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RELAXED HALPERN TYPE ITERATION SCHEMES
FOR SEQUENCES OF NONEXPANSIVE

MAPPINGS IN CAT(0) SPACES

Wei-Qi Deng

Abstract. Under weaker conditions on parameters, we prove strong con-

vergence theorems of Halpern type iteration schemes for sequences of non-
expansive mappings in CAT(0) spaces. Since there is no assumption of the

AKTT-condition imposed on the involved mappings, the results improve

those of the authors with related researches.

1. Introduction and preliminaries

Let (X, d) be a metric space and x, y ∈ X with l = d(x, y). A geodesic path
from x to y is an isometry c: [0, l] → X such that c(0) = x and c(l) = y. The
image of a geodesic path is called a geodesic segment, denoted by [x, y] as it
is unique. A metric space X is a (uniquely) geodesic space if every two points
of X are joined by only one geodesic path. A geodesic triangle 4(x1, x2, x3) in
a geodesic space X consists of three points x1, x2, x3 of X and three geodesic
segments joining each pair of vertices. A comparison triangle of a geodesic trian-
gle 4(x1, x2, x3) is the triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean
space R2 such that d(xi, xj) = dR2(xi, xj) for all i, j = 1, 2, 3, where xi is called
the comparison vertex of xi, i = 1, 2, 3.
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A geodesic space X is a CAT (0) space if for each geodesic triangle 4 :=
4(x1, x2, x3) in X and its comparison triangle 4 := 4(x1, x2, x3) in R2, the
CAT(0) inequality

d(x, y) ≤ dR2(x, y)

is satisfied by all x, y ∈ 4 and their comparison points x, y ∈ 4. The meaning
of the CAT(0) inequality is that a geodesic triangle in X is at least thin as
its comparison triangle in the Euclidean plane. A thorough discussion of these
spaces and their important role in various branches of mathematics are given
in [1], [2]. The complex Hilbert ball with the hyperbolic metric is an example of
a CAT(0) space (see [9]).

Fixed point theory in a CAT(0) space was first studied by Kirk (see [12]
and [13]). He showed that every nonexpansive (single-valued) mapping defined
on a bounded closed convex subset of a complete CAT(0) space always has
a fixed point. Since then the fixed point theory for single-valued and multivalued
mappings in CAT(0) spaces has been rapidly developed and much papers have
appeared (see, e.g. [3]–[7], [10], [11], [14], [15], [18]–[20]).

In 2010, Saejung [17] proved strong convergence theorem of a Halpern’s itera-
tive sequence for a sequence of nonexpansive mappings in CAT(0) spaces. How-
ever, the results were obtained under some stronger assumption conditions, such
as the AKTT-condition imposed on the involved mappings and more restrictions
on parameters.

Remark 1.1. Let C be a subset of a complete CAT(0) X and let {Tn} be
a sequence of mappings from C into itself. For a bounded subset B of C, we say
that ({Tn}, B) satisfies AKTT-condition if

∞∑
n=1

sup{d(Tn+1z, Tnz) : z ∈ B} < ∞.

Inspired and motivated by those studies mentioned above, in this paper, un-
der less restrictions on parameters, we use Halpern type iteration schemes for
approximating common fixed points of sequences of nonexpansive mappings and
obtain strong convergence theorems in CAT(0) space without stronger assump-
tion imposed on the involved mappings. The results improve and extend those
of Saejung.

In this paper, we write (1− t)x⊕ ty for the the unique point z in the geodesic
segment joining from x to y such that

d(z, x) = td(x, y), d(z, y) = (1− t)d(x, y), for all t ∈ [0, 1].

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] :=
{(1− t)x⊕ ty : t ∈ [0, 1]}. A subset C of a CAT(0) space is convex if [x, y] ⊂ C
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for all x, y ∈ C. For elementary facts about CAT(0) spaces, we refer the readers
to [1] (or, briefly in [8]).

In the sequel we shall need the following preliminaries.
Let X be a uniquely geodesic space equipped with two operations ◦ and ⊕,

respectively defined by:

Definition 1.2. (a) For any α ∈ R and any x ∈ X, α ◦ x stands for the
unique point u ∈ X such that

u = αx,

where · is the comparison vertex in the comparison triangle

4( · , θ, · ) := 4( · ,−→0 , · )

of 4( · , θ, · ); and θ denotes a fixed x0 ∈ X.
(b) For any x, y ∈ X, x⊕ y stands for the unique point v ∈ X such that

v = x + y,

where v is the comparison vertex in the comparison triangles 4(x, θ, v) and
4(y, θ, v) of 4(x, θ, v) and 4(y, θ, v).

We then have the following conclusion:

Proposition 1.3. A uniquely geodesic space X equipped with two operations
◦ and ⊕ forms a vector space whenever its power is no larger than ℵ, namely the
cardinality of continuum. Such a space is called geodesic vector space.

This follows from the fact that it is reasonable to define the mappings
x 7→ x and v 7→ v as injections, determined respectively by the mappings
4(x, θ, x) 7→ 4(x, θ, x) and (4(x, θ, v),4(y, θ, v)) 7→ (4(x, θ, v),4(y, θ, v)),
since X is equivalent to R2.

By the uniqueness of the negative element of any member of X, denoting the
same one in Proposition 1.2, an operation 	 is defined by

x	 y = x⊕ (−1 ◦ y), for all x, y ∈ X.

Let X be a geodesic vector space.

Definition 1.4. An analogue of inner product 〈 · , · 〉:X × X → R is de-
fined by

〈x, y〉 = 〈x, y〉R2 ,

where x, y are the comparison vertices in the comparison triangle 4(x, θ, y) of
4(x, θ, y).

It is obvious from the definition of the function 〈·, ·〉 that it has the following
properties: for any x, y, z ∈ X and any α ∈ R,

(1) 〈x, x〉 ≥ 0, 〈x, x〉 = 0 if and only if x = θ;
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(2) 〈x, y〉 = 〈y, x〉;
(3) 〈α ◦ x, y〉 = α〈x, y〉;
(4) 〈x⊕ y, z〉 = 〈x, z〉+ 〈y, z〉.

Then a distance ρ on X can be defined by

ρ(x, y) :=
√
〈x	 y, x	 y〉,

which coincides with the original distance d on X, since the distance dR2 on R2

is just induced by 〈 · , · 〉R2 and d(x, y) = dR2(x, y).
Next, we define a function φ:X ×X → R+ by

φ(x, y) := d2(x, y),

which obviously has the following property:

(1.1) φ(y, x) = φ(z, x) + φ(y, z) + 2〈z 	 y, x	 z〉, for all x, y, z ∈ X.

In what follows we shall make use of the following lemmas.

Lemma 1.5. A geodesic space X is a CAT(0) space if and only if the follow-
ing inequality

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y)

is satisfied by all x, y, z ∈ X and all t ∈ [0, 1]. In particular, if x, y, z are points
in a CAT(0) space and t ∈ [0, 1], then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Lemma 1.6 ([16]). Let {an}, {δn}, and {bn} be sequences of nonnegative
real numbers satisfying

an+1 ≤ (1 + δn)an + bn, for all n ≥ 1.

If
∞∑

n=1
δn < ∞ and

∞∑
n=1

bn < ∞, then lim
n→∞

an exists.

2. Main results

Let X be a CAT(0) space and C a closed convex subset of X. In the sequel,
we denote by F (T ) := {x ∈ C : Tx = x} the set of fixed points of a mapping
T in X. Note that a CAT(0) space X with the cardinality of continuum can
be seen as a subset of some geodesic vector space. We then have the following
theorem.
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Theorem 2.1. Let X be a complete CAT(0) space with the cardinality of
continuum and C a closed convex subset of X. Let {Ti}∞i=1:C → C be a sequence

of nonexpansive mappings with the interior of F :=
∞⋂

i=1

F (Ti) 6= ∅. Suppose that

u, x1 ∈ C are arbitrarily chosen and {xn} is defined by

(2.1) xn+1 = αnu⊕ (1− αn)T ∗nxn, for all n ≥ 1,

where {αn} is a sequence in (0, 1) satisfying
∞∑

n=1
αn < ∞ and T ∗n = Tin

with

in being the solution to the positive integer equation: n = i + (m − 1)m/2 (for
m ≥ i, n = 1, 2, . . . ), that is, for each n ≥ 1, there exists a unique in such that,
i1 = 1, i2 = 1, i3 = 2, i4 = 1, i5 = 2, i6 = 3, i7 = 1, i8 = 2, i9 = 3, i10 = 4,
i11 = 1, . . .Then {xn} converges to an x∗ ∈ F .

Proof. We divide the proof into several steps.

Step 1. lim
n→∞

d(xn, q) exists forall q ∈ F .

For any q ∈ F , from (2.1), we have that

d(xn+1, q) = d(αnu⊕ (1− αn)T ∗nxn, q) ≤ αnd(u, q) + (1− αn)d(T ∗nxn, q)

≤αnd(u, q) + (1− αn)d(xn, q) ≤ d(xn, q) + µn,

where µn := αnd(u, q), and so
∞∑

n=1
µn < ∞. So by Lemma 1.6 we conclude that

lim
n→∞

d(xn, q) exists and hence {xn} and {T ∗nxn} are bounded.

Step 2. xn → x∗ ∈ C as n →∞.
From (2.1) and Lemma 1.5, we also have

(2.2) d2(xn+1, q) = d2(αnu⊕ (1− αn)T ∗nxn, q)

≤αnd2(u, q) + (1− αn)d2(T ∗nxn, q)− αn(1− αn)d2(u, T ∗nxn)

≤ (1− αn)d2(xn, q) + αnd2(u, q) ≤ d2(xn, q) + νn,

where νn := αnd2(u, q) and
∞∑

n=1
νn < ∞.

Furthermore, it follows from (1.1) that

φ(p, xn) = φ(xn+1, xn) + φ(p, xn+1) + 2〈xn+1 	 p, xn 	 xn+1〉, for all p ∈ X.

This implies that

(2.3) 〈xn+1 	 p, xn 	 xn+1〉+
1
2
φ(xn+1, xn) =

1
2
(φ(p, xn)− φ(p, xn+1)).

Moreover, since the interior of F is nonempty, there exists a p∗ ∈ F and r > 0
such that (p∗ ⊕ r ◦ h) ∈ F whenever

√
〈h, h〉 ≤ 1. Thus, from (2.2) and (2.3) we

obtain that

(2.4) 0 ≤ 〈xn+1 	 (p∗ ⊕ r ◦ h), xn 	 xn+1〉+
1
2
φ(xn+1, xn) +

1
2
νn.
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Then from (2.3) and (2.4) we obtain that

r〈h, xn 	 xn+1〉 ≤ 〈xn+1 	 p∗, xn 	 xn+1〉+
1
2
φ(xn+1, xn) +

1
2
νn

=
1
2
(φ(p∗, xn)− φ(p∗, xn+1)) +

1
2
νn,

and hence

〈h, xn 	 xn+1〉 ≤
1
2r

(φ(p∗, xn)− φ(p∗, xn+1)) +
1
2r

νn.

Since h with
√
〈h, h〉 ≤ 1 is arbitrary, taking h = (1/d(xn, xn+1)) ◦ (xn 	 xn+1),

we have

(2.5) d(xn, xn+1) ≤
1
2r

(φ(p∗, xn)− φ(p∗, xn+1)) +
1
2r

νn.

So, if n > m, then we have that

d(xm, xn) ≤
n−1∑
j=m

d(xj , xj+1)(2.6)

≤ 1
2r

n−1∑
j=m

(φ(p∗, xj)− φ(p∗, xj+1)) +
1
2r

n−1∑
j=m

νj

=
1
2r

(φ(p∗, xm)− φ(p∗, xn)) +
1
2r

n−1∑
j=m

νj .

But we know that {φ(p∗, xn)} converges, and
∞∑

n=1
νn < ∞. Therefore, we obtain

from (2.6) that {xn} is a Cauchy sequence. Since X is complete there exists an
x∗ ∈ X such that xn → x∗ ∈ X as n → ∞. Thus, since {xn} ⊂ C and C is
closed and convex, then x∗ ∈ C, that is,

(2.7) xn → x∗ ∈ C (n →∞).

Step 3. x∗ is a member of F .
It follows from (2.1) and (2.5) that, as n →∞,

d(xn+1, T
∗
nxn) = αnd(u, T ∗nxn) → 0 and d(xn+1, xn) → 0,

which implies that, by induction, for any nonnegative integer j,

lim
n→∞

d(xn+j , xn) = 0.

We then have, as n →∞,

(2.8) d(xn, T ∗nxn) ≤ d(xn, xn+1) + d(xn+1, T
∗
nxn) → 0.

Now, set Ki = {k ≥ 1 : k = i + (m − 1)m/2, m ≥ i, m ∈ Z+} for each i ≥ 1.
Note that T ∗k = Tik

= Ti whenever k ∈ Ki. For example, by the definition of K1,
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we have K1 = {1, 2, 4, 7, 11, 16, . . . } and i1 = i2 = i4 = i7 = i11 = i16 = . . . = 1.
It then follows from (2.8) that

(2.9) lim
Ki3k→∞

d(Tixk, xk) = 0, for all i ≥ 1.

Since {xk}k∈Ki
is a subsequence of {xn}, (2.7) implies that xk → x∗ as Ki 3 k →

∞. It immediately follows from (2.9) and the continuity of Ti that x∗ ∈ F (Ti)
for each i ≥ 1, and hence x∗ ∈ F . �

Next, we consider nonself mappings.

Lemma 2.2 ([17]). Let X be a complete CAT(0) space and C a closed convex
subset of X. Then the followings hold true:

(a) For each x ∈ X, there exists an element π(x) ∈ C such that

d(x, π(x)) = inf
y∈C

d(x, y).

(b) π(x) = π(x′) for all x′ ∈ [x, π(x)].
(c) The mapping x 7→ π(x) is nonexpansive.

The mapping π in the preceding theorem is called the metric projection from
X onto C. From this, we have the following result.

Lemma 2.3 ([17]). Let X be a complete CAT(0) space and C a closed convex
subset of X. Let T :C → X be a nonself nonexpansive mapping with its fixed
points set F (T ) 6= ∅ and π the metric projection from X onto C. Then the
mapping π ◦ T is nonexpansive and F (π ◦ T ) = F (T ).

Theorem 2.4. Let X be a complete CAT(0) space with the cardinality of
continuum and C a closed convex subset of X. Let {Ti}∞i=1:C → X be a sequence
of nonself nonexpansive mappings and π be the metric projection from X onto C.
Suppose that u, x1 ∈ C are arbitrarily chosen and {xn} is defined by

xn+1 = αnu⊕ (1− αn)π ◦ T ∗nxn, for all n ≥ 1,

where {αn} is a sequence in (0, 1) satisfying
∞∑

n=1
αn < ∞ and T ∗n = Tin

with in

being the solution to the positive integer equation: n = i + (m− 1)m/2 (m ≥ i,

n = 1, 2, . . . ). If the interior of F :=
∞⋂

i=1

F (Ti) 6= ∅, then {xn} converges to an

x∗ ∈ F .

Proof. Since
∞⋂

i=1

F (π ◦ Ti) =
∞⋂

i=1

F (Ti), this conclusion can be immediately

obtained from Lemmas 2.2 and 2.3 and Theorem 2.1. �
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