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Abstract. This article presents an algebraic topology perspective on the
problem of finding a complete coverage probability of a one dimensional

domain X by a random covering, and develops techniques applicable to the

problem beyond the one dimensional case. In particular we obtain a general
formula for the chance that a collection of finitely many compact connected

random sets placed on X has a union equal to X. The result is derived un-

der certain topological assumptions on the shape of the covering sets (the
covering ought to be good, which holds if the diameter of the covering ele-

ments does not exceed a certain size), but no a priori requirements on their

distribution. An upper bound for the coverage probability is also obtained
as a consequence of the concentration inequality. The techniques rely on

a formulation of the coverage criteria in terms of the Euler characteristic

of the nerve complex associated to the random covering.

1. Introduction

We consider finite random coverings of a metric space X, i.e. finite collections

of compact random sets: A = {A{i}}, i = 1, . . . , n, understood as measurable

maps [17, p. 121]

A{i} : (Ω, σ,P)→ (C(X) t {∅}, σBorel),
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where (Ω, σ,P) is an underlying probability space, and C(X) is the set of non-

empty compact subsets of X, topologized by the Hausdorff distance and given

the associated Borel algebra σBorel. The set C(X) t {∅} is a disjoint union with

the point {∅}, which plays a role of the empty set. The term covering may be

misleading in this context, as it sometimes assumes that the union of its elements

contains the domain X. In this work a covering is simply a collection of subsets

of X, as it has been previously used e.g. in [14], [15].

A typical example of an infinite random covering is a coverage process on

the Euclidean space, [17] i.e. a sequence of random sets: A = {ξ1 + G1, ξ2 +

G2, . . . , ξk +Gk, . . .}, where {Gk} is a fixed family of subsets of Rn called grains

of the process, and ξξξ = {ξi} a sequence of random vectors in Rn. In applications

Gi’s are often round balls of a fixed radius, and ξξξ defines a Poisson process (in

which case A is refereed to as a Boolean model, [17]). In the current paper,

we make no a priori assumptions on the distribution of A except a topological

requirement on the covering, namely it almost surely must be good, which means

that each intersection
⋂
i∈I

A{i}, I = {i1, . . . , ik} is almost surely contractible (in

general some form of convexity of A{i} validates this assumption).

Problem 1.1. Given a random covering {A{i}}, i = 1, . . . , n of a metric

space X, find a complete coverage probability: P
(
X ⊆ |A|

)
, where |A| =

⋃
i

A{i}.

Reviewing the history of Problem 1.1: it was first considered by Whit-

worth [35] in the basic case of a finite collection of independent identically dis-

tributed fixed α-length arcs on a unit circumference circle. Much later, Stevens

[32] provided a complete answer to the question of Whitworth in the form

(1.1) P(S1 ⊆ |A|) =

b1/αc∑
j=1

(−1)j+1

(
n

j

)
(1− jα)n−1.

The Stevens’ result was further improved by Siegel and Holst [31] where they

allowed varying lengths for the arcs. In [14], Flatto obtained an asymptotic

expression for coverage as α → 0. The extension of the circle problem to the

2-sphere S2 was considered by Moran and Groth [28], who derived an approxi-

mation for the probability P(S2 ⊂ |A|), and later Gilbert [16] showed the bounds

(1− λ)n ≤ P (S2 ⊆ |A|) ≤ 4

3
n(n− 1)λ(1− λ)n−1,

where λ = (sin(α/2))2 is the fraction of the surface of S2 covered by spherical

α-caps; i.e. caps of radius α. For α ∈ [π/2, π], the explicit expression for P (S2 ⊆
|A|) has been found by Miles [26]. Work in [7] provides explicit formulas for the

complete coverage probability for α-caps on the m-dimensional unit sphere Sm

when α ∈ [π/2, π] and upper bounds for α ∈ [0, π). The literature concerning

the coverage probability in the asymptotic regimes (where the diameter of grains
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tends to zero) is vast and we only list a small fraction here [15], [30], [2], [27],

[5]. Further, the reader may consult the recent work in [7] for a more accurate

account of the history of Problem 1.1.

In this work we focus solely on the case of finite coverings of 1-dimensional

domains X which are homeomorphic to finite multigraphs, equipped with an

intrinsic distance

(1.2) dX(x, y) = min
γ : [0,1] 7→X,

γ(0)=x, γ(1)=y.

length(γ).

I.e. dX(x, y) is the length of the shortest path between x an y, which in practice

is just a smallest sum of edge-lengths (and their pieces) connecting x and y (the

lengths come from some choice of geometric realization of X in R3). Let ∂X

denote the set of leaf vertices of X, (this notation is justified by the case when X

is an interval in R) and diam(Y ) the intrinsic diameter of a subset Y ⊆ X. Our

random covering A = {A{i}} onX, will always be finite (i = 1, . . . , n). As already

mentioned before, the basic example of a random covering is ε-balls: {B(ξξξi, ε)},
i = 1, . . . , n in the intrinsic metric dX , with centers ξξξi distributed in an arbitrary

fashion. We approach the coverage problem by considering a random complex

N (A) directly obtained from the usual topological nerve (c.f. [33]) of realizations

of A and its Euler characteristic χχχ(A) = χχχ(N (A)).

Let Cn be the set of labeled abstract subcomplexes on n vertices (i.e. sub-

complexes of the full (n − 1)-simplex ∆∆∆n). By the labeling we understand that

every subcomplex s ∈ Cn comes with an indexing of its vertices by numbers

from 1, . . . , n. Elements s, r, k ∈ Cn can be identified, in a non-unique way, with

subsets of the power set 2[n], [n] = {1, . . . , n} (see Section 2.1.) For instance,

a singleton r = {I} (where I ⊆ {1, . . . , n}) labels a face of ∆∆∆n. By a finite

random complex on n vertices we understand an arbitrary discrete probability

space K = (Cn,PK). In order to define the random nerve N (A), one builds a dis-

tribution on Cn in a way dictated by the usual nerve construction. For instance,

the probability of a k-face I = {i1, . . . , ik+1} in Cn, we denote by pI equals

(1.3) pI = P({s ∈ Cn | I ∈ s}) = P(A{i1} ∩ A{i2} ∩ . . . ∩ A{ik+1} 6= ∅).

Identity (1.3) can then be extended from faces to subcomplexes. I.e. given s ∈ Cn

ps = P({r ∈ Cn | s ⊆ r}) = P
(
∀ I ∈ s

{⋂
i∈I

A{i} 6= ∅
})

,(1.4)

Ps = P(s) = P
(
∀ I ∈ s

{⋂
i∈I

A{i} 6= ∅
}
,∀ {J} 6∈ s

{ ⋂
j∈J

A{j} = ∅
})

.(1.5)

Generally, we make an underlying assumption that the covering A is good i.e. to

satisfy (almost surely) the hypotheses of the Nerve Lemma (c.f. Section 4). In

Proposition 4.7 of Section 4.2, we show that a covering A of a 1-complex X is
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always good, if its elements A{i} are connected and sufficiently small in diameter.

The first version of our main theorem is stated below.

Theorem 1.2 (Coverage probability for compact connected 1-complexes X,

with ∂X = ∅). Let A = {A{i}}, i = 1, . . . , n be a random good covering of X

(with ∂X = ∅). Then, the range of χχχ = χχχ(A) can be restricted to

(1.6) m = χ(X) ≤ χχχ(A) ≤ n = m,

and the complete coverage probability equals

(1.7) P(X ⊆ |A|) = P(χχχ(A) = χ(X)) =
∑
s∈Cn

χ(s)=χ(X)

Ps =
∑
s∈Cn

as(χχχ) ps,

where

as(χχχ) =

N∑
k=0

vk(χχχ) cs,k(χχχ), N = m−m,

with ps given in (1.4), and

(1.8)

vk(χχχ) =
(−1)k

N !

∑
m<j1<...<jN−k≤m

j1 . . . jN−k,

vN (χχχ) =
(−1)N

N !
,

cs,k(χχχ) =



r+top(s)∑
i=0

r−top(s)∑
j=0

(−1)rtop(s)−i−j
(
r+top(s)

i

)(
r−top(s)

j

)
·(i− j + r+low(s)− r−low(s))k if k ≥ r(s),

0 if k < r(s),

where r± = r±(s), r±top = r±top(s), r±low(s) = r± − r±top(s) stand for a number of

respectively total, top and lower: even (odd) dimensional faces of s ∈ Cn, and

r(s) denotes a number of all faces.

If the diameter of A{i} is smaller than C/6 almost surely (where C is a length

of the shortest cycle in X, known as girth), then ps further simplifies as

(1.9) ps = P(∀ (i, j) ∈ E(s), i < j {A{i} ∩ A{j} 6= ∅}),

where E(s) is the edge set of s.

An extension of the above result to the case of a 1-complex X with no as-

sumptions on ∂X is provided in Theorem 5.1 of Section 5. One obvious corollary

of the above result is the fact that the complete coverage probability of any good

random covering {A{i}} is determined by finitely many numbers, which is not

obvious when considering e.g. vacancy, i.e. the volume of X − |A| c.f. [17]. The

complexity of computing P(X ⊆ |A|) via the formula of Theorem 1.2 is not

addressed here. However, one may expect that, due to the size of the set Cn,
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computation of coefficients as(χχχ) or the set {s ∈ Cn | χχχ(s) = χ(X)} is double

exponentially hard in n. On a positive note, coefficients as(χχχ) are independent of

the underlying distribution vector (ps), therefore once computed for a certain size

problem can be reapplied as (ps) changes. The vector (ps) can be conveniently

estimated numerically (e.g. via the standard maximum likelihood estimation,

c.f. [23]) but again in the simplest case of equation (1.9) it is of exponential

size: 2(n
2). Therefore, in practical situations the formula derived in Theorem 1.2

can apply to the covering problems with small n.

In a longer perspective, one may be interested asymptotic distributions of

χχχ(A) (as n → ∞) which would lead to parametric estimators or useful bounds

for P(X ⊆ |A|). Currently available results (e.g. in [21], [20]) concern sparse

regimes and they are not applicable, unless we allow the diameter of random sets

in A = {A{i}} to tend to 0 sufficiently fast as n tends to infinity (see e.g. [15]).

Concerning the question of useful bounds for P(X ⊆ |A|), as a first step we derive

an upper bound for the coverage probability, via the concentration inequality [3]

in the following

Theorem 1.3. Let A = {A{i}}, i = 1, . . . , n be a random good covering of X,

then

(1.10) P(X ⊆ |A|) ≤ exp

(
−µ2

0

2n(|χrel(X, ∂X)|+ 2)2

)
,

where µ0 denotes the expected value of the relative Euler characteristic χχχrel(A,

A∂X) of the random pair (N (A),N (A∂X)).

Although, Theorem 1.2 is restricted to the case of 1-complexes, the ques-

tion of complete coverage probability for such spaces is not without a practical

meaning. One may consider the 1-complex to be e.g. a system of streets in the

city or underground channels. In such cases random coverings can be associated

with sensing regions of e.g. vehicles equipped with sensors (c.f. [8]). Beyond 1-

complexes, techniques of algebraic topology provide coverage criteria for higher

dimensional objects. For instance, if an underlying space X is an m-dimensional

manifold a necessary and sufficient condition for coverage is nonvanishing of the

m-th(top) Betti number of the nerve N (A). We aim to develop these ideas in

subsequent papers.

The article is organized as follows: In Section 2 we further discuss the general

setup of random complexes and their associated invariants – mainly χχχ(A). In

Section 3, we derive relevant formulas for distributions of the random relative

Euler characteristic, see Corollary 3.5. Further, in Section 4, we prove several

basic topological results showing that the Euler characteristic of the nerve of

a covering determines complete coverage of a 1-complex. In Proposition 4.7, we

also provide a sufficient condition for a covering to be good (in terms of the girth
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of a 1-complex). We collect relevant facts and prove Theorem 1.2 in Section 5.

The upper bound for P(X ⊆ |A|) of Theorem 1.3 is shown in Section 6.
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2. Random complexes and their topological invariants

2.1. Random complexes. We refer the reader to [18] for background on

algebraic topology. Consider ∆n to be a full simplex on n-vertices indexed by

1, . . . , n (geometrically ∆n is the convex hull of n points given by the standard

basis vectors in Rn+1). Recall that a d-dimensional face in ∆n can indexed by the

collection of its d+1 vertices: I = {i1, . . . , id+1}, where 1 ≤ i1 < . . . < id+1 ≤ n.

Denote the set of all faces of ∆n by f(n), and particularly, d-dimensional faces

by fd(n). I.e.

(2.1) f(n) = {I | I ⊆ 2[n]}, fd(n) = {I | I ⊆ 2[n], |I| = d+ 1}.

Consider the set of all labeled sub-complexes Cn of ∆n union a special point {∅}
playing a role of the empty set. By a labeled sub-complex we understand a sub-

complex of ∆n, determined by all its faces with labeling given by vertices of ∆∆∆n.

A natural set to consider for enumerating labeled subcomplexes is the power

set 2f(n) of f(n), which is further denoted by Pn (we assume Pn contains the

empty set). Here and thereafter, we use notation s, r, k for elements of both Cn
and Pn.

Clearly, there is a surjective correspondence Π: Pn 7→ Cn which to a given

subset s ∈ Pn assigns a subcomplex Π(s) in Cn given by the union of elements

I of s and their subsets (i.e. the lattice of subsets associated to the faces of

subcomplex s). Π is clearly not bijective, however, with certain choices we may

easily build right inverses. In particular, we will be interested in two cases, which

we refer to as the antichain and chain representations:

·̂ : Cn 7→ Pn, ·̃ : Cn 7→ Pn.
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The antichain representative ŝ ∈ Pn of s ∈ Cn, contains only its top dimensional

faces, also known as facets, i.e.

ŝ = {I ∈ s | such that for any J ∈ s, J 6= I

either J ⊂ I or (J 6⊆ I and I 6⊆ J)}.

The chain representative s̃ of s ∈ Cn is obtained from the antichain representative

by adding all remaining subfaces of s. Clearly, s̃ = s if s ∈ Cn thus Cn = C̃n,

we also have projections Π̂ : Pn 7→ Ĉn, Π̃ : Pn 7→ C̃n = Cn, where Π̃ = Π. Note

that the cardinality of Ĉn, and therefore Cn and C̃n, is given by the Dedekind

number M(n), c.f. [22]. For any s ∈ Cn, we call the elements of ŝ, top faces or

facets of s.

Recall from Section 1 that by finite random complex on n vertices we un-

derstand a discrete probability space K =
(
Cn,PK

)
. It is easy to see that PK

satisfies the following equivalent conditions (1) (for I ′ ⊆ I):

(A) PK(I | (I ′)c) = PK({s ∈ Cn | I ∈ s} | {r ∈ Cn | {I ′} /∈ r}) = 0,

(B) PK(I ′ | I) = P({s ∈ Cn | {I ′} ∈ s} | {r ∈ Cn | I ∈ r}) = 1.

In short (A) says that if a subface I ′ of I has not occurred then I cannot occur

either; equivalently, (B) says that I ′ occurs whenever I has occurred. We say

that K is supported on a subcomplex, k ∈ Cn if and only if for any I 6∈ k we

have PK({I}) = 0. Given random complexes K and L on n-vertices, the joint

probability space (K, L) := (Cn × Cn,PK,L) is a random pair if and only if L is

almost surely a subcomplex of K, i.e. the following condition holds:

(C) for every (s, r) ∈ Cn × Cn such that r 6⊆ s we have PK,L(s, r) = 0.

For a given K (or (K, L)) it will be convenient to consider Bernoulli random

variables which are indicator functions of faces in K, i.e. for I ∈ f(n) we define

(2.2) eI : Cn → {0, 1}, eI(s) =

1 if I ∈ s,

0 otherwise.

For any s ∈ Cn, we set es =
∏
I∈s

eI an indicator function of the subcomplex s.

Clearly es takes value 1 on r if and only if s ⊆ r. Let us define vectors (ps) and

(Ps) (directly related to vectors in (1.4), when the underlying random complex

is N (A)):

(2.3)

ps = P
(
es =

∏
I∈s

eI = 1

)
,

Ps = P

(( ∏
I∈f(n), I∈s

eI
∏

J∈f(n), J 6∈s

(1− eJ)

)
= 1

)
.

(1) because events {s ∈ Cn | I ∈ s} and {r ∈ Cn | {I′} /∈ r} are disjoint.
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Clearly, a random complex K is fully determined by indicator functions {eI}
of faces and their joint distribution. In the next section eIs will serve as formal

indeterminates for functions defining topological random variables on K, such

as the Euler characteristic. The main use of conditions (A)–(C) is to define

(in Section 2.3) a natural polynomial ring for random topological invariants such

as χχχ(K).

Remark 2.1. In general, one could consider a more flexible model of a finite

random complex with (Pn,P) as the underlying probability space. It can be

thought of as a distribution on open faces of ∆∆∆n (i.e. interiors of faces) with an

exception of the zero dimension (the vertices). In this model it is possible, for

instance, for an edge to occur without its vertices (i.e. (A) can be violated).

Remark 2.2. We may easily generalize the definition of the random complex

K to the case n = ∞, and thus removing dependence on n in the definition.

This is done by considering all labeled subcomplexes C∞ of the infinite simplex

∆∞ =
⋃
n

∆n, and regarding a random complex K as a probability space (C∞,PK).

Such random complex is finite provided the support of K is contained in ∆n for

sufficiently big n.

2.2. Topological invariants in the random setting. Recall that, thanks

to the Poincare-Euler formula [18], the Euler characteristic of a general n-

complex K is given by

(2.4) χ(K) =

n∑
j=0

(−1)j dimCj(K;R),

where dimCj(K;R) denotes the dimension, as a vector space, of the real coeffi-

cient jth chain group Cj(K;R), and equals (in the absolute case) to the number

of j-dimensional faces fff j(K) of K. We will also need a relative version of χ.

Given a pair (K,L) where L is a subcomplex of K we have

(2.5) χrel(K,L) =

n∑
j=0

(−1)j dimCj(K,L;R),

where dimCj(K,L;R) denotes the dimension of the jth relative chain group

Cj(K,L;R) = Cj(K;R)/Cj(L;R), as a real vector space (c.f. [18]). Note that

(2.6) dimCj(K,L;R) = fff j(K)− fff j(L).

Invariants χ = χ(K) and χrel = χrel(K,L) can be expressed in terms of Betti

numbers {βk(K)}, {βk(K,L)} of the chain complexes C∗(K) and C∗(K,L),

(c.f. [18]). Specifically,

(2.7) χ =

n∑
j=0

(−1)j βj(K), χrel =

n∑
j=0

(−1)j βj(K,L).



Random Coverings and the Euler Characteristic 137

2.3. Random polynomials. Given a random complex K let us treat the

indicator functions of faces {eI} (or in a case of a random pair {eI , wJ}) as formal

indeterminates and consider a polynomial ring in eI (without loss of generality

we work over R):

R[eI ] := R[e{1}, . . . , e{n}, e{1,2}, . . . , e{i1,...,ik}, . . . , e{1,...,n}],

or R[eI , wJ ] in the case of random pairs. Observe that any random variable X

on K is given as such polynomial, i.e.

(2.8) X =
∑
s∈Cn

Xs

( ∏
I∈f(n), I∈s

eI
∏

J∈f(n), J 6∈s

(1− eJ)

)
,

where Xs is a value of X at s ∈ Cn. Based on (2.4) we may express the random

Euler characteristic χχχ = χχχ(K)

(2.9) χχχ : (Cn,PK)→ Z, χχχ(s) = χ(s),

as the following polynomial in R[eI ]:

(2.10) χχχ =
∑

I∈f(n)

(−1)|I|−1eI .

Lemma 2.3. Given a random complex K = (Cn,PK) and its collection of

the indicator functions {eI}, consider Q, Q′ ∈ R[eI ] as two representatives of the

same coset in R[eI ]/I where I is an ideal generated by the following relations:

(2.11) {eJeI = eJ | for all I ⊆ J},

(in particular: e2I = eI). Then Q = Q′ almost surely.

Proof. It suffices to show that P(eJ eI = eJ) = 1 for any I, J where I ⊆ J .

We have

P(eJ eI = 0) = P(eJ = 0, eI = 1) + P(eJ = 1, eI = 0) + P(eJ = 0, eI = 0).

Thanks to (A): P(eJ = 1, eI = 0) = 0, thus

P(eJ eI = 0) = P(eJ = 0, eI = 1) + P(eJ = 0, eI = 0) = P(eJ = 0),

and P(eJ eI = 1) = 1− P(eJ eI = 0) = 1− P(eJ = 0) = P(eJ = 1). �

We will further denote the quotient ring R[eI ]/I by RI [eI ]. Clearly, RI [eI ]

has an additive basis of monomials indexed by the chain representatives: s ∈ Cn:

(2.12) es =
∏
I∈s

eI .

In the case of pairs (K, L) we have a pair of sets of face indicator functions

{eI , wJ} corresponding to K and L respectively. Then, it is relevant to consider
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a polynomial ring R[eI , wJ ] modulo relations in (2.11) and additionally (thanks

to property (C)):

(2.13) {wJ wI = wJ | for all I ⊆ J}, {wI = wIeJ | for all J ⊆ I}.

The resulting quotient ring will be denoted by RI [eI , wJ ], and the analogous

statement as Lemma 2.3 is true for random variables expressed as representatives

in RI [eI , wJ ]. An important for us example of a polynomial in RI [eI , wJ ] is the

relative Euler characteristic

(2.14)

χχχrel(K, L) : (Cn × Cn,PK)→ Z,

χχχrel(s, s
′) = χrel(s, s

′), if s′ ⊆ s,

i.e. the relative Euler characteristic

of (s, s′) = 0, if s′ 6⊆ s.

Note, that thanks to (C), the set of pairs (s, s′) such that s′ 6⊆ s is of measure

zero in (K, L) and thus the value of χχχrel = χχχrel(K, L) on such pairs is irrelevant.

Thanks to (2.6), the polynomial expression for χχχrel is given as follows

(2.15) χχχrel =
∑

I∈f(n)

(−1)|I|−1(eI − wI).

3. Moments and distributions of the random Euler characteristic

We begin with basic review of the method of moments for the finite range

discrete random variable X, and provide a specific formulation based on the recent

work in [12]. Alternatively, one could use factorial moments (see e.g. [4, p. 17]),

however they do not offer any advantage in the setting of the random Euler

characteristic.

3.1. Method of moments. First, we need basic information on the Van-

dermonde matrix V (c.f. [25]). Given a fixed sequence of real numbers x =

{x0, x1, . . . , xN}, V is an (N + 1)× (N + 1) matrix explicitly given as follows

V = V(x) =


1 x0 · · · xN0
1 x1 · · · xN1
...

...
. . .

...

1 xN · · · xNN

 .

Note that V is invertible provided the xi’s are distinct (c.f. [25]). A closed

form of V−1 has been derived in [12] in terms of the elementary symmetric

polynomials. Denote by ei(j)(x) the ith–elementary symmetric polynomial in

variables: x0, . . . , x̂j , . . . , xN for j = 0, . . . , N , where x̂j means that xj is omitted.

Specifically
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ei(j)(x) =


1 if i = 0,∑
1≤l1<...<li≤N

lk 6=j

xl1 . . . xli if i > 0.(3.1)

By [12, p. 647], we have

(3.2) V(x)−1 = (vki(x)), where vki(x) = (−1)N+keN−k(i)(x)

/
N∏
j=0
j 6=i

(xi − xj),

for i = 0, . . . , N , k = 0, . . . , N . In the case x is an integer interval [m, . . . ,m],

m,m ∈ Z, m ≤ m of size N = m−m we obtain

(3.3) vki(x) = vki(m,m) =
(−1)i+k

N !

(
N

i

)
eN−k(i)(m, . . . ,m).

Lemma 3.1. Let X be a discrete random variable of a finite range x =

{x0, x1, . . . , xN}, and let µk = E(Xk) denote the k-th moment of X. Given the

vector µ = (µ0, . . . , µN ) we can recover the distribution of X explicitly as follows:

(3.4) pi = P(X = xi) =

N∑
k=0

vki µk, i = 0, . . . , N,

where vki = vki(x) are the Vandermonde coefficients.

Proof. By definition we have a linear system of N equations

µk =

N∑
i=0

xki pi, for k = 0, 1, . . . , N.

In matrix form this system reads: pV = µ where p = (p0, . . . , pN ), and µ =

(µ0, . . . , µN ). Since all xi’s are distinct det(V) =
∏
i6=j

(xi − xj) 6= 0. Thus V is

invertible and we have the unique solution p = µV−1. Identity (3.4) is now

a direct consequence of (3.2). �

Our goal for the next subsection is to provide expressions for distributions

of polynomial random variables in RI [eI ].

3.2. Distributions of random polynomials. Since the differences be-

tween RI [eI ] and RI [eI , wJ ] are mostly notational, we choose to work with the

former. Recall from Section 2.3 that any representative polynomial in R[eI ] is

a linear combination of monomials ek from (2.12)

(3.5) Q =
∑
k∈Pn

ck ek, ck ∈ R,
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where the constant coefficient c0 = c∅ is indexed by the empty set. Note that if

Q ∈ RI [eI ] then, thanks to the relations in RI [eI ], we may always pick expansions

of Q in terms of the antichain or chain representatives i.e.

(3.6) Q =
∑
ŝ∈Ĉn

cŝ eŝ or Q =
∑
s̃∈C̃n

cs̃ es̃ =
∑
s∈Cn

cs es,

where in the second expansion we just applied our convention from Section 2.1 to

identify elements of Cn with their chain representatives. We refer to (3.6) (left)

as the antichain representative and (3.6) (right) as the chain representative of Q

in RI [eI ]. Note that from Lemma 2.3 it is irrelevant which expansion of Q we

choose. Below, we outline a strategy to determine coefficients ck of (3.5) via the

inclusion–exclusion principle.

Recall, the general form of the inclusion–exclusion principle, [24]: Given

a finite set F and functions f, g : 2F → R,

(3.7) g(S′) =
∑

S:S⊆S′
f(S), S′ ⊆ F,

we have

(3.8) f(S′) =
∑

S:S⊆S′
(−1)|S

′|−|S|g(S), S′ ⊆ F.

Recall the following notation: given Q ∈ R[eI ] and s ∈ Pn define

(3.9) Q(s) := Q({eI = 1 | I ∈ s}).

I.e. Q(s) is a polynomial obtained from Q by substituting eI = 1 for all I ∈ s,

and Q(s)(0) its constant coefficient.

Lemma 3.2. Consider any representative Q ∈ RI [eI ] in a general form (3.5).

For any k ∈ Pn the coefficient ck of Q in the expansion (3.5) is given as follows

(3.10) ck(Q) =
∑
r∈Pn
r⊆k

(−1)|k|−|r| Q(r)(0).

In the case Q is represented by the chain expansion (right) (3.6), for any s ∈ Cn,

s 6= {∅} we have

(3.11) cs(Q) =
∑
r∈Cn
r⊆s

(−1)|s|−|r| (Q(r)(0)− c0),

where c0 = c∅ = Q(0) is the constant term of Q.

Proof. In the inclusion–exclusion principle set F = k. Then any subset

S ⊆ F is just a subset of faces r of k, i.e. r ∈ Pn and r ⊆ k. Directly from (3.5)

and (3.9) for any r ⊆ k, we have

Q(r)(0) =
∑
r′⊆r

cr′
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thus setting g(r) = Q(r)(0) and f(r) = cr, Equation (3.10) follows from (3.8).

To obtain (3.11) consider the polynomial Q̄ = Q − c0. If r ⊆ k and r 6= r̂, then

Q̄(r)(0) = 0. Therefore, for s ∈ Cn, Equation (3.10) yields

cs(Q) =
∑
r∈Pn
r⊆s

(−1)|s|−|r| Q(r)(0) =
∑
r∈Cn
r⊆s

(−1)|s|−|r| Q(r)(0).

Because cs(Q) = cs(Q̄) for s 6= ∅, the identity in (3.11) follows. �

For a polynomial random variable Q ∈ R[eI ] in a general form (3.5), define

constants

(3.12)

m(Q) =
∑
s∈Pn

c−s , c−s = min{cs, 0},

m(Q) =
∑
s∈Pn

c+s , c+s = max{cs, 0}.

Denote the coefficients of the general expansion (3.5) of the chain representative

of the k-th power (Q)k by cs,k(Q), i.e.

(3.13) Qk =
∑
s∈Cn

cs,k(Q) es.

We summarize efforts of this section by stating the following result which is

a direct consequence of Lemma 3.1 and Lemma 3.2.

Theorem 3.3. Given Q as a chain representative in RI [eI ], suppose that the

set of realizations of Q is in the integer interval [m,m]. Then the distribution of

Q and its moments are given as follows:

(3.14)

µk = E(Qk) =
∑
s∈Cn

(Q(s)(0))kPs =
∑
s∈Cn

cs,k(Q)ps,

P(Q = m+ j) =
∑
s∈Cn

Q(s)(0)=m+j

Ps =
∑
s∈Cn

as,j(Q) ps,

j ∈ [0, N ], N = m−m, for as,j(Q) =

N∑
k=0

vkj(Q) cs,k(Q),

where vkj(Q) were defined in (3.2). Further, c0 = Q(0) and c0,k = ck0 , and for

s 6= ∅:

(3.15) cs,k(Q) =
∑
r∈Cn
r⊆s

(−1)|s|−|r|(Q(r)(0)− c0)k.

Proof. Since es are Bernoulli random variables

µk = E(Qk) =
∑
s∈Cn

cs,k(Q)E(es) =
∑
s∈Pn

cs,k(Q) ps,

thus (3.14) is an immediate consequence of (3.4). Formula (3.15) follows from

(3.11) applied to Qk. �



142 R. Komendarczyk — J. Pullen

3.3. Formulas for χχχ(K), fffd(K) and χχχrel(K, L). In this section we aim

to provide slightly more tractable formulas for the coefficients cs,k( · ) and the

integer ranges [m( · ),m( · )] for the polynomials χχχ = χχχ(K), fffd = fffd(K) and

χχχrel = χχχrel(K, L), where K is a given random complex on n vertices. Thanks to

Theorem 3.3, it will provide us with a more precise characterization of distribu-

tions for these polynomials.

We begin with the case of fffd(K). Clearly, the range of fffd is contained in

between

(3.16) m(fffd) = 0 and m(fffd) =

(
n

d+ 1

)
.

For a subcomplex s ∈ Cn and its corresponding antichain ŝ, recall the following

notation

(3.17)

r+top = r+top(s) = {numer of even dimensional faces in ŝ},

r−top = r−top(s) = {numer of odd dimensional faces in ŝ},

r+low = r+low(s) = {numer of even dimensional faces in s− ŝ},

r−low = r−low(s) = {numer of odd dimensional faces in s− ŝ},

rtop = rtop(s) = r+top + r−top = |ŝ|,

rlow = rlow(s) = |s| − |ŝ|, r = r(s) = rtop + rlow = |s|.

Given a random complex K, a basic example of interest is the number of its

d-dimensional faces

(3.18) fffd =
∑
{I}∈Cn

|I|=d+1

eI ,

and the Euler characteristic of K. By the Euler–Poincaré formula (see (2.4),

c.f. [18]) we have the following relation between (3.18) and (2.9)

(3.19) χχχ =

n−1∑
d=0

(−1)dfffd.

Moreover, χχχ(s)(0) = χ(s) = r+(s)− r−(s).

Proposition 3.4. We have the following formulas for the coefficients of fffd
and χχχ:

(3.20) cs,k(fffd) =

rtop(s)∑
i=1

(−1)rtop(s)−i
(
rtop(s)

i

)
ik,



Random Coverings and the Euler Characteristic 143

cs,k(χχχ) =
∑
l∈Cn
l⊆s

(−1)|s|−|l|(χχχ(l)(0))k =
∑
l∈Cn
l⊆s

(−1)|s|−|l|(r+(l)− r−(l))k(3.21)

=

r+top(s)∑
i=0

r−top(s)∑
j=0

(−1)rtop(s)−i−j
(
r+top(s)

i

)(
r−top(s)

j

)
· (i− j + r+low(s)− r−low(s))k.

Proof of Formula (3.20). Applying (3.15) directly to fffd we obtain the

first identity in (3.20). For the second equation in (3.20), let l ∈ Pn be the set

of all d-faces. Since fffd =
∑
I∈l

eI , for any k ⊆ l, Equation (3.10) implies

(3.22) ck((fffd)
k) =

∑
r∈Pn
r⊆k

(−1)|k|−|r| (fffd(r)(0))k =

|k|∑
i=1

(−1)|k|−i
(
|k|
i

)
ik.

Considering fffd as an element of RI [eI ] and choosing a chain representative for

fffkd, we conclude that its coefficients cs,k(fffkd) vanish unless the corresponding

antichain ŝ consists of purely d-faces. In the latter case we obtain from (3.22)

cs,k((fffd)
k) = ck((fffd)

k), for k = ŝ,

which implies the identity in (3.20) via the notation of (3.17). �

Next, we turn to the random polynomial χχχ = χχχ(K). The range of χχχ(K) is

contained in [m(χχχ),m(χχχ)] where

(3.23) m(χχχ) = −
∑

r; 0<2r+1≤n

(
n

2r + 1

)
and m(χχχ) =

∑
r; 0<2r≤n

(
n

2r

)
.

If K is supported on some subcomplex k ∈ Cn, smaller than the full n-simplex,

the above range can be narrowed to

m(χχχ(K)) = −
∑

0≤2r+1≤dim(k)

fff2r+1(k), m(χχχ(K)) =
∑

0≤2r≤dim(k)

fff2r(k).

Proof of Formula (3.21). Applying (3.15) to Q = χχχ directly, one obtains

the first part of (3.21). To obtain the second part we choose to present a different

argument for the purpose of cross verification. Recall that given indeterminates

x1, . . . , xm, we have the following multinomial formula (c.f. [13])

(3.24) (x1 + . . .+ xm)k =
∑

α=(α1,...,αm),
|ααα|=k

(
k

α

)
xα1
1 . . . xαm

m ,

where
(
k
α

)
= k!/α1! . . . αm!, αi ≥ 0, |ααα| =

∑
i

αi and α form all possible partitions

of k. Let ααα have coordinates indexed by f(n) (i.e. faces of ∆n). A direct
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application of (3.24) to (2.10) yields

(χχχ)k =
∑

ααα=(αI)
|ααα|=k

(
k

ααα

) ∏
I∈f(n)

((−1)|I|−1eI)
αI(3.25)

=
∑

ααα=(αI)
|ααα|=k

(
(−1)

∑
I∈s(α)

(|I|−1)αI
)(

k

α

)
es(α),

where we denoted

(3.26) s(ααα) = {I ∈ f(n) | αI > 0}.

Observe that for any ααα and ααα′,

(3.27) es(ααα) = es(ααα′), in RI [eI ],

if and only if the corresponding antichains are the same i.e. ŝ(ααα) = ŝ(ααα′). Fix

a chain representative of some complex s ∈ Cn and let ŝ be the corresponding

antichain. Clearly, ŝ ⊆ s, consider partitions ααα of k which are in the form

ααα = βββ + γγγ where βββ = (βI), satisfies: βI > 0 for I ∈ ŝ and βI = 0 for I ∈ s− ŝ,

and γγγ = (γI) satisfies: γI ≥ 0 for I ∈ s− ŝ and γI = 0 for I ∈ ŝ. The following

claim immediately follows:

Claim. Given s ∈ Cn and any partition ααα of k indexed by f(n), we have

Π̃(s(ααα)) = s if and only if ααα has the above decomposition: βββ + γγγ.

Therefore, the cs,k(χχχ) coefficient of the chain representative of (χχχ)k is a sum

of coefficients of es(ααα) for all ααα in the form βββ + γγγ. Applying notation (3.17) we

may express it as

(3.28) (χχχ)k =
∑
s∈Cn

cs,k(χχχ) es,

where

cs,k(χχχ) =



∑
(βββ,γγγ)=(β1,...,βrtop ,γ1,...,γrlow ),

|βββ|+|γγγ|=k, βi>0, γj≥0

(−1)

rtop∑
i=1

(|Ii|−1)βi+
rlow∑
j=1

(|Jj |−1)γj
(
k

βββ,γγγ

)

if k ≥ r,
0 otherwise,

where we indexed the faces of ŝ in s by {Ii}, i = 1, . . . , rtop and faces of s − ŝ

in s by {Jj}, j = 1, . . . , rlow. To set up the inclusion–exclusion principle, note

that the sum for cs,k(χχχ) is a part of the larger sum (where we allow βi ≥ 0, and

(βββ,γγγ) = (β1, . . . , βrtop , γ1, . . . , γrlow)):
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(3.29)
∑
(βββ,γγγ)

|βββ|+|γγγ|=k,
βi≥0, γj≥0

(−1)

rtop∑
i=1

(|Ii|−1)βi+
rlow∑
j=1

(|Jj |−1)γj
(
k

βββ,γγγ

)

=

( rlow∑
i=1

(−1)(|Ii|−1) +

rtop∑
j=1

(−1)(|Jj |−1)
)k
.

We stratify the above sum with respect to number of βi’s strictly greater

than zero, and set up the inclusion–exclusion as follows. Let F = {1, . . . , rtop}
and define for any S ⊆ F , functions f , g (in (3.7), (3.8)) as

f(S) =
∑

(βββ,γγγ)=({βi},{γj})
|βββ|+|γγγ|=k, γj≥0,

βi>0, if i ∈ S, βi=0 if i 6∈ S.

(−1)

rtop∑
i=1

(|Ii|−1)βi+
rlow∑
j=1

(|Jj |−1)γj
(
k

βββ,γγγ

)
,

g(S) =

(∑
i∈S

(−1)(|Ii|−1) +

rlow∑
j=1

(−1)(|Jj |−1)
)k
.

Observe that
rlow∑
j=1

(−1)(|Jj |−1) = r+low − r
−
low,

which yields g(S) = (|S+|−|S−|+r+low−r
−
low)k where |S+|(|S−|) denotes number

of even (odd) dimensional faces of ŝ indexed by S. By (3.8) we obtain

f(F ) =
∑

S:S⊆F

(−1)rtop−|S|(|S+| − |S−|+ r+low − r
−
low)k.

Since there are r+top even dimensional faces and r−top odd dimensional faces in

ŝ, for a fixed i ∈ [0, r+top] and j ∈ [0, r−top] there are exactly
(r+top
i

)(r−top
j

)
subsets

S ⊆ F satisfying i = |S+|, j = |S−|. Thus the second part of (3.21) now follows

from f(F ) = cs,k(χχχ). �

As the last case of interest, we consider is the relative Euler characteristic

χχχrel = χχχrel(K, L) of a random pair (K, L). Denoting the characteristic functions

of K by {eI} and of L by {wJ}, (2.5) and (2.6) imply the following polynomial

expression

χχχrel =

n−1∑
d=0

(−1)k
( ∑
I∈fd(n)

(eI − wI)
)
.(3.30)

Analogously, as in the absolute case, the distribution of (K, L) is determined by

(3.31) ps,r = P(es = 1, wr = 1) = P(eswr = 1).
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The maximal constants for the range of χχχrel(K, L) are

(3.32) m(χχχrel) = m(χχχ)−m(χχχ) and m(χχχrel) = m(χχχ)−m(χχχ).

For convenience we state the following corollary of Theorem 3.3:

Corollary 3.5 (Distribution of χχχrel(K, L)). Given a random pair (K, L), the

distribution of χχχrel on [m(χχχrel),m(χχχrel)] is given as follows:

P(χχχrel = m(χχχrel) + j) =
∑

(s,r)∈Cn×Cn

as,r,j(χχχrel) ps,r,(3.33)

as,r,j(χχχrel) =

N∑
k=0

(vkj(χχχrel) cs,r,k(χχχrel)),

for j ∈ [0, N ], N = m(χχχrel)−m(χχχrel), where (using the notation of (3.17))

(3.34) E((χχχrel(K, L))k) =
∑

(s,r)∈Cn×Cn

cs,r,k ps,r, cs,r,k = cs,r,k(χχχrel),

cs,r,k =



∑
i∈[0,r+top(s)]
j∈[0,r−top(s)]
i′∈[0,r+top(r)]
j′∈[0,r−top(r)]

(−1)rtop(s)+rtop(r)−i−j−i
′−j′

·
(
r+top(s)

i

)(
r−top(s)

j

)(
r+top(r)

i′

)(
r−top(r)

j′

)
·((i− j) + (i′ − j′) + (r+low(s)− r−low(s))

+(r+low(r)− r−low(r)))k, for k ≥ r,
0 for k < r.

The proof is as fully analogous the previous arguments and is omitted. Note

that the expression for cs,r,k(χχχrel) in (3.34) simplifies to (3.21) whenever L = ∅.

4. Coverings of one-complexes and the Euler characteristic

Given a deterministic covering of a finite simplicial complex X, i.e. a collec-

tion of compact connected subsets A = {A{i}}, we can define its nerve, N (A) as

a finite complex where vertices {i} are just elements A{i} of the covering and a

k-face I = {i1, . . . , ik+1} belongs to N (A), if and only if A{i1}∩ . . .∩A{ik+1} 6= ∅
(c.f. [33]).

The following result, due to Borsuk [6], is of fundamental importance in

algebraic topology

Lemma 4.1 (The Nerve Lemma [6]). Let A = {A{i}} be a covering of X and

N (A) the associated nerve. If all intersections A{i1} ∩ . . . ∩ A{ik+1}, for k > 0

are contractible, then N (A) has a homotopy type of the subspace |A| =
⋃
i

A{i}

of X.
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Figure 1. An example of a 1-complex with marked realization of a good cover

Recall that a subset of X is contractible if it can be deformed continuously

to a point [18]. If A = {A{i}} satisfies the assumption of this lemma then we

call it a good covering (of X).

In the remainder of this section we collect elementary facts from algebraic

topology and show how the Euler characteristic of N (A) provides a criteria for

a good deterministic covering A = {A{i}}, to completely cover a connected

1-complex X, the proofs are basic and are either omitted or deferred to Appen-

dix A.

4.1. Coverage and the nerve complex. We assume throughout that X

is a connected 1-complex (c.f. [18, p. 103]) homeomorphic to a multi-graph, and

denote ∂X the set of leaf vertices of X.

Proposition 4.2. Let {A{i}} be a good covering of X, |A| =
⋃
i

A{i}, denote

U = |A| and V = |A|c. Then,

(4.1) β1(X) ≥ β1(U),

and

(4.2) χ(X) ≤ χ(U).

Moreover, if the inequality in (4.1) is strict then (4.2) is also strict.

By the Nerve Lemma, an obvious necessary condition for X ⊆ |A| is

(4.3) χ(X) = χ(|A|) = χ(N (A)).

If ∂X = ∅, we have the following

Corollary 4.3. Suppose X satisfies ∂X = ∅, then (4.3) implies X ⊆ |A|.

When ∂X 6= ∅, the condition (4.3) is insufficient; however we may adjust it

by using the relative version χrel(X, ∂X) of the Euler characteristic (2.5). Note

that for the pair (X, ∂X), χrel(X, ∂X) reduces to

χrel(X, ∂X) = χ(X)−#{∂X},
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where #{∂X} is a number of points in ∂X. By [18, p. 102] we may consider the

quotient complex X ′ = X/∂X which is a 1-complex ([18, p. 103]) with ∂X ′ = ∅,
and

χrel(X, ∂X) = χ(X/∂X).

Let q : X 7→ X ′ be the quotient projection, then the covering A of X projects to

the covering A′ of X ′. It is not true that A′ is automatically a good covering of

X ′, one may easily find examples where this is the case. However, the following

fact is available (proof left to the reader).

Lemma 4.4. Given A = {A{i}} is a good covering of X, let for every i

the intersection A{i} ∩ ∂X be either empty or a point (in other words A∂X =

{A{i} ∩ ∂X} is a good covering of ∂X). Then the quotient covering A′ of X ′ is

also good.

Consequently, we say that A is a good covering of the pair (X, ∂X) provided

A is good for X and A∂X is good for ∂X. Then by the above lemma A′ is good

for X ′ and Corollary 4.3 says that A′ covers X ′, if and only if χ(|A′|) = χ(X ′).

It leads us to the following generalization of Corollary 4.3.

Lemma 4.5. Given a good covering A = {A{i}} of (X, ∂X) let |A| =
⋃
i

A{i}.

Then X ⊆ |A|, if and only if

(4.4) χrel(N (A),N (A∂X)) = χrel(X, ∂X)

or equivalently

(4.5) χ(|A|) = χ(X)−#{∂X}+ #{|A| ∩ ∂X}.

Remark 4.6. Equivalently, the coverage condition for (X, ∂X) can be ob-

tained by looking at the covering Â, equal to a union of A and the boundary

vertices: ∂X = {x1, . . . , x#{∂X}}. Then Â is good if satisfies the conditions of

Lemma 4.4

χ(|Â|) = χ(|A| ∪ ∂X) = χ(|A|) + χ(∂X)− χ(|A| ∩ ∂X)

= χ(|A|) + #{∂X} −#{|A| ∩ ∂X},

which together with (4.3) leads us to (4.4).

4.2. Coverage of X by ε-balls. Vietoris–Rips complex. A special case

of interest (see e.g. [34], [10]) is when a connected 1-complex X ought to be

covered by ε-size neighborhoods, and ε can be sufficiently small. In such cases the

topology of N (A) simplifies and one may work with Vietoris–Rips complex [19],

as we show in the following paragraphs.

Recall that given a simplicial complex K its Vietoris–Rips complex R(K),

[19] is defined to be a maximal simplicial complex (with respect to inclusion)

which has the same 1-skeleton as K. In practice, this means that R(K) is
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obtained by filling every k-clique in the graph K(1) with a (k − 1)-dimensional

face, e.g. 3-cycles are filled with 2-simplices in R(K), etc.

We will consider a finite covering A = {A{1}, . . . , A{n}} of (X, dX) by closed

ε-balls. Possible shapes of such balls for ε sufficiently small are depicted on

Figure 2.

Figure 2. Possible shapes of closed ε-balls in X with the intrinsic distance dX

Let us denote by R(A) the Vietoris–Rips complex of the nerve of the cover,

and record the following

Proposition 4.7. Suppose C is the girth of X ′, i.e. the length of the shortest

cycle in the quotient complex X ′ = X/∂X. Then:

(a) if ε < C/4, the covering A by ε-balls in (X, dX) is a good cover.

(b) if ε < C/6, the nerve N (A) of A equals R(A).

Proof. For (a) we must show that every k-fold intersection A{i1}∩. . .∩A{ik}
has a homotopy type of a point. Because diam(A{i}) < C, A{i} is a connected

tree and therefore contractible, which shows the claim for k = 1.

For k = 2, first suppose that a nonempty intersection A{i} ∩ A{j} is dis-

connected i.e. dim(H̃0(A{i} ∩ A{j})) ≥ 1 (where H̃∗( · ) denotes the reduced

homology groups c.f. [18]). Since A{i} and A{j} are connected, the reduced

Mayer–Vietoris sequence for A{i} ∩A{j} then simplifies to

0→ H̃1(A{i} ∪A{j})→ H̃0(A{i} ∩A{j})→ H̃0(A{i})⊕ H̃0(A{j}) ∼= {0},

We obtain H̃1(A{i} ∪ A{j}) ∼= H̃0(A{i} ∩ A{j}) ∼= Rk for some k ≥ 1, which

implies that A{i} ∪ A{j} contains a nontrivial cycle. This however contradicts

the fact that diam(A{i} ∪A{j}) ≤ 4 ε < C. Thus k has to vanish and A{i} ∩A{j}
must be connected, contain no cycle, and is therefore contractible. Now, for

an induction step with respect to k, it suffices to apply the previous step to

A′ = A{i1} ∩ . . . ∩A{ik} and A′′ = A{ik+1}.

Before proving (b), recall the 1-dimensional version of Helly’s Theorem (c.f.

[11]) implies that given a finite collection of intervals {C1, . . . , Cn} on R, if the
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intersection of each pair is nonempty, i.e. Ci ∩ Cj 6= ∅, for every 1 ≤ i, j ≤ n,

then
n⋂
i=1

Ci 6= ∅.

First consider the case of 3-fold intersections, i.e. supposing that A{j} ∩
A{k} 6= ∅, 1 ≤ k 6= j ≤ 3. We aim to show that A{1} ∩ A{2} ∩ A{3} 6= ∅.
Observe that V = A{1} ∪A{2} ∪A{3} is connected and by the argument of (a) it

must be a connected tree, i.e. contains no cycles. Let p1,2, p2,3, p1,3 be distinct

points in V such that pi,j ∈ A{i} ∩ A{j}. Note that for each pair: pi,j , ps,t
there exists a path in V connecting these points. We now consider two cases:

(1) one of these paths, we denote by l, contains all three points pi,j , then the

collection {Ci}, Ci = l ∩ A{i}, i = 1, 2, 3 satisfies the assumptions of Helly’s

Theorem which implies the claim. (2) none of the paths between paris of pi,j ’s

contain the third point. Consider two shortest paths: l1 between p1,2 and p2,3,

and l2 between p1,2 and p2,3 then l1,2 = l1 ∩ l2 is a segment between p1,2 and

some vertex of v ∈ V . The vertex v has to be in one of A{j}’s, without loss of

generality, suppose v ∈ A{2} (as other cases are analogous.) Then if v is also in

A{1} or A{3} we can take p1,2 or p2,3 equal to v and use (1). If v /∈ A{1} and

v /∈ A{3} then we observe that either A{1} or A{3} is disconnected which is not

the case. This concludes the proof of (b) for the 3-fold case, the general case can

be obtained by induction. �

5. Complete coverage probability

In this section we interpret results of Sections 4.1–4.2 in the random setting.

5.1. Random coverings and the random nerve. Suppose A = {A{i}}
is a random covering of a metric space X. We define the nerve N (A) of A by

defining a probability measure PA on Cn via the process elucidated in Section 1

in (1.3) and (1.4). Observe that given a subspace Y ⊆ X we obtain an induced

random covering AY from A:

AY = {A{1} ∩ Y, . . . ,A{n} ∩ Y }

The definition of PA extends to pairs (N (A),N (AY )) in an obvious way. In

particular given (s, r) ∈ Cn × Cn, we set

ps,r = P({(k, l) ∈ Cn × Cn | s ⊆ k, r ⊆ l})(5.1)

= P
(
∀ I ∈ s

{⋂
i∈I

A{i} 6= ∅
}
,∀ {J} ∈ r

{ ⋂
j∈J

A{j} ∩ Y 6= ∅
})

.

Clearly, N (A) is a random complex, and (N (A),N (AY )) is a random pair. We

say a finite random covering {A{i}}i=1,...,n of X is good if and only if it is a good

covering on X almost surely. Further, we say a random covering A = {A{i}} of
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a pair (X, ∂X) is good provided it is a good covering of X and A∂X is a good

covering of ∂X. |A| will denote the random set
⋃
i

A{i}.

5.2. Proof of the extended version of Theorem 1.2. Let χχχrel(A,A∂X)

be the relative Euler characteristic of the pair (N (A),N (A∂X)). We may now

state Theorem 1.2 for a general 1-complex X.

Theorem 5.1 (Coverage probability of a 1-complex X with ∂X 6= ∅). Let

A = {A{i}}, i = 1, . . . , n be a random good covering of the pair (X, ∂X). Then,

the range of χχχrel(A,A∂X) can be restricted to

(5.2) m = χrel(X, ∂X) ≤ χχχrel(A,A∂X) ≤ n = m,

and the complete coverage probability equals

(5.3) P(X ⊆ |A|) = P(χχχrel(A,A∂X) = χrel(X, ∂X)) =
∑

(s,r)∈Cn×Cn

as,r(χχχrel) ps,r,

where as,r(χχχrel) = as,r,0(χχχrel) are defined in (3.33) of Corollary 3.5, and ps,r
in (5.1).

Proof. Under the given assumptions, Lemma 4.5 implies

(5.4) P(X ⊆ |A|) = P(χχχrel(A,A∂X) = χrel(X, ∂X)).

At this point the formula (3.33) of Corollary 3.5 can be applied to the ran-

dom pair (N (A),N (A∂X)) to give an exact expression for P(χχχrel(A,A∂X) =

χrel(X, ∂X)). In this particular case the range of χχχ(A,A∂X) is given by (5.2),

where the lower bound follows from Proposition 4.2, and the upper bound cor-

responds to the case when elements of the covering A are pairwise disjoint and

contained in X − ∂X, i.e. N (A) is just n distinct points. The formula for ps
in (1.9) is a direct consequence of Proposition 4.7, (see also Remark 5.3). �

Remark 5.2. Note that N (A∂X) generally contains high dimensional faces

and therefore the chain expansion of χχχkrel in RI [eI , wJ ] involves monomials in es
and wr. To simplify this expansion one may observe that N (A∂X) has a ho-

motopy type of finitely many points or is empty. Specifically, from (4.5) we

have

χχχrel(A,A∂X) = χχχ(A)−#{A ∩ ∂X}.

The random variable #{A ∩ ∂X} (counting points in A∂X) can be expressed as

follows:

(5.5) χχχrel(A,A∂X) = χχχ(A)−
q∑
i=1

w{i}.

where {1, . . . , q} label points of ∂X and {w{i}}i=1,...,q are the indicator functions

of points in A∂X . Consequently, we may derive expressions for powers χχχkrel as
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polynomials in R[eI , w{i}]. These expansions of χχχkrel involve products of es and

w{i} only, which may provide a different way to express P(X ⊆ |A|).

Remark 5.3. In order to be more explicit about how the computation of ps,r
simplifies in the case the nerve N (A) equals the Vietoris–Rips complex R(A),

let us suppose A{i} are ε-radius closed balls in X with random centers ξi ∈ X.

In R(A) any simplex indexed by I = {i1, . . . , ik} is determined by its edges, and

an edge {i, j} in R(A) occurs if and only if |ξi−ξj | ≤ 2ε (where | · − · | is a short

notation for the distance dX( · , · ) on X). For instance, we have

pI = P(A{i1} ∩ A{i2} ∩ . . . ∩ A{ik} 6= ∅) = P(|ξis − ξit | ≤ 2ε for all s, t, s 6= t).

Enumerate points in ∂X as follows {x1, . . . , xM}, M = #{∂X}. Now, ps,r given

in (5.1) is just a volume of the set

As,r = {(ξ1, . . . , ξn) ∈ Xn | ∀ I ∈ s ∀ s, t ∈ I, s 6= t |ξs − ξt| ≤ 2ε,

∀ I ∈ r ∃ 1 ≤ s ≤M ∀ i ∈ I |ξi − xs| ≤ ε},

which in the case P = dξ1 . . . dξn (i.e. ξi’s are independent) can be computed via

ordinary calculus techniques or estimated numerically. These formulas further

simplify, if ∂X = ∅, but we do not attempt these computations here.

6. Proof of Theorem 1.3

In this section we use the method of finite differences, c.f. [1], to give an

upper bound for the complete coverage probability in terms of the expected

Euler characteristic and prove Theorem 1.3. Let {A{i}}, i = 1, . . . , n be a finite

good covering of X, consider the following shifted version of the relative Euler

characteristic χχχrel(A,A∂X) of (N (A),N (A∂X)):

χχχ0 = χχχrel(A,A∂X)−m,

where m = χrel(X, ∂X). From (2.7) we obtain

(6.1) χχχrel(A,A∂X) = βββ0 − βββ1,

where βββ∗ = βββ∗(A,A∂X) stand for the random relative Betti numbers. Re-

call that {eI , wJ}, I, J ∈ f(n) stand for the indicator functions of faces in

(N (A),N (A∂X)).

We will consider a filtration by random vectors Vi denoting (eI(i), fJ(i)) where

I(i), J(i) ∈ f(n) are subsets of {1, . . . , i}. Note that Vi reveals subcomplexes in

Cn spanned by vertices 1 through i. By analogy to the setting of Erdős–Rényi

model [1], we set up a vertex exposure martingale, associated with χχχ0 and {Vi}
as follows:

(6.2) Y0 = µ0 = E(χχχ0), Yi = E(χχχ0 | Vi), i = 1, . . . , n.
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Clearly, Yn = χχχ0 and the sequence {Yi} is an instance of Doob’s martingale [1].

Recall the following variant of the Azuma–Hoeffding inequality [1], [3], for {Yi}:

(6.3) P(Yn − Y0 ≤ −a) ≤ exp

 −a2

2
n∑
i=1

c2i


where a > 0, and ci is a difference estimate

(6.4) |Yi − Yi−1| ≤ ci.

Exposing a vertex (or a face containing it) changes βββ0 by at most 1 and βββ1 by

at most βββ1(X, ∂X) = 1− χrel(X, ∂X) thus we obtain

|Yi − Yi−1| ≤ 2 + |χrel(X, ∂X)|.

Let a = µ0, then

P(χχχ0 = 0) = P(χχχ0 ≤ µ0 − a) = P(Yn − Y0 ≤ −a).

Using the above estimates for ci and (6.3) yields

P(X ⊆ |A|) = P(χχχ0 = 0) ≤ exp

(
−µ2

0

2n(|χrel(X, ∂X)|+ 2)2

)
,

which completes the proof of Theorem 1.3.

Appendix A. Auxiliary proofs for Section 4

Proof of Proposition 4.2. Consider the Mayer–Vietoris sequence applied

to U and V :

0→ H1(U ∩ V )
j1−→ H1(U)⊕H1(V )→ H1(X)

→ H0(U ∩ V )→ H0(U)⊕H0(V )→ H0(X)→ 0.

Since U ∩ V = ∂A is just finitely many points, in real coefficients we have

0 −→ Rβ1(U) ⊕ Rβ1(V ) d1−→ Rβ1(X) −→ · · ·

From (2.7),

χ(X) = 1− β1(X), χ(U) = β0(U)− β1(U), χ(V ) = β0(V )− β1(V ).

Since d1 is injective we have β1(U) + β1(V ) ≤ β1(X), which implies −β1(X) +

β1(U) ≤ 0. This proves (4.1).

Now to prove (4.2) we have two cases to consider: β0(U) > 1 and β0(U) = 1.

First assume β0(U) > 1. We argue by contradiction. That is, suppose χ(U) ≤
χ(X). Then β0(U)− β1(U) ≤ β0(X)− β1(X) so that

β0(U) ≤ β1(U) + 1− β1(X).

But β1(A)− β1(X) ≤ 0 by the previous lemma. Therefore we obtain β0(U) ≤ 1

contrary to our assumption.
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Now assume β0(U) = 1. Then χ(U) = 1 − β1(U) and χ(X) = 1 − β1(X)

which yields

χ(U)− χ(X) = −β1(U) + β1(X) ≥ 0.

Thus χ(U) ≥ χ(X). �

Proof of Corollary 4.3. Notice that generally X (even with ∂X 6= ∅)
is homotopy equivalent to a bouquet of circles. If |A|c 6= ∅ in X, then (since

|A|c is open) we pick p ∈ |A|c which is not a vertex of X. Then p is in the

interior of one of the edges which we denote by e. We may homotopy X away

from the interior of e to a bouquet of r circles S =
r∨
S1 in such a way that p

is away from the wedge point (just collapse along the edges different from e).

From Proposition 4.2,

β1(|A|) ≤ β1
( r−1∨

S1 ∨ (S1 − {p})
)
< β1(S) = β1(X).

Thus β1(|A|) < β1(X) and therefore χ(X) < χ(|A|), which implies the claim. �

Proof of Lemma 4.5. Observe that X ⊆ |A′| to X ⊆ |A|. Indeed, since

|A| is closed if X − |A| 6= ∅ then we may choose a point in x ∈ X − |A| such that

x 6∈ ∂X, since the projection q is a homeomorphism on X−∂X, we conclude that

q(x) 6∈ X ′ − |A′|. Next, Equation (4.4) follows immediately from Corollary 4.3,

the fact that A and A∂X are good and the identities

χ(|A′|) = χrel(|A|, |A| ∩ ∂X), χ(X ′) = χrel(X, ∂X).

Now, thanks to (2.5) we compute

χrel(X, ∂X) = χ(X)−#{∂X},

χrel(|A|, |A| ∩ ∂X) = χ(|A|)−#{|A| ∩ ∂X},

which yields (4.5). �
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