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INDEX THEORY FOR LINEAR ELLIPTIC EQUATION

AND MULTIPLE SOLUTIONS

FOR ASYMPTOTICALLY LINEAR ELLIPTIC EQUATION

WITH RESONANCE

Yuan Shan — Keqiang Li

Abstract. In this paper, we consider the existence and multiplicity of so-

lutions to the elliptic equation with resonance. We classify the linear elliptic
equation and obtain some new conditions on the existence and multiplicity

for asymptotically linear elliptic equation by using critical point theory.

1. Introduction and main results

In this paper, we consider the following problem:

∆u+ f(x, u) + f1(x, u) = 0,(1.1)

u|∂Ω = 0,(1.2)

where Ω ⊂ Rn is a bounded open domain, with smooth boundary ∂Ω, ∆u =
n∑
i=1

∂2

∂x2
i
u and f : Ω × R → R is a L1-Carathéodory function, i.e. f(x, · ) is con-

tinuous on R for almost every x ∈ Ω, f( · , u) is measurable on Ω for each u ∈ R.

Moreover, for any constant r > 0, there exists some function ρr ∈ L1(Ω) such
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that |f(x, u)| ≤ ρr(x) for almost every x ∈ Ω and all u ∈ R with |u| ≤ r. And

f1 : Ω× R→ R is also a Carathéodory function such that

|f1(x, u)| ≤ g̃(t)

for x ∈ R and almost every t ∈ Ω, where g̃ ∈ L2(0, 1). We look for the weak

solutions of (1.1) and (1.2) which are the same as the critical points of the

functional

(1.3) I(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx−
∫

Ω

F1(x, u) dx,

for all u ∈ H1
0 (Ω), where

F (x, u) =

∫ u

0

f(x, t) dt, F1(x, u) =

∫ u

0

f1(x, t) dt

and H1
0 (Ω) is the Sobolev space with the norm

‖u‖ = ‖∇u‖2 =

(∫
Ω

|∇u|2 dx
)1/2

.

Many results on the existence of solutions for Duffing equation and elliptic

equation satisfy asymptotically linear condition. For the non-resonant nonlin-

earities, we refer to [6], [16]. For the resonant nonlinearities, we refer to [10]–[13],

[17], [18]. It is remarkable that there are great deal of approaches for proving

these results, including topological degree technique, the critical point theory

and the Morse theory. However, there are few results on the multiple solutions

to equations with resonance.

We assume that f is asymptotically linear at infinity: there exist functions

a, b ∈ L∞(Ω) such that

(f1) a(x) ≤ f(x, u)

u
≤ b(x), for all x ∈ Ω, |u| > r > 0.

It should be mentioned here that this type condition has been widely consid-

ered in Hamiltonian systems. A quantitative way to measure the asymptotically

linear condition is the index theory. As in [6], an index for the second order

linear Hamiltonian systems was defined. And in [7], an index theory for first

order linear Hamiltonian systems was developed. In [4], [14], [15], by Conley,

Zehnder and Long, an index theory for symplectic path was defined.

In [8], an index theory was established to investigate the self-adjoint operator

equation with finite Morse index which can also be used to study second-order

Hamiltonian system and elliptic equation. Since the functional defined in (1.3)

is bounded from below, we establish the classification theory for the associated

linear elliptic equation of (1.1) following the ideas of [6] and [8]. This paper

is largely motivated by the work of [10] in which the existence of solutions to

a semilinear elliptic equation with double resonance was proved.
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In this paper, we also consider problem (1.1) and (1.2) with resonance under

the asymptotically linear condition (f1). Obviously, (1.1) does not satisfy the

linear growth condition: there exists a constant C0 > 0 such that

|f(x, u)| ≤ C0(1 + |u|), for all u ∈ R, x ∈ Ω.

In order to obtain better results than the earlier works, an index theory for

associated linear elliptic equations needs to be developed. Since the functional

defined in (1.3) is bounded from below, the index theory for linear elliptic equa-

tion will be established by using Morse index. Thanks to this index theory, the

existence and multiplicity of critical points of (1.3) were established. And our

main results are obtained for the case when I is even.

For any b(x) ∈ L∞(Ω), we consider the following linear elliptic equation:

(1.4) ∆u+ b(x)u = 0, u|∂Ω = 0.

Set E = H1
0 (Ω). Define

(1.5) qb(u, v) =

∫
Ω

(∇u(x),∇v(x)) dx−
∫

Ω

(b(x)u(x), v(x)) dx,

for all u, v ∈ E.

Definition 1.1 ([8, Definition 2.5.1]). For any b ∈ L∞(Ω), we define

ν(b) = dim ker(qb) = dim{u | qb(u, v) = 0, for all v ∈ E},

i(b) =
∑
λ<0

ν(b+ λ).

We call i(b) the index and ν(b) the nullity of b, respectively.

For any q ∈ L∞(Ω), let λ1(q) ≤ λ2(q) ≤ . . . ≤ λk(q) ≤ . . . be the eigenvalues

of (1.2) and

−∆u− q(x)u = λu.

For any a, b ∈ L∞(Ω), which satisfy (f1), the non-resonant condition

λk(a) < 0, λk+1(b) > 0

can be rewritten as

i(a) = i(b) = k, ν(b) = 0,

and the double-resonance condition

λk(a) ≤ 0, λk+1(b) ≥ 0

can be rewritten as

i(a) + ν(a) = i(b) = k.

We will express this in Proposition 2.2.4 after necessary discussion on the pro-

perty of the index.
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Throughout this paper, for any a1, a2 ∈ L∞(Ω), we write a1 ≤ a2, if a2(x)−
a1(x) ≥ 0, for almost every x ∈ Ω; we write a1 < a2, if a1 ≤ a2, and a2(x) −
a1(x) > 0 holds on a subset of [0, 1] with nonzero measure. In condition (f1),

without loss of generality, we assume that Ω0 = {x ∈ Ω | a(x) 6= b(x)} is not

empty. Thus, by definition, we have a < b. Now we use the index to reach our

main results.

Theorem 1.2. Suppose that condition (f1), condition:

(f2) i(b) = i(a) + ν(a),

and the following generalized Landesman–Lazer conditions:

(f+3 ) lim
‖v‖→∞

∫
Ω

[F (x, v(x)) + F1(x, v(x))− a(x)

2
v2(x)] dx = +∞, v ∈ ker(qa),

(f−3 ) lim
‖v‖→∞

∫
Ω

[F (x, v(x)) + F1(x, v(x))− b(x)

2
v2(x)] dx = −∞, v ∈ ker(qb),

are satisfied. Then problem (1.1)–(1.2) has at least one weak solution for n ≤ 4.

Corollary 1.3. Under the assumptions of Theorem 1.2, if f1(x, u) = 0,

problem (1.1)–(1.2) has at least one weak solution for any n ∈ N.

Remark 1.4. (a) Due to the Sobolev inequality

‖u‖Lq ≤ C(n, p)‖u‖w1,p ,

with q = np/(n− p), we restrict n ≤ 4, when f1 6= 0.

(b) Note that Corollary 1.3 is similar to Theorem 1.1 in [10], but for different

a and b. In this paper we consider a more general form of a, instead of a is

a continuous function in [10], we assume that a ∈ L∞(Ω). In this sense, our

result extends the result in [10].

Example 1.5. Suppose that n = 1, Ω = (0, 1). Let t1 ∈ (0, 1) be fixed,

a(x) =


π2

4t21
if x ∈ (0, t1),

π2

4(1− t1)2
if x ∈ (t1, 1).

h(x, u) =

ue−u + sinx if u < 0,

arctanu+ sinx if u > 0.

The following problem

u′′ + a(x)u+ h(x, u) = 0, u(0) = 0 = u(1)

has at least one solution. In fact, let

u0(t) = sin
π

2t1
t for t ∈ (0, t1),

u0(t) = sin

(
π

2(1− t1)
(t− t1) +

π

2

)
for t ∈ (t1, 1).

Then u = u0(t) is a nontrivial solution of

u′′ + a(x)u = 0, u(0) = 0 = u(1),
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and by Definition 1.1, we have i(a) = 0, ν(a) = 1 and ker(qa) = {cu0 | c ∈ R}.
All the assumptions of Theorem 1.2 are satisfied. Hence, problem (1.1)–(1.2)

has at least one solution. Especially, a(x) is a continuous function if and only if

t1 = 1/2.

Theorem 1.6. Under the assumptions of Theorem 1.2, for n < 4, if further,

f(−x) = −f(x), f(0) = θ and f satisfies following condition:

(f4) there exists A(x, u) ∈ C(Ω× R,R) such that

f(x, u) + f1(x, u) = A(x, u)u+ o(|u|) as |u| → 0,

A(x, u) ≤ a1(x),

with i(a) − ν(a) > i(a1) + ν(a1), then (1.1)–(1.2) have at least i(a) −
i(a1)− ν(a)− ν(a1) pairs of weak solutions.

Corollary 1.7. Under the assumptions of Corollary 1.3, if f1(x, u) = 0, for

any n ∈ N, we have that problem (1.1)–(1.2) has at least i(a)−i(a1)−ν(a)−ν(a1)

pairs of weak solutions.

From these two corollaries, our paper can be regarded as the further work

and generalization of [10].

This paper is organized as follows: In Section 2, we introduce some prelimi-

naries including the index theory and some theorems about critical point theory

that we need in the proofs. In Section 3, we will prove Theorems 1.2 and 1.6.

2. Index theory for linear elliptic equation

In this section, we first decompose the space E by qb which is defined in (1.5).

For any u, v ∈ E if qb(u, v) = 0, we say that u and v are qb-orthogonal. For

any two subspaces E1 and E2 of E, if qb(u, v) = 0, for any u ∈ E1, v ∈ E2, we

say that E1 and E2 are qb-orthogonal.

Proposition 2.1. For any b ∈ L∞(Ω), the space E has a qb-orthogonal

decomposition

E = E+(b)⊕ E0(b)⊕ E−(b),

such that qb is positive definite, zero and negative definite on E+(b), E0(b) and

E−(b), respectively. Moreover, E0(b) and E−(b) are finitely dimensional.

Remark 2.2. The decomposition was first used in [6] to investigate second

order Hamiltonian system. This was further used in studying self-adjoint oper-

ator equation with finite Morse index in [8]. We will present the proof that we

needed in the study of the properties of index and the expression of resonant

conditions.
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Proof. Let λ0 be a positive number satisfying λ0 > b. The norm ‖ · ‖λ0

defined by an product

(2.1) (u, v)λ0
=

∫
Ω

(∇u(x),∇v(x)) dx+

∫
Ω

((λ0 − b(x))u(x), v(x)) dx,

for all u, v ∈ E, is equivalent to ‖ · ‖ and (E, ( · , · )λ0
) is a new Hilbert space.

Let Kλ0
(b) : E → E be an operator defined by

(2.2)

∫
Ω

(u(x), v(x))dx = (u,Kλ0
(b)v)λ0

, for all u, v ∈ E.

Here we use the Riesz representation theorem. Since E ↪→ L2 is compact em-

bedding, Kλ0
is self-adjoint and compact. By the spectral theory of self-adjoint

and compact operators, there exists a basis {ej} ⊂ E and µj(b) → 0 in R such

that

(2.3) (ei, ej)λ0
= δij , Kλ0

ej = µj(b)ej ,

and µj(b) = (ej ,Kλ0
ej)λ0

= ‖ej‖22 > 0.

For any x ∈
∞∑
j=1

cjej , from (2.1)–(2.3), a simple calculation shows that

qb(u, u) = (u, u)λ0 − λ0‖u‖22 =

∞∑
j=1

(1− λ0µj(b))c
2
j =

∞∑
j=1

(
1

µj(b)
− λ0

)
c2j‖ej‖22.

Set λj(b) = 1/µj(b)− λ0. From µj → 0 and µj > 0, we have that λj(b) → +∞
are positive except a finite number. Without loss of generality, we assume that

λ1(b) ≤ . . . ≤ λk(b) ≤ . . . Here the result holds, if we set

E−(b) :=

{ ∞∑
j=1

ξjej

∣∣∣∣ ξj = 0 if λj(b) ≥ 0

}
,

E0(b) :=

{ ∞∑
j=1

ξjej

∣∣∣∣ ξj = 0 if λj(b) 6= 0

}
,

E+(b) :=

{ ∞∑
j=1

ξjej

∣∣∣∣ ξj = 0 if λj(b) ≤ 0

}
. �

Remark 2.3. (a) The above decomposition E = E+(b) ⊕ E0(b) ⊕ E−(b) is

orthogonal with respect to ( · , · )2. To show the ( · , · )2 orthogonality, observe

that, take ei ∈ E+, ej ∈ E− for example

(ei, ej)2 = (ei,Kλ0
(b)ej)λ0

= λj(ei, ej)λ0
= 0.

(b) The subspace Ker(qa) and Ker(qb) in condition (f±3 ) can be expressed as

E0(a) and E0(b), respectively.

Definition 2.4. For any b ∈ L∞(Ω), we define i(b) = dimE−(b), ν(b) =

dimE0(b). We call i(b) and ν(b) the index and the nullity of b, respectively.
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Recall that for a bounded symmetric bilinear form φ defined on a Hilbert

space X, its Morse index and nullity are defined as m−(φ) = max{dimX1 |
X1 is a subspace of X such that φ(x, x) < 0, for any x ∈ X1\{θ}} and m0(φ) =

dim kerφ where kerφ = {x ∈ X | φ(x, y) = 0, for all y ∈ X}.
Applying [8, Proposition 2.1.3, Definition 2.5.1, Proposition 2.5.2], one can

prove

Proposition 2.5. For any b ∈ L∞(Ω), we have:

(a) i(b) =
∑

λi(b)<0

dimEi(b) =
∑
λ<0

ν(b + λ), where λi(b) is defined as in

Proposition 2.1. Moreover, i(b) = ]{i | λi(b)<0}, ν(b) = ]{i | λi(b)=0},
where ]S denotes the total number of elements in a set S.

(b) i(b) is the Morse index of qb.

(c) If b1 ≤ b2, then

i(b2)− i(b1) =
∑

λ∈[0,1)

ν(b1 + λ(b2 − b1)).

The summand denoted by I(b1, b2) is called the relative Morse index be-

tween b1 and b2.

(d) For any b1, b2 ∈ L∞(Ω), if b1 ≤ b2, we have i(b1) ≤ i(b2); if b1 < b2, we

have i(b1) + ν(b1) ≤ i(b2).

(e) There exists ε0 > 0 such that for any ε ∈ (0, ε0], we have

ν(b+ ε) = 0 = ν(b− ε), i(b− ε) = i(b), i(b+ ε) = i(b) + ν(b).

Proposition 2.6. For any a, b ∈ L∞(Ω) and a < b:

(a) λk(a) < 0, and λk+1(b) > 0 if and only if i(a) = i(b) = k and ν(b) = 0.

(b) λk(a) ≤ 0, and λk+1(b) ≥ 0 if and only if i(a) + ν(a) = i(b) = k.

(c) λk(a) = 0, and λk+1(b) = 0 if and only if i(a) + ν(a) = i(b) = k and

ν(b) 6= 0, ν(a) 6= 0.

Proof. (a) From Proposition 2.5(a), we have i(a) ≥ k, i(b) ≤ k. By Proposi-

tion 2.5(d), since a < b we have i(a) ≤ i(a) + ν(a) ≤ i(b). Hence i(a) = i(b) = k

and λk(b) < 0. From the monotonicity of λi(b) with respect to i, one has

λi(b) 6= 0 for all i. So ν(b) = 0.

(b) First, λk+1(b) ≥ 0, we have i(b) ≤ k. Since a < b, we have i(a) ≤ k and

λk+1(a) ≥ 0. If λk+1(a) = 0, then i(a) + ν(a) ≥ k + 1 and i(b) ≥ k + 1 and

λk+1(b) < 0. This is a contradiction. So λk+1(a) > 0. Second, λk(a) ≤ 0, we

have i(a) + ν(a) = k. Hence i(b) ≥ k and λk(b) < 0. From the discussion above,

we have i(a) + ν(a) = k = i(b).

(c) Case 1. λk(a) = 0, and λk+1(b) = 0.

Since λk(a) = 0, then i(a)+ν(a) ≥ k. For a < b, we have i(b) ≥ i(a)+ν(a) ≥
k and λk(b) < 0. Together with λk+1(b) = 0, we get i(b) = k and ν(b) 6= 0. Since
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λk+1(b) = 0, then i(b) ≤ k, and i(a) + ν(a) ≤ k. Hence λk+1(a) > 0. Together

with λk(a) = 0, we obtain i(a) + ν(a) = k and ν(a) 6= 0.

Case 2. If i(a) + ν(a) = k and ν(a) 6= 0, then λk(a) = 0. If i(b) = k and

ν(b) 6= 0, then λk+1(b) = 0. �

Proposition 2.7. Let a, b ∈ L∞(Ω) satisfy a < b and i(a) + ν(a) = i(b),

ν(a) 6= 0, ν(b) 6= 0. Then the space E has a decomposition:

E = E−(a)⊕ E0(a)⊕ E0(b)⊕ E+(b).

Proof. First we show that (E−(a)⊕ E0(a)) ∩ (E0(b)⊕ E+(b)) = ∅.
For any u ∈ (E−(a) ⊕ E0(a)) ∩ (E0(b) ⊕ E+(b)), we have qa(u, u) ≤ 0 and

qb(u, u) ≥ 0. Furthermore, from a < b, we get qa(u, u) > qb(u, u). This is

a contradiction.

Now we only need to show that for any u ∈ E, u = u1+u2 with u1 ∈ E−(a)⊕
E0(a) and u2 ∈ E0(b)⊕E−(b). Let {e1, · · · ek} be a basis of E−(a)⊕E0(a) and

k = i(a) + ν(a) = i(b). For each ei, we have the decomposition ei = e−i + e∗i ,

e−i ∈ E−(b), e∗i ∈ E0(b)⊕ E−(b). We claim that {e−i } are linear independent.

If not, there exists not all zero constants ci such that
k∑
i

cie
−
i = 0. Let

u =

k∑
i

ciei =

k∑
i

cie
∗
i 6= 0.

On the one hand,

qb(u, u) = qb

( k∑
i

cie
∗
i ,

k∑
i

cie
∗
i

)
≥ 0;

on the other hand, qa(u, u) ≤ 0. This contradicts to a < b. Hence, {e−1 , . . . , e
−
k }

are linear independent in E−(b) and {e−1 , . . . , e
−
k } are a basis of E−(b).

For any u ∈ E, u = u− + u∗ with u− ∈ E−(b), u∗ ∈ E0(b)⊕ E+(b),

u = u− + u∗ =

k∑
i=1

cie
−
i + u∗ =

k∑
i=1

ciei +

(
u∗ −

k∑
i

cie
∗
i

)
.

Here
k∑
i

ciei ∈ E−(a)⊕ E0(a) and u∗ −
k∑
i

cie
∗
i ∈ E0(b)⊕ E−(b).

This completes the proof. �

In order to prove Theorems 1.2 and 1.6, we introduce some lemmas about

the existence and multiplicity of critical points in [1].

Lemma 2.8 ([1, Theorem 2.3]). Suppose that f ∈ C ′(X,R) satisfies the fol-

lowing properties:
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(a) f satisfies condition (C) in [0,+∞],

(b) there exist a closed subset S ⊂ X and a Hilbert manifold Q ⊂ X with

boundary ∂Q which fulfill the following properties:

(i) There exist two constants β > α ≥ 0 such that

f(u) ≤ α, for all u ∈ ∂Q and f(u) ≥ β, for all u ∈ S,

(ii) S and ∂Q link,

(iii) sup
u∈Q

f(u) < +∞.

Then f possesses a critical value c ≥ β.

Here the condition (C) means: For every sequence {un} ⊂ X with

(2.4) I(un) being bounded, (‖u‖+ 1)I ′(un)→ 0 as n→∞

possesses a convergent subsequence. This weaken condition was introduced by

Cerami. This weakening of the Palais–Smale condition was proved to be essential

in the study of variational problems in the strong resonance case in [1]. The

condition (C) is actually sufficient to get a “deformation theorem”.

Lemma 2.9 ([1, Lemma 2.4]). Suppose that f ∈ C1(H,R) satisfies the fol-

lowing properties:

(a) f satisfies condition (C) in [0,+∞] and f(0) ≥ 0,

(b) there exist two closed subspaces H+, H− of H, with codimH+ < +∞,

and two constants c∞ > c0 > f(0) such that

(i) f(u) ≥ c0 for all u ∈ Sρ ∩H+,

(ii) f(u) < c∞ for all u ∈ H−,

(c) f is even.

Then, if dimH− ≥ codimH+, f possesses at least m = dimH−− codimH+ dis-

tinct pairs of critical points whose corresponding critical values belong to [c0, c∞].

3. Proofs of Theorems 1.2 and 1.6

Proposition 3.1. Under the assumptions of Theorem 1.2, the functional

defined in (1.3) satisfies the (C) condition.

Proof. We will prove the proposition by several lemmas following the argu-

ment in [10] with modifications. Assume that {un} ⊂ E satisfies I(un) bounded

and (‖un‖+1)I ′(un)→ 0. We first show that un is bounded in E. We develop a

contradiction argument, assume that ‖un‖ → ∞ as n→∞. By (f1), we obtain

|f(x, un)| ≤ c(1 + |un|), a.e. on Ω.

From (1.1), ∫
Ω

(∆un, un) dx =

∫
Ω

f(x, un)un dx+

∫
Ω

f1(x, un)un dx,
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and

‖un‖2 ≤
∫

Ω

|f(x, un)un| dx+

∫
Ω

|g̃(x)||un| dx

≤ c
∫

Ω

|un|+ |un|2 dx+

(∫
Ω

|g̃(x)|2
)1/2

‖un‖2 ≤ c‖un‖2 + c‖un‖22.

Hence, ‖un‖ ≤ c(‖un‖2 + 1). Thus, ‖un‖2 →∞ as n→∞. Let zn = un/‖un‖2.

Since E is compactly embedding in L2(Ω), there exist z ∈ E and a subsequence

such that

zn ⇀ z weakly in E, and zn → z strongly in L2, ‖zn‖2 = 1.

By (f2), let

cn(x) =
f(x, un(x))

un(x)
if |un(x)| ≥ r, cn(x) = a(x) if |un(x)| ≤ r.

There is a c ∈ L∞(Ω) and cn(x) ⇀ c(x) weakly in L∞(Ω) as n → ∞ by going

to subsequences if necessary. We have a(x) ≤ c(x) ≤ b(x), x ∈ Ω. By (1.3), for

any v ∈ E, we have

(I ′(un) \ ‖un‖2, v) =

∫
Ω

∇zn∇v dx

− 1

‖un‖2

∫
Ω

(f(x, un), v) dx− 1

‖un‖2

∫
Ω

(f1(x, un), v) dx.

Let n→∞. Standard computations show that∫
Ω

∇z∇v dx =

∫
Ω

c(x)zv dx,

which implies ν(c) 6= 0.

Case 1. a < c and c < b.

From Proposition 2.5, we have i(a)+ν(a) ≤ i(c) and i(c)+ν(c) ≤ i(b) which

contradicts to i(a) + ν(a) = i(b).

Claim. c(x) = a(x) almost everywhere on Ω.

We write

I(u) =
1

2

∫
Ω

|∇u|2dx− 1

2

∫
Ω

a(x)u2 dx−
∫

Ω

G(x, u) dx−
∫

Ω

F1(x, u) dx,

where G(x, u) =
∫ u

0
g(x, t) dt, g(x, t) = f(x, t)− a(x)t. Let c1n(x) = cn(x)− a(x).

Then c1n(x) ≥ 0 and c1n ⇀ 0 weakly in L∞(Ω). From Proposition 2.1, E−(a) is

finite dimensional, so (−qa(u−, u−))1/2 is equivalent to ‖ · ‖.
For any u =

∞∑
j=k

cjej ∈ E+(a), k = i(a) + ν(a) + 1, we have

qa(u, u) =

∞∑
j=k

(1− λ0µj(a))c2j ≥ (1− λ0µk(a))

∞∑
j=k

c2j = (1− λ0µk(a))‖u‖2.
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Lemma 3.2. There exists a constant δ > 0 such that

qa(u, u) ≤ −δ‖u‖2, for all u ∈ E−(a),

qa(u, u) ≥ δ‖u‖2, for all u ∈ E+(a).

From Proposition 2.1, un has a decomposition:

un = u+
n + u0

n + u−n , u∗n ∈ E∗(a), ∗ = +, 0,−.

Lemma 3.3. If c(x) = a(x) almost everywhere on Ω, we have ‖u+
n ‖2 +‖u−n ‖2

is bounded.

Proof. Using (2.4), we have

(3.1) (‖un + 1‖)〈I ′(un), u+
n − u0

n − u−n 〉 = o(1)‖u+
n − u0

n − u−n ‖.

By Lemma 3.2, we have

〈I ′(un), u+
n − u0

n − u−n 〉 = qa(u+
n , u

+
n )− qa(u−n , u

−
n )(3.2)

−
∫

Ω

g(x, un)(u+
n − u0

n − u−n ) dx−
∫

Ω

f1(x, un)(u+
n − u0

n − u−n ) dx

≥ δ(‖u+
n ‖2 + ‖u−n ‖2)−

∫
Ω

g(x, un)(u+
n − u0

n − u−n ) dx

−
∫

Ω

f1(x, un)(u+
n − u0

n − u−n ) dx.

Together with (3.1), we have

(3.3) δ(‖u+
n ‖2 + ‖u−n ‖2) ≤ c ‖u

+
n − u0

n − u−n ‖
‖un‖+ 1

+

∫
Ω

g(x, un)(u+
n − u0

n − u−n ) dx.

Since u+
n − u0

n − u−n = 2u+
n − un, simple computation shows that

(3.4)
‖u+

n − u0
n − u−n ‖

‖un‖+ 1
≤ c ‖u+

n ‖+ c, for n large enough.

Similar to [10, Lemma 2.4], we have

(3.5)

∫
Ω

g(x, un)(u+
n − u0

n − u−n ) dx ≤ c ‖u+
n ‖+

δ

4
‖u+

n ‖2 + c,

for n large. Now we estimate the last part of (3.2), for any M0 > 0,∫
|un|≤M0

f1(x, un)(u+
n − u0

n − u−n ) dx ≤
∫
|un|≤M0

g̃(x)|2u+
n − un| dx

≤
(∫
|un|≤M0

g̃2(x)

)1/2(∫
|un|≤M0

|2u+
n − un|2

)1/2

≤ c‖u+
n ‖+ c.



100 Y. Shan — K. Li

By the Sobolev inequality for n ≤ 4, E ↪→ L4,

∫
|un|≥M0

f1(x, un)(u+
n −u0

n−u−n ) dx ≤
∫
|un|≥M0

f1(x, un)

un
(u+2
n −(u0

n+u−n )2) dx

≤ 1

M0

∫
|un|≥M0

g̃(x)u+2
n dx ≤ 1

M0
c‖u+

n ‖24 ≤
1

M0
c‖u+

n ‖2 ≤
δ

4
‖u+

n ‖2,

for large constant M0. Hence,

(3.6)

∫
Ω

f1(x, un)(u+
n − u0

n − u−n )dx ≤ c‖u+
n ‖+

δ

4
‖u+

n ‖2 + c.

From (3.3)–(3.6), we have ‖u+
n ‖2 + ‖u−n ‖2 is bounded. �

Lemma 3.4. If ‖u+
n ‖2 + ‖u−n ‖2 is bounded, then I(un)→ −∞ as n→∞.

Proof. Since ‖u+
n ‖2 + ‖u−n ‖2 is bounded, we get

I(un) =
1

2

∫
Ω

|∇un|2 dx−
1

2

∫
Ω

a(x)u2
n dx−

∫
Ω

G(x, un)dx−
∫

Ω

F1(x, un) dx

≤ c+

∫
Ω

[
G

(
x,
u0
n

2

)
−G(x, un)

]
dx+

∫
Ω

[
F1

(
x,
u0
n

2

)
− F (x, un)

]
dx

−
∫

Ω

G

(
x,
u0
n

2

)
+ F1

(
x,
u0
n

2

)
dx.

From [10, Lemma 2.5], we obtain

(3.7)

∫
Ω

[
G

(
x,
u0
n

2

)
−G(x, un)

]
dx ≤ c.

In order to prove the boundness of
∫

Ω
[F1(x, u0

n/2)−F1(x, un)] dx, we follow the

proof of (3.7) closely. By the mean value theorem, we have∫
Ω

[
F1(x,

u0
n

2
)−F1(x, un)

]
dx =

∫
Ω

∫ 1

0

f1

(
x, t

u0
n

2
+(1− t)un

)(
u0
n

2
−un

)
dt dx.

Assume that hn = tu0
n/2 + (1− t)un, by |f1(x, u)| ≤ g̃(x), one has∫

|hn|≤M0

[
F1

(
x,
u0
n

2

)
− F1(x, un)

]
dx ≤

∫
|hn|≤M0

g̃(x)

∣∣∣∣u0
n

2
− un

∣∣∣∣ dt dx
=

∫
|hn|≤M0

g̃(x)

∣∣∣∣ 1

t− 2
hn +

1

t− 2
(u0
n − un)

∣∣∣∣ dt dx
≤ c
(∫
|hn|≤M0

|hn + (u−n + u+
n )|2

)1/2

≤ c.
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On the other hand,∫
|hn|≥M0

[
F1

(
x,
u0
n

2

)
− F1(x, un)

]
dx =

∫
|hn|≥M0

∫ 1

0

f1(x, hn)

(
u0
n

2
− un

)
dt dx

=

∫
|hn|≥M0

∫ 1

0

f1(x, hn)

hn

[
t

(
u0
n

2
− un

)2

+

(
u0
n

2
− un

)
un

]
dt dx

≤
∫
|hn|≥M0

g̃(x)

M0

[(
u0
n

2
− un

)2

+

(
u0
n

2
− un

)
un

]
dx.

By the elementary inequality,(
u0
n

2
− un

)2

+

(
u0
n

2
− un

)
un ≤ (u+

n + u−n )2.

We have∫
|hn|≥M0

[
F1

(
x,
u0
n

2

)
− F1(x, un)

]
dx ≤

∫
|hn|≥M0

g̃(x)

M0
(u+
n + u−n )2 dx

≤ c‖u+
n + u−n ‖2L4 ≤ c‖u+

n + u−n ‖2 ≤ c.

This together with the condition (f+3 ) gives I(un)→ −∞, as n→∞. �

Case 3. c(x) = b(x) almost everywhere on Ω.

This case is similar to Case 2. We have the following lemma.

Lemma 3.5. If c(x) = b(x) almost everywhere on Ω, then ‖u+
n ‖2 + ‖u−n ‖2 is

bounded and I(un)→ +∞ as n→∞.

Lemmas 3.4, 3.5 contradict to condition (2.4), which implies Cases 2 and 3

are also impossible. Hence the proof of Proposition 3.1 is completed. �

Proof of Theorem 1.2. We apply Lemma 2.11 to the functional I defined

by (1.3). Let X1 = E−(a) ⊕ E0(a), X2 = E0(b) ⊕ E+(b). Then E = X1 ⊕X2

and X1 is finite dimensional.

First, we have I(u)→ −∞ as ‖u‖ → ∞, u ∈ X1.

If not, there exists a sequence un = u−n + u0
n ∈ E−(a) ⊕ E0(a) such that

‖u‖ → ∞ and I(u) ≥ c.

I(un) =
1

2

∫
Ω

|∇un|2 dx−
1

2

∫
Ω

a(x)u2
n dx−

∫
Ω

G(x, un) dx−
∫

Ω

F1(x, un) dx,

= qa(u−n , u
−
n )−

∫
Ω

G(x, un) dx

∫
Ω

−F1(x, un) dx ≤ −δ‖u−n ‖2 + c.

Therefore, ‖u−n ‖2 is bounded. And by Lemma 3.4, we obtain I(u) → −∞, as

n→∞. This is a contradiction.

By Lemma 3.5, similar to the discussion above, we get I(un) → +∞ as as

‖u‖ → ∞, u ∈ X2.

Let Q = BR ∩X1, S = X2. Then ∂Q and S link. Thus it is easy to verify

the assumptions of Lemma 2.11. �
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Proof of Theorem 1.6. In order to prove Theorem 1.6, we only need to

check that the assumptions of Lemma 2.9 are satisfied. Such work will be done

in the following Lemmas 3.6 and 3.7.

Lemma 3.6. The assumption (b)(i) of Lemma 2.9 is valid, where f is defined

as (1.3) and codimH+ = i(a1) + ν(a1).

Proof. Let ε > 0 small enough and set 4 < r < 2n/(n− 2), n < 4. Since

(f1) and (f4) hold, there exist δ2 > δ1 > 0 and M > 0 for the above ε such that

F (x, u) + F1(x, u) ≤ 1

2
(a1(x) + ε)|u|2, for all |u| ≤ δ1, x ∈ Ω,

F (x, u) + F1(x, u) ≤M |u|2 ≤ M

δr−2
1

|u|r, δ1 ≤ |u| ≤ δ2, x ∈ Ω,

F (x, u) ≤ 1

2
(b(x) + ε)|u|2 ≤ 1

2δr−2
2

(‖b(x)‖∞ + ε)|u|r, for all |u| ≥ δ2, x ∈ Ω.

Furthermore,∫
|u|≥δ2

F1(x, u) dx ≤
(∫
|u|≥δ2

g̃2(x) dx

)1/2(∫
|u|≥δ2

|u|2 dx
)1/2

≤ c

δr−2
2

‖u‖r/2Lr .

Set

A = max

{
1

2δr−2
2

(‖b(x)‖∞ + ε),
M

δr−2
1

}
> 0.

Together with (1.3), we obtain

I(u) ≥ 1

2

∫
Ω

|∇u|2 dx−
∫

Ω

1

2
(a1(x) + ε)|u|2 +A|u|r dx− c

δr−2
2

‖u‖r/2Lr

=
1

2
qa1+ε(u, u)−A‖u‖rLr −

c

δr−2
2

‖u‖r/2Lr .

Let H+ = E+(a1 +ε). Then codimH+ = i(a1 +ε)+ν(a1 +ε). For any u ∈ H+,

we have

I(u) ≥ 1

2
(1− λ0µk(a1 + ε))‖u‖2 −Ac‖u‖r − c

δr−2
2

‖u‖r/2.

Here µk(a1 + ε) is defined in Proposition 2.1 and k = i(a1 + ε) + ν(a1 + ε) + 1.

Since 1− λ0µk(a1 + ε) > 0, let ρ > 0 small enough such that

I(u) ≥ c0 =
1

2
(1− λ0µk(a1 + ε))ρ2 −Acρr − c

δr−2
2

ρr/2 > 0.

Furthermore, from Proposition 2.5, pick ε small enough, we have

i(a1 + ε) + ν(a1 + ε) = i(a1) + ν(a1).

So we have I(u) ≥ c0, for all u ∈ Sρ ∩H+ and codimH+ = i(a1) + ν(a1). The

proof is completed. �
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Lemma 3.7. The assumption (b)(ii) of Lemma 2.9 is also satisfied and

dimH− = i(a)− ν(a).

Proof. (f1) holds. Let

J(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx.

For any ε > 0, there exists a constant M such that

(3.8) J(u) ≤ 1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

(a(x)− ε)|u|2 dx+M =
1

2
qa−ε(u, u) +M,

for all u ∈ E. Recall that |f1(x, u)| ≤ g̃(x), where g̃(x) ∈ L2, and the embedding

theorem, we get ∣∣∣∣ ∫
Ω

F1(x, u) dx

∣∣∣∣ ≤ ∫
Ω

g̃(x)|u| dx ≤ c‖u‖.

Combining (3.7) and (3.8), we obtain

I(u) = J(u)−
∫

Ω

F1(x, u) dx ≤ 1

2
qa−ε(u, u) + c‖u‖+M.

Let H− = E−(a − ε). Then dimH− = i(a − ε). From Lemma 3.2, there exists

a constant δ0, such that

1

2
qa−ε(u, u) ≤ −δ0‖u‖2 for any u ∈ H−.

Thus, I(u) ≤ −δ0‖u‖2 + c‖u‖ + M < +∞. Also from Proposition 2.5, pick ε

small enough, we have i(a− ε) = i(a)− ν(a). �

Proof of Corollaries 1.3 and 1.7. For f1(x, u) = 0, the proof of Corol-

lary 1.3 and 1.7 can be easily deduced from the proof of Theorems 1.2 and 1.6

for any n, respectively. �
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