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This is dedicated to Professor Yuli Rudyak

Abstract. We give a lower bound for the Lusternik–Schnirelmann cate-

gory of compact exceptional Lie groups by computing the module category
weight through analyzing several Eilenberg–Moore type spectral sequences.

1. Introduction

The Lusternik–Schnirelmann category cat(X) of a topological space X is the

least integer n such that there exists an open cover X = U1 ∪ . . . ∪ Un+1 with

each Ui contractible to a point in X. There are other computable homotopy

invariants such as cup length, category weight, and module category weight with

the relation [5], [14]: cup(X;Fp) ≤ wgt(X;Fp) ≤ Mwgt(X;Fp) ≤ cat(X).

Toomer introduced the explicit formula for the difference between the cup

length and the category weight. Using the formula he calculated the difference

cup(X;Fp)−wgt(X;Fp) of any simply connected compact simple Lie group [16].

In fact, it is precisely F4, E6, E7, E8 which yield a positive difference.

On the other hand, Iwase and Kono [5] determined cat(Spin(9)) = 8 by

computing the lower bound of the difference between the category weight and
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the module category weight of Spin(9), which is

Mwgt(Spin(9);F2)− wgt(Spin(9);F2) ≥ 2.

Here we give a lower bound for the Lusternik–Schnirelmann category of com-

pact exceptional Lie groups by studying the difference between the category

weight and the module category weight through several Eilenberg–Moore type

spectral sequences.

This paper is organized as follows. In Section 2, we collect some known

facts, which will be used in next sections. In Section 3, we compute the module

category weight with respect to F2 coefficients of compact exceptional Lie groups

by analyzing several Eilenberg–Moore type spectral sequences. In Section 4, we

compute the module category weight with respect to F3 coefficients of compact

exceptional Lie groups by the similar method as the case of F2 coefficients.

We would like to thank Professor M. Mimura and T. Nishimoto for their

helpful discussions and we also wish to thank the referee for valuable comments.

2. Some known facts

Throughout this paper, the subscript of an element always means the degree

of the element, for example, the degree of xi is i. Let E(x) be the exterior algebra

on x and F2[x] be the polynomial algebra on x and Γ(x) be the divided power

algebra on x which is generated by elements γi(x) with coproduct

∆(γn(x)) =

n∑
i=0

γn−i(x)⊗ γi(x)

and the product

γi(x)γj(x) =

(
i+ j

i

)
γi+j(x).

We define cup(X;Fp), the cup-length with respect to Fp, by the least integer m

such that x1 . . . xm+1 = 0 for any m+ 1 elements xi ∈ H̃∗(X;Fp). Let Pm(ΩX)

be the m th projective space, in the sense of Stasheff [15], such that there is

a homotopy equivalence P∞(ΩX) ' X. Let em : Pm(ΩX)→ P∞(ΩX) ' X be

the inclusion map. Consider (em)∗ : H∗(X;Fp) → H∗(Pm(ΩX);Fp). Then we

can define category weight wgt(X;Fp) and module category weight Mwgt(X;Fp)
as follows [5]:

wgt(X;Fp) =min{m | (em)∗ is a monomorhism},

Mwgt(X;Fp) =min{m | (em)∗ is a split monomorphism

of all Steenrod algebra modules}.

Then we have the following relation [5]:

cup(X;Fp) ≤ wgt(X;Fp) ≤ Mwgt(X;Fp) ≤ cat(X).
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Now we describe the mod p cohomology of the exceptional Lie groups, together

with some non-trivial Steenrod operations. We refer [12] for the condensed treat-

ment of these cohomology including Hopf algebra structure and the action of the

Steenrod algebra.

Theorem 2.1. The mod 2 cohomology of the exceptional Lie groups G2, F4,

E6, E7, and E8 are as follows:

H∗(G2;F2) ∼=F2[x3]/(x4
3)⊗ E(Sq2x3),

H∗(F4;F2) ∼=F2[x3]/(x4
3)⊗ E(Sq2x3, x15, Sq

8x15),

H∗(E6;F2) ∼=F2[x3]/(x4
3)⊗ E(Sq2x3, Sq

4,2x3, x15, Sq
8,4,2x3, Sq

8x15),

H∗(E7;F2) ∼=F2[x3, Sq
2x3, Sq

4,2x3]/(x4
3, (Sq

2x3)4, (Sq4,2x3)4)

⊗ E(x15, Sq
8,4,2x3, Sq

8x15, Sq
4,8x15),

H∗(E8;F2) ∼=F2[x3]/(x16
3 )⊗ F2[Sq2x3]/((Sq2x3)8)

⊗ F2[Sq4,2x3, x15]/((Sq4,2x3)4, x4
15)

⊗ E(Sq8,4,2x3, Sq
8x15, Sq

4,8x15, Sq
2,4,8x15).

Theorem 2.2. The mod 3 cohomology of the exceptional Lie groups G2, F4,

E6, E7, and E8 are as follows:

H∗(G2;F3) ∼=E(x3, x11),

H∗(F4;F3) ∼=F3[βP1x3]/((βP1x3)3)⊗ E(x3,P1x3, x11,P1x11),

H∗(E6;F3) ∼=F3[βP1x3]/((βP1x3)3)⊗ E(x3,P1x3, x9, x11,P1x11, x17),

H∗(E7;F3) ∼=F3[βP1x3]/((βP1x3)3)

⊗ E(x3,P1x3, x11,P1x11,P3,1x3, x27, x35),

H∗(E8;F3) ∼=F3[βP1x3, βP3,1x3]/((βP1x3)3, (βP3,1x3)3)

⊗ E(x3,P1x3, x15,P3,1x3,P3x15, x35, x39, x47).

3. Module Category Weight with respect to F2 coefficients

Let G̃ be the 3-connected cover of G which is the homotopy fibre of the

map G
ι−→ K(Z, 3) where ι is the fundamental class of H3(G;Z). Then we

have the following fibrations: CP∞ → G̃ → G, S1 → ΩG̃ → ΩG. Now we get

the following theorem. Some of results can be obtained from the Serre spectral

sequence of G̃→ G→ K(Z, 3) and the Adem relations.

Theorem 3.1 ([6], [9], [11]). The mod 2 cohomology of the 3-connected covers

of the exceptional Lie groups G̃2, F̃4, Ẽ6, Ẽ7, and Ẽ8 are as follows:

H∗(G̃2;F2) ∼=F2[x8]⊗ E(Sq1x8, Sq
2,1x8),

H∗(F̃4;F2) ∼=F2[x8]⊗ E(Sq1x8, Sq
2,1x8, Sq

4,2,1x8, Sq
8,4,2,1x8),



160 Y. Choi

H∗(Ẽ6;F2) ∼=F2[x32]⊗ E(x9, Sq
2x9, Sq

4,2x9, Sq
8x9, x23, Sq

16,8x9),

H∗(Ẽ7;F2) ∼=F2[x32]⊗ E(x11, Sq
4x11, Sq

8x11, x23, Sq
8,8x11, Sq

1x32, Sq
16,8x11),

H∗(Ẽ8;F2) ∼=F2[x15]/(x4
15)⊗ F2[x32]

⊗ E(x23, x27, x29, Sq
1x32, x35, Sq

4x35, Sq
8,4x35).

To get the module category weight of exceptional Lie groups G, we study

the Rothenberg–Steenrod spectral sequence converging to H∗(G) with E2
∼=

CotorH∗(ΩG;F2)(F2,F2). This is a spectral sequence of Hopf algebras but it de-

pends on the coalgebra structure. So we should determine the coalgebra structure

of H∗(ΩG;F2). Note that since

E2
∼= CotorH∗(ΩG;F2)(F2,F2) ∼= ExtH∗(ΩG;BbbF2)(F2,F2)

(see [2]), we can also use the algebra structure of H∗(ΩG;F2) as in [5].

To get the coalgebra structure of H∗(ΩG;F2), we consider the Eilenberg–

Moore spectral sequence converging to H∗(ΩG;F2) with

E2
∼= TorH∗(G;F2)(F2,F2).

Since E2 concentrates in the even dimensions, the spectral sequence collapses at

the E2-term, i.e. E2 = E∞. Then there is no coalgebra extension problem in such

a spectral sequence [8]. We refer the reader to [10] for concise treatment of above

Eilenberg Moore spectral sequence. So as a coalgebra we have the following

Theorem 3.2. The coalgebra structure of the mod 2 cohomology of the loop

spaces of exceptional Lie groups G2, F4, E6, E7, and E8 are as follows:

H∗(ΩG2;F2) ∼=E(a2)⊗ Γ(a4, b10),

H∗(ΩF4;F2) ∼=E(a2)⊗ Γ(a4, b10, a14, a22),

H∗(ΩE6;F2) ∼=E(a2)⊗ Γ(a4, a8, b10, a14, a16, a22),

H∗(ΩE7;F2) ∼=E(a2, a4, a8)⊗ Γ(b10, a14, a16, b18, a22, a26, b34),

H∗(ΩE8;F2) ∼=E(a2, a4, a8, a14)⊗ Γ(a16, a22, a26, a28, b34, b38, b46, b58),

especially we have Sq4b10 = a14 and Sq8b18 = a26 by Theorem 3.1.

Note that even though there is no coalgebra extension, there are many

non-trivial algebra extensions in the above spectral sequence. For example,

a2
2 = Sq2a2 = Sq2σ(x3) = σ(Sq2x3) = σ(x5) = a4, where σ is the cohomo-

logy suspension. Similarly a2
4 = a8 and a2

8 = a16.

Now we consider the Rothenberg–Steenrod spectral sequence converging to

H∗(G;F2) with

(3.1) E2
∼= CotorH∗(ΩG;F2)(F2,F2).
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Then we get the next theorem by the standard Cotor computation of the follow-

ing monogenic Hopf algebras:

CotorΓ(a2i)(F2,F2) = E(x2i+1), CotorE(a2i)(F2,F2) = F2[x2i+1].

We refer the reader to [13] for detail computation method of this spectral

sequence.

Theorem 3.3. CotorH∗(ΩG;F2)(F2,F2) of the exceptional Lie groups G for

G2, F4, E6, E7, and E8 are as follows:

CotorH∗(ΩG2;F2)(F2,F2) ∼=F2[x3]⊗ E(x5, z11),

CotorH∗(ΩF4;F2)(F2,F2) ∼=F2[x3]⊗ E(x5, z11, x15, x23),

CotorH∗(ΩE6;F2)(F2,F2) ∼=F2[x3]⊗ E(x5, x9, z11, x15, x17, x23),

CotorH∗(ΩE7;F2)(F2,F2) ∼=F2[x3, x5, x9]⊗ E(z11, x15, x17, z19, x23, x27, z35),

CotorH∗(ΩE8;F2)(F2,F2) ∼=F2[x3, x5, x9, x15]

⊗ E(x17, x23, x27, x29, z35, z39, z47, z59),

especially we have Sq4z11 = x15 and Sq8z19 = x27.

Then from information Theorem 2.1 of H∗(G;F2), we can analyze non trivial

differentials of the Rothenberg–Steenrod spectral sequence (3.1) converging to

H∗(G;F2) as follows:

(3.2)

d3(z11) =x4
3 for G = G2, F4, E6,7 ,

d3(z19) =x4
5 for G = E7,

d3(z35) =x4
9 for G = E7, E8,

d7(z39) =x8
5 for G = E8,

d15(z47) =x16
3 for G = E8,

d3(z59) =x4
15 for G = E8.

Next, as in [4], [5], truncating the above computation with the same dif-

ferential di in (3.2), we can compute the spectral sequence of Stasheff’s type

converging to H∗(Pm(ΩG);F2). Let A = H∗(G;F2) in Theorem 2.1. Then like

the result in [5, Proposition 2.1], for low m such as 1 ≤ m ≤ 3, we have the

following:

(3.3) H∗(Pm(ΩG);F2) = A[m] ⊕
∑
i

z4i+3 ·A[m−1] ⊕ Sm,
i = 2 for G = G2, F4, E6,

i = 2, 4, 8 for G = E7,

i = 8, 9, 11, 14 for G = E8,
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as modules where A[m], (m ≥ 0) denotes the quotient module A/Dm+1(A) of A

by the submodule Dm+1(A) ⊆ A generated by all the products of m+1 elements

in positive dimensions in A, and z4i+3·A[m−1] denotes a submodule corresponding

to a submodule in A⊗E(z4i+3), and Sm satisfies Sm · H̃∗(Pm(ΩG);F2) = 0 and

Sm|Pm−1(ΩG) = 0. For more detail for Sm, we refer the paper [4]. Now we

compute the module category weight using the similar method as in [1], [5].

Theorem 3.4. The module category weight is as follows:

Mwgt(G2;F2) ≥ 4, Mwgt(F4;F2) ≥ 8, Mwgt(E6;F2) ≥ 10,

Mwgt(E7;F2) ≥ 15, Mwgt(E8;F2) ≥ 32.

Proof. From Theorem 3.3, Sq4z11 = x15 in H∗(P 1(ΩG);F2) for G =

F4, E6, E7. Then from (3.3), Sq4z11 = x15 modulo S2 in H∗(P 2(ΩG);F2) for

G = F4, E6, E7. Since S2 is even-dimensional [1], [5], the modulo S2 is trivial so

Sq4z11 = x15 in H∗(P 2(ΩG);F2). Thus we have

Sq4(x3
3x5z11x23) = x3

3x5x15x23, in H∗(P 7(ΩF4);F2),

Sq4(x3
3x5x9z11x17x23) = x3

3x5x9x15x17x23, in H∗(P 9(ΩE6);F2),(3.4)

Sq4(x3
3x

3
5x

3
9z11x17x23x27) = x3

3x
3
5x

3
9x15x17x23x27, in H∗(P 14(ΩE7);F2).

Note that for xj ∈ A[m], Sqixj = Sqi((em)∗xj) = (em)∗(Sqixj). Thus in

H∗(Pm(ΩG);F2),

Sq4(xα1
s1 . . . xαj

sj z11)(3.5)

= Sq4(xα1
s1 . . . xαj

sj )z11 + xα1
s1 . . . xαj

sjSq4z11

= (em)∗(Sq4(xα1
s1 . . . xαj

sj ))z11 + xα1
s1 . . . xαj

sjSq4z11.

Since x4
3 = x4

5 = x4
9 = 0, and x2

αj
= 0 for other generators xαj

in H∗(G;F2) for

G = F4, E6, E7, we have

Sq4(x3
3x5x23) = 0, Sq4(x3

3x5x9x17x23) = 0, Sq4(x3
3x

3
5x

3
9x17x23x27) = 0

in H∗(F4;F2), H∗(E6;F2), H∗(E7;F2). So in H∗(Pm(ΩG);F2),

Sq4(xα1
s1 . . . xαj

sj z11) = xα1
s1 . . . xαj

sj x15.

By the definition in Section 2, Mwgt(X;F2) is the least m such that (em)∗ is

a split monomorphism of all Steenrod algebra modules.

Let φm : H∗(Pm(ΩG);F2) → H∗(G;F2) be a epimorphism which preserves

all Steenrod actions and φm ◦ (em)∗ ∼= 1H∗(G;F2). Suppose that there are epimor-

phisms:

φ7 : H∗(P 7(ΩF4);F2) → H∗(F4;F2),

φ9 : H∗(P 9(ΩE6);F2) → H∗(E6;F2),

φ14 : H∗(P 14(ΩE7);F2) → H∗(E7;F2).
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Then we have the following diagrams:

(3.6) H∗(P 7(ΩF4);F2)
φ7
// H∗(F4;F2)

(3.7)

x3
3x5x15x23

� // x3
3x5x15x23

x3
3x5z11x23

� //

Sq4

OO

0

Sq4

OO

(3.8) H∗(P 9(ΩE6);F2)
φ9
// H∗(E6;F2)

(3.9)

x3
3x5x9x15x17x23

� // x3
3x5x9x15x17x23

x3
3x5x9z11x17x23

� //

Sq4

OO

0

Sq4

OO

(3.10) H∗(P 14(ΩE7);F2)
φ14
// H∗(E7;F2)

(3.11)

x3
3x

3
5x

3
9x15x17x23x27

� // x3
3x

3
5x

3
9x15x17x23x27

x3
3x

3
5x

3
9z11x17x23x27

� //

Sq4

OO

0

Sq4

OO

Obviously this is a contradiction. So φ7, φ9, and φ14 are not epimorphisms.

This means that (e7)∗, (e9)∗, and (e14)∗ can not be split monomorphisms of all

Steenrod algebra module. Hence we obtain that

Mwgt(F4;F2) ≥ 8, Mwgt(E6;F2) ≥ 10, Mwgt(E7;F2) ≥ 15.

Now we consider the category weight. For G2, x3
3x5 ∈ H∗(P 4(ΩG2);F2).

Hence (e4)∗ is a monomorphism, so wgt(G4;F2) = 4. In the same way, wgt(G;F2)

is 6 for G = F4, 8 for G = E6, 13 for G = E7, 32 for G = E8. In fact the cate-

gory weight is the same as the Toomer’s invariant, the filtration length, that is,

wgt(G;F2) = f2(G) in [16].

For the case of G2 and E8, by dimensional reason, any generator of type x−
can not be of the form Sqi(z−) for any i and for any generator of type z. So we

can not apply the method in (3.6)–(3.11). Hence we do not obtain any positive

difference between the category weight and the module category weight. Hence

we have

Mwgt(G2;F2) ≥ wgt(G2;F2) = 4, Mwgt(E8;F2) ≥ wgt(E8;F2) = 32. �
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Summarizing above results, we have:

X wgt(X;F2) Mwgt(X;F2) cat(X)

G2 4 ≥ 4 4

F4 6 ≥ 8 ?

E6 8 ≥ 10 ?

E7 13 ≥ 15 ?

E8 32 ≥ 32 ?

4. Module Category Weight with respect to F3 coefficients

Now we turn to the case of F3 coefficients.

Theorem 4.1 ([3], [7], [9], [11]). The mod 3 cohomology of the 3-connected

covers of the exceptional Lie groups G̃2, F̃4, Ẽ6, Ẽ7, and Ẽ8 are as follows:

H∗(G̃2;F3) ∼= F3[y6]⊗ E(x11, βy6),

H∗(F̃4;F3) ∼= F3[y18]⊗ E(x11,P1x11, βy18,P1βy18),

H∗(Ẽ6;F3) ∼= F3[y18]⊗ E(x9, x11,P1x11, x17, βy18,P1βy18),

H∗(Ẽ7;F3) ∼= F3[y54]⊗ E(x11,P1x11, x19,P1x19,P1P1x19, x35, βy54),

H∗(Ẽ8;F3) ∼= F3[y54]⊗ E(x15, z23,P1z23, x35, x39, x47, βy54, y59).

Note that from the following morphisms of fibrations

Ẽ7
//

i
��

E7
//

��

K(Z, 3)

��

Ẽ8
// E8

// K(Z, 3)

we can choose generators x19 in H∗(Ẽ7;F3) such that i∗(z23) = P1x19 and

i∗(P1z23) = P1P1x19 [12, VII, Theorem 5.8]. Since P1P1 = 2P2 by the Adem

relation, we can also choose generators x
′

19, P1x
′

19, P2x
′

19 in H∗(Ẽ7;F3).

To get the coalgebra structure of H∗(ΩG;F3), we consider the Eilenberg–

Moore spectral sequence converging to H∗(ΩG;F3) with

E2
∼= TorH∗(G;F3)(F3,F3).

For an odd prime p, βP1x3 and βP3P1x3 are even-dimensional for x3 ∈
H3(G;Fp). Since the cohomology of the loop space of a compact simple Lie group

is concentrated on even degrees, we have the following non-trivial differentials

in E2:
d2(γ3(σ(x3))) = σ(βP1x3) for G = F4, E6, E7, E8,

d2(γ3(σ(P1x3))) = σ(βP3P1x3) for G = E8,
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where σ is the cohomology suspension. Now the E3 term is even-dimensional,

so that E3
∼= E∞. Here we put σ(x3) = a2, σ(P1x3) = a6. Then we get the

following

Theorem 4.2. The coalgebra structure of the mod 3 cohomology of the loop

spaces of exceptional Lie groups G2, F4, E6, E7, and E8 are as follows:

H∗(ΩG2;F3) ∼= Γ(a2, a10),

H∗(ΩF4;F3) ∼=F3[a2]/(a3
2)⊗ Γ(a6, a10, a14, b22),

H∗(ΩE6;F3) ∼=F3[a2]/(a3
2)⊗ Γ(a6, a8, a10, a14, a16, b22),

H∗(ΩE7;F3) ∼=|F3[a2]/(a3
2)⊗ Γ(a6, a10, a14, a18, b22, a26, a34),

H∗(ΩE8;F3) ∼=F3[a2]/(a3
2)⊗ F3[a6]/(a3

6)⊗ Γ(a14, a18, b22, a26, a34, a38, a46, b58),

especially we have P1b22 = a26 by Theorem 4.1.

Consider the Rothenberg–Steenrod spectral sequence converging to H∗(G;F3)

with

(4.1) E2
∼= CotorH∗(ΩG;F3)(F3,F3).

Then we obtain the next theorem by the standard Cotor computation of following

monogenic Hopf algebras:

CotorΓ(a2i)(F3,F3) = E(x2i+1),

CotorF3[a2i]/(a3n
2i )(F3,F3) = E(x2i+1)⊗ F3[x(2i)·3n+2].

Theorem 4.3. CotorH∗(ΩG;F3)(F3,F3) of the exceptional Lie groups G for

G2, F4, E6, E7, and E8 are as follows:

CotorH∗(ΩG2;F3)(F3,F3) ∼=E(x3, x11),

CotorH∗(ΩF4;F3)(F3,F3) ∼=E(x3)⊗ F3[βP1x3]⊗ E(P1x3, x11,P1x11, z23),

CotorH∗(ΩE6;F3)(F3,F3) ∼=E(x3)⊗ F3[βP1x3]

⊗ E(P1x3, x9, x11,P1x11, x17, z23),

CotorH∗(ΩE7;F3)(F3,F3) ∼=E(x3)⊗ F3[βP1x3]

⊗ E(P1x3, x11,P1x11, x19, z23, x27, x35),

CotorH∗(ΩE8;F3)(F3,F3) ∼=E(x3)⊗ F3[βP1x3]⊗ E(P1x3)⊗ F3[βP3P1x3]

⊗ E(x15, x19, z23, x27, x35, x39, x47, z59),

especially we have P1z23 = x27.

Then from information Theorem 2.2 of H∗(G;F3), we can analyze non trivial

differentials of the Rothenberg–Steenrod spectral sequence (4.1) converging to
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H∗(G;F3) as follows:

(4.2)
d3(z23) = (βP1x3)3, for G = F4, E6, E7, E8

d3(z59) = (βP3P1x3)3, for G = E8.

Let A = H∗(G;F3) in Theorem 2.2. Then like the result in (3.3), for low m

such as 1 ≤ m ≤ 3, we have the following:

(4.3) H∗(Pm(ΩG);F3) = A[m] ⊕
∑
i

z4i+3 ·A[m−1] ⊕ Sm,i = 5 for G = F4, E6, E7,

i = 5, 14 for G = E8,

as modules. Now we compute the module category weight using the same method

in Theorem 3.4.

Theorem 4.4. The module category weight is as follows:

Mwgt(G2;F3) ≥ 2, Mwgt(F4;F3) ≥ 8, Mwgt(E6;F3) ≥ 10,

Mwgt(E7;F3) ≥ 13, Mwgt(E8;F3) ≥ 18.

Proof. From Theorem 4.2, we get P1z23 = x27 in H∗(P 1(ΩG);F3) for

G = E7, E8. Then P1z23 = x27 modulo S2 in H∗(P 2(ΩG);F3) for G = E7, E8

from (4.3). Since S2 is even-dimensional [1], [5], the modulo S2 is trivial and

P1z23 = x27 in H∗(P 2(ΩG);F3). Thus by the similar reason (3.5) as the case

of F2 coefficients, we have

P1((βP1x3)2x3x7x11x15x19z23x35) = (βP1x3)2x3x7x11x15x19x27x35,

P1((βP1x3)2(βP3P1x3)2x3x7x15x19z23x35x39x47)

= (βP1x3)2(βP3P1x3)2x3x7x15x19x27, x35x39x47,

in H∗(P 12(ΩE7);F3) and H∗(P 17(ΩE8);F3). Note that the filtration lengths of

βP1x3 and βP3P1x3 are both 2 by the result in [16].

Let φm : H∗(Pm(ΩG);Fp)→ H∗(G;Fp) be an epimorphism which preserves

all Steenrod actions and φm ◦ (em)∗ ∼= 1H∗(G;Fp). Suppose that there are epimor-

phisms

φ12 : H∗(P 12(ΩE7);F3) → H∗(E7;F3),

φ17 : H∗(P 17(ΩE8);F3) → H∗(E8;F3).

Then we have the following diagrams:

(4.4) H∗(P 12(ΩE7);F3)
φ12
// H∗(E7;F3)
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(4.5)

(βP1x3)2x3x7x11x15x19x27x35
� // (βP1x3)2x3x7x11x15x19x27x35

x11x15x19z23x35
� //

P1

OO

0

P1

OO

(4.6) H∗(P 17(ΩE78);F3)
φ17
// H∗(E8;F3)

(4.7)

(βP1x3)2(βP3P1x3)2X1
� // (βP1x3)2(βP3P1x3)2X1

P1((βP1x3)2(βP3P1x3)2X2
� //

P1

OO

0

P1

OO

where X1 = x3x7x15x19x27x35x39x47, X2 = x3x7x15x19z23x35x39x47.

Obviously this is a contradiction. So φ12 and φ17 are not epimorphisms. This

means that (e12)∗, and (e17)∗ can not be split monomorphisms of all Steenrod

algebra module. Hence we obtain that

Mwgt(E7;F3) ≥ 13, Mwgt(E8;F3) ≥ 18.

Now we consider the category weight. For G2, x3x5 ∈ H∗(P 2(ΩG2);F3), so

(e2)∗ is a monomorphism, so wgt(G2;F3) = 2. For F4, (βP1x3)2x3x7x11x15 ∈
H∗(P 8(ΩF4);F3), so (e8)∗ is a monomorphism, so wgt(F4;F3) = 8. By the

same way, wgt(E6;F3) = 10, wgt(E7;F3) = 11 and wgt(E8;F3) = 16. Here

the category weight is the same as the the filtration length in [16], that is,

wgt(G;F3) = f3(G).

For the case of G2, F4, and E6, by dimensional reason, any generator of type

x− can not be of the form Pi(z−) or βPi(z−) for any i and for any generator of

type z. So we can not apply the method in (4.4)–(4.7). Hence we do not obtain

any positive difference between the category weight and the module category

weight. Hence we have

Mwgt(G2;F3) ≥ wgt(G2;F3) = 2, Mwgt(F4;F3) ≥ wgt(F4;F3) = 8,

Mwgt(E6;F3) ≥ wgt(E6;F3) = 10. �

Remark 4.5. Combined with Toomer’s result in [16], we have the following

conclusion:

G wgt(G;F3)−cup(G;F3) Mwgt(G;F2)−wgt(G;F2) Mwgt(G;F3)−wgt(G;F3)

G2 0 ≥ 0 ≥ 0

F4 2 ≥ 2 ≥ 0

E6 2 ≥ 2 ≥ 0

E7 2 ≥ 2 ≥ 2

E8 4 ≥ 0 ≥ 2
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