.
Recall that Nx := (TxΩ(H))

⊥ may be identified with a linear subspace of V .
Throughout the rest of this section we will use the following notation. For
a map k : Dk ⊂ V → V and X ⊂ Dk, let

Z(k,X) = {x ∈ X | k(x) = 0},

Zδ(k,X) = {x ∈ X | dist(x, Z(k,X)) < δ}.

Let us define the sets:

Pδ =Zδ(f,Df ∩ Ω(H)),

P εδ = {x+ v | x ∈ Pδ, v ∈ Nx, |v| < ε}

and the homotopy f
s

δ : P 3ε
2δ → V (s ∈ [0, 2ε])

f
s

δ(x+ v) :=


f(x) + v if |v| ≤ 1

2
s,

f(x) + (s− |v|) v
|v|

if
1

2
s ≤ |v| ≤ s,

f

(
x+

3ε

s− 3ε
(s− |v|) v

|v|

)
if s ≤ |v| ≤ 3ε,
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where δ > 0 is chosen so that clΩ(H)
(Z2δ) b Ω(H) and ε > 0 is chosen so that

Z3ε
2δ is a tubular neighbourhood of Z2δ (see Lemma 4.1) and clΩ(Z3ε

2δ ) b Df (see
Figure 1). Note that such δ and ε always exist and if δ and ε satisfy the above
conditions and δ ≥ δ′ ≥ 0 and ε ≥ ε′ ≥ 0, so does δ′ and ε′. In the next definition
we will make use of the following auxiliary function m : Ω(H) → R given by

m(x) =
min{dist(x, Pδ), δ}

δ
.

Finally, we define the homotopy fsδ : Df → V (s ∈ [0, 2ε])

fsδ (z) :=

f(z) if z ∈ Df \ P 3ε
2δ ,

m(x)f(z) + (1−m(x))f
s

δ(z) if z = x+ v ∈ P 3ε
2δ .

P ε
δ

P 3ε
2δ

f−1(0)
Df

Ω(H)

Figure 1. Separation of zeros of maximal orbit type

Remark 5.1. The above construction guarantees that

• f = f0
δ is otopic to f2ε

δ in FG(Ω),
• fsδ �Df∩Ω(H)

= f�Df∩Ω(H)
for all s ∈ [0, 2ε],

• (f2ε
δ � P 2ε

δ
)−1(0) = Z(f,Df ∩ Ω(H)) ⊂ Ω(H) by Lemma 4.3.

Remark 5.2. Observe that both f2ε
δ � P εδ and f2ε

δ �Df\clP εδ
are elements of

FG(Ω) and
[f2ε
δ ] = [f2ε

δ � P εδ t f
2ε
δ �Df\clP εδ

] in FG[Ω].

Let us define the map θ : FG(Ω)→ FWH [ΩH ]×FG[Ω \Ω(H)] by the formula
θ(f) = ([fH ], [f̃ ]), where fH = f�Df∩ΩH and f̃ = f2ε

δ �Df\Ω(H)
.

Lemma 5.3. The map θ is well-defined.

Proof. Since f−1
H (0) = V H ∩ f−1(0) b Df ∩ ΩH , fH ∈ FWH(ΩH). By

Remark 5.1, f̃ ∈ FG(Ω \ Ω(H)). So it suffices to show that the otopy class of
f2ε
δ �Df\Ω(H)

in FG[Ω \ Ω(H)] does not depend on the choice of ε and δ. We can
certainly assume that ε′ ≤ ε and δ′ ≤ δ, since otherwise we replace ε′ and δ′ by
min{ε, ε′} and min{δ, δ′} and repeat our reasoning twice. Under that assumption
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the desired otopy (homotopy) is given by f2εt
δt
�Df\Ω(H)

, where εt = (1− t)ε+ tε′

and δt = (1− t)δ + tδ′. �

Consider the map Θ: FG[Ω] → FWH [ΩH ] × FG[Ω \ Ω(H)] induced by θ on
otopy classes. We can now formulate the main result of this section.

Theorem 5.4. The map Θ is a well-defined bijection.

We have divided the proof of Theorem 5.4 into a sequence of lemmas.

Lemma 5.5. The map Θ is well-defined.

Proof. We have to show that if [f ] = [g] in FG[Ω] then

(1) [fH ] = [gH ] in FWH [ΩH ],
(2) [f̃ ] = [g̃] in FG[Ω \ Ω(H)].

By assumption, there is an otopy h : Λ ⊂ I × Ω → V such that f = h0 and
g = h1. The proof of (1) is straightforward. Namely, let A = Λ ∩ (I × ΩH)

and k = h�A. Then k : A ⊂ I × ΩH → V H is an otopy such that k0 = fH and
k1 = gH , and (1) is proved.

To show (2) we will proceed analogously to the construction of the map f2ε
δ ,

but this time we will perturbate the otopy h instead of the map f . Let us define
the sets:

Qδ =Zδ(h,Λ(H)),

Qεδ = {(t, x+ v) | (t, x) ∈ Qδ, v ∈ Nx, |v| < ε}

and the map h : Q3ε
2δ → V

h(t, x+ v) :=


h(t, x) + v if |v| ≤ ε,
h(t, x) + (2ε− |v|) v

|v|
if ε ≤ |v| ≤ 2ε,

h

(
t, x+ 3(|v| − 2ε)

v

|v|

)
if 2ε ≤ |v| ≤ 3ε.

where δ > 0 is chosen so that clΛ(H)
(Q2δ) b Λ(H) and ε > 0 is chosen so that

Q3ε
2δ is a tubular neighbourhood of Q2δ (see Lemma 4.1) and clΛ(Q3ε

2δ) b Λ. The
auxiliary function M : Λ(H) → R is defined by the formula

M(p) =
min{dist(p,Qδ), δ}

δ
.

Finally, we define the map H : Λ→ V

H(t, z) :=

h(t, z) if z ∈ Λ \Q3ε
2δ,

M(t, x)h(t, z) + (1−M(t, x))h(t, z) if (t, z) = (t, x+ v) ∈ Q3ε
2δ.

It is easy to see that H is an otopy and, more importantly, so is H� Λ\Λ(H)
. Note

that, in general, the restriction h� Λ\Λ(H)
does not need to be an otopy. The

following facts:
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• H0(x) = f2ε
δ (x) = f(x) for all x ∈ Df ∩ Ω(H),

• H0(x) = f2ε
δ (x) 6= 0 for all x ∈ P εδ \ Ω(H),

imply that the straight-line homotopy between f̃ and H0�Df\Ω(H)
is in fact an

otopy. The same is true for g̃ and H1�Dg\Ω(H)
. Consequently, we obtain the

following sequence of otopy relations in FG
(
Ω \ Ω(H)

)
f̃ ∼ H0�Df\Ω(H)

∼ H1�Dg\Ω(H)
∼ g̃,

which is the desired conclusion. �

Lemma 5.6. The map Θ is surjective.

Proof. Let [a] ∈ FWH [ΩH ] and [b] ∈ FG[Ω\Ω(H)]. We will construct a map
f ∈ FG(Ω) such that Θ([f ]) = ([a], [b]). Set A = GDa. First we extend the map
a to a map a(H) : A→ V by the formula a(H)(gx) = ga(x) for x ∈ Da and g ∈ G.
Define the sets:

Rδ = Zδ(a(H), A), Rεδ = {x+ v | x ∈ Rδ, v ∈ Nx, |v| < ε},

where δ > 0 is chosen so that clΩ(H)
(Zδ) b A and ε > 0 is chosen so that

dist(b−1(0), clRεδ) > 0

and R3ε
2δ is a tubular neighbourhood of R2δ. Now we extend the map a(H)�Rδ to

a map aε(H) : Rεδ → V by the formula aε(H)(x+v) = a(H)(x)+v. Let b̂ = b�Db\clRεδ
.

By the above, both aε(H) and b̂ are equivariant local maps, and so is f := aε(H)t b̂.
It remains to prove that ([fH ], [f̃ ]) = ([a], [b]). Since fH = a�Da∩Rδ , we have
[fH ] = [a] in FWH [ΩH ]. Throughout the rest of the proof, we will write ∼ for the
otopy relation in FG(Ω\Ω(H)). From the definition of f , we have f̃ ∼ f�Df\Ω(H)

by means of the straight-line homotopy. Moreover, f�Df\Ω(H)
∼ b̂ ∼ b (both

otopies come from obvious restrictions). We thus get f̃ ∼ b, which completes the
proof. �

The proof of injectivity is similar in spirit to that of surjectivity.

Lemma 5.7. The map Θ is injective.

Proof. Assume that Θ([f ]) = Θ([g]), that is, there are two otopies:

(1) hH : B ⊂ I × ΩH → V H joining fH and gH in FWH (ΩH),
(2) h̃ : Λ ⊂ I ×

(
Ω \ Ω(H)

)
→ V joining f̃ and g̃ in FG

(
Ω \ Ω(H)

)
.

Define the map h(H) : GB ⊂ I×Ω(H) → V by the formula h(H)(t, gx) = ghH(t, x)

for (t, x) ∈ B and g ∈ G. Set

Sδ = Zδ(h(H), GB), Sεδ = {(t, x+ v) | (t, x) ∈ Sδ, v ∈ Nx, |v| < ε},

where δ > 0 is chosen so that clSδ b GA and ε is chosen so that

dist(h̃−1(0), clSεδ ) > 0.
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and Sεδ is a tubular neighbourhood of Sδ contained in I × Ω. Let us define the
map h⊥ : Sεδ ⊂ I × Ω → V by h⊥(t, x + v) := h(H)(t, x) + v. Note that both
h⊥ and ĥ := h̃� Λ\clSεδ

are otopies. Moreover, since the domains of h⊥ and ĥ are
disjoint, the disjoint union h⊥ t ĥ is also an otopy. Here and subsequently, the
symbol ∼ denotes the otopy relation in FG(Ω). By Remark 5.2, we get

f ∼ f2ε ∼ f2ε� P εδ t f̃�Df\clP εδ
.

On the other hand, by the definitions of h⊥ and ĥ, we obtain

h⊥0 ∼ f2ε� P εδ and ĥ0 ∼ f̃�Df\clP εδ
,

and consequently f ∼ h⊥0 t ĥ0. Similarly, g ∼ h⊥1 t ĥ1, and finally

f ∼ h⊥0 t ĥ0 ∼ h⊥1 t ĥ1 ∼ g,

which proves the lemma. �

Remark 5.8. It is easily seen that in the case when Ω is an open invariant
subset of Rk ⊕ V both the definition of

Θ: FG[Ω]→ FWH [ΩH ]×FG[Ω \ Ω(H)]

and the proof that Θ is a bijection are essentially the same.

6. Splitting of the set of otopy classes of equivariant local maps

Assume V is a real finite dimensional orthogonal representation of a compact
Lie group G and Ω is an open invariant subset of Rk ⊕ V . Let

Φk(G) := {(H) ∈ Φ(G) | dimWH ≤ k}.

It is well-known that the set Iso(Ω) is finite and so is Iso(Ω)∩Φk(G). Recall that
if X, Y are G-spaces and A (resp. B) is a G-subspace of X (resp. Y ) then the
set of relative G-homotopy classes of G-maps from (X,A) to (Y,B) is denoted
by [X,A;Y,B]G. We finish this paper with a series of splitting results. Recall
that the sets of (proper) otopy classes of equivariant (proper) local maps can be
identified with the sets of path-components of the spaces of equivariant (proper)
local maps.

Theorem 6.1. There are bijections

FG[Ω] ≈
∏
(H)

FWH [ΩH ],(6.1)

PG[Ω] ≈
∏
(H)

PWH [ΩH ],(6.2)

[Sk+V ;SV ]∗G ≈
∏
(H)

[
Sk+V H , Sk+V H \ (Rk × VH);SV

H

, ∗
]
WH

,(6.3)

where the products are taken over the set Iso(Ω) ∩ Φk(G).
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Proof. Theorem 3.6, Remark 5.8 and obvious induction on orbit types
give immediately (6.1). In turn, Proposition 2.4 and (6.1) imply (6.2). Finally,
combining (2.3) and (6.2) with the observation that the map defined in the same
way as κ in Remark 2.6 induces a bijection

PWH [Rk × VH ] ≈
[
Sk+V H , Sk+V H \ (Rk × VH);SV

H

, ∗
]
WH

,

we obtain (6.3). �

Remark 6.2. As you can see from the above proof, the main difficulty in
proving Theorem 6.1 lies in Theorem 5.4.

Remark 6.3. Recall that the extreme case of the trivial action is covered
by [7]. Namely, if G acts trivially on V and Ω is an open subset of V , then

FG[Ω] = F{e}[Ω] ≈
∑
α

Z,

where the direct sum is taken over all connected components α of the set Ω.
Similarly, if G acts trivially on Rn+k, then

FG[Rn+k] = F{e}[Rn+k] ≈ πn+k(Sn).

Remark 6.4. A more thorough description of FG[Ω] based on the for-
mula (6.1) and the detailed analysis of the factors FWH [ΩH ] is given in [3],
which continues and develops the approach presented here.
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