
Topological Methods in Nonlinear Analysis
Volume 43, No. 1, 2014, 129–155

c© 2014 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

EXISTENCE OF PERIODIC TRAVELING-WAVE SOLUTIONS
FOR A NONLINEAR SCHRÖDINGER SYSTEM:

A TOPOLOGICAL APPROACH

Nghiem V. Nguyen

Abstract. In this paper, the existence of periodic traveling-wave solutions

for a nonlinear Schrödinger system is established using the topological de-
gree theory for positive operators. The method guarantees existence of

periodic solutions in a parameter region in the period and phase speed

plane.

1. Introduction

The nonlinear Schrödinger (NLS) equation

(1.1) iut +4u± |u|2u = 0,

where u is a function of (x, t) ∈ RN ×R, arises in many situations. The equation
describes evolution of small amplitude, slowly varying wave packets in a nonlinear
medum [2]. Indeed, it has been derived in such diverse fields as waves in deep
water [13], plasma physics [14], nonlinear fiber optics [7], [8], magneto-static spin
waves [15], and many others. Similarly, the m−coupled nonlinear Schrödinger
(CNLS) system

(1.2) i
∂

∂t
uj +4uj +

m∑
k=1

ajk|uk|2uj = 0, x ∈ RN , j = 1, . . . ,m,

2010 Mathematics Subject Classification. 35A01, 35A16, 35Q41.

Key words and phrases. Periodic traveling-wave solutions, topological degree theory, posi-
tive operators, nonlinear Schrödinger system.

129



130 N.V. Nguyen

where uj are complex-valued functions of (x, t) ∈ RN ×R and ajk = akj are real
numbers, arises physically under conditions similar to those described by (1.1).
CNLS models physical systems in which the field has more than one component.
For example, in optical fibers and waveguides, the propagating electric field has
two components that are transverse to the direction of propagation. The CNLS
system also arises in the Hartree–Fock theory for a two-component Bose–Einstein
condensate, i.e. a binary mixture of Bose–Einstein condensates in two distinct
hyperfine states. Readers are referred to [2], [7], [8], [13], [14] for the derivation
and applications of this system.

In this paper, consideration is given to the system (1.2) where x ∈ R, ajk

are certain positive numbers such that the matrix A = (ajk) is non-singular.
A novel approach is employed to establish the existence of periodic traveling-wave
solutions for the system (1.2), namely the topological degree theory for positive
operators. The theory was introduced in a series of works by Krasnosel’skĭı in [9],
[10] and has been used successfully to establish existence of solutions for certain
models, see for example, [1], [3], [4]. In this manuscript, this approach is applied
to show the existence of solutions (u1(x, t), . . . , um(x, t)) of (1.2) of the form

uj(x, t) = φj(x− θt)ei(ωj−θ2/4)t+iθx/2,

with

(1.3) φj(x− θt) =
∞∑

n=−∞
φjne

i(nπ/l)(x−θt),

j = 1, . . . ,m where l, ωj and θ connote the half-period, phase speed and physical
speed, respectively. It is proved that

(i) when m = 2, for any ω1, ω2 > 0;
(ii) when m ≥ 3, for any ωj = ω > 0;

and for any l large enough, there exist infinitely smooth non-trivial solutions
of the system (1.2) in the form of (1.3). Notice that even though we refer to
the above as periodic solutions, u(x, t) = (u1(x, t), . . . , um(x, t)) are in general
quasi-periodic functions of x and t.

It should be pointed out that exact periodic stationary solutions of non-
trivial phase to the system (1.2) have been computed explicitly in [5]. In fact, it
was shown that there are two distinct types of solutions of the form uj(x, t) =
rj(x)ei(−ωjt+θj(x)) to the system

i
∂

∂t
uj +

1
2µj

∂2

∂x2
uj + Vj(x)uj +

m∑
k=1

ajk|uk|2uj = 0, x ∈ R, j = 1, . . . ,m,

where Vj(x) is the external potential taking the form of the square of the Jacobi
elliptic sine function and µj are positive parameters.
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2. Preliminaries and statement of results

In this section, we recall definitions that will be used and give a brief review
of the topological degree theory for positive operators.

For 1 ≤ q <∞ and Ω an open set in R, let Lq(Ω) be the usual Banach space
of real or complex-valued, Lebesgue measurable functions defined on Ω with the
norm

‖f‖q
Lq(Ω) =

∫
Ω

|f |q dx,

and L∞(Ω) be the space of measurable, essentially bounded functions with the
norm

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)|.

When it introduces no confusion, Lq(Ω) is simply written as Lq. Let C denote
the complex field and lq be the Banach space

lq ≡
{
u = {un}∞n=−∞ : un ∈ C,

∞∑
n=−∞

|un|q <∞
}

with the norm ‖u‖q
q =

∞∑
n=−∞

|un|q, whereas l∞ is defined as

l∞ ≡
{
u = {un}∞n=−∞ : un ∈ C, sup

−∞<n<∞
|un|p <∞

}
with its usual norm ‖u‖∞ = sup

−∞<n<∞
|un|. For 1 ≤ q ≤ ∞, the Banach space of

k-times product lq × . . .× lq︸ ︷︷ ︸
k

is denoted by Lq,k and is equipped with the norm

‖(u1, . . . ,uk)‖q
Lq,k

=
∞∑

n=−∞
(|u1n|q + . . .+ |ukn|q) = ‖u1‖q

q + . . .+ ‖uk‖q
q.

The following elementary facts from analysis are recalled. Any f = {fn}∞n=−∞ ∈
l2 defines a periodic function f of period 2l, where

(2.1) f(x) =
∞∑

n=−∞
fne

inπx/l.

Vice versa, if f ∈ L2(−l, l), then f can be expanded almost everywhere as a series
in the form (2.1), with fn = (1/2l)

∫ l

−l
f(x)e−i(nπx/l) dx. In this sense, one can

identify f ∈ L2(−l, l) with the sequence of its Fourier coefficients f = {fn}∞n=−∞.
Moreover, ‖f‖L2 =

√
2l‖f‖2. In general, let 1 ≤ q ≤ 2 and q′ be the real

number such that 1/q + 1/q′ = 1, then lq ⊂ Lq′(−l, l) in the sense that for any

a = {an} ∈ lq, f(x) =
∞∑

n=−∞
ane

−i(nπx/l) ∈ Lq′(−l, l) and ‖f‖Lq′ ≤ (2l)1/q′‖a‖q.
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For any q, q′ ≥ 1 satisfying 1/q + 1/q′ = 1, the convolution of u ∈ lq and
v ∈ lq′ is defined as

u× v = {(u× v)n}∞n=−∞ where (u× v)n =
∞∑

k=−∞

un−kvk.

Notice that u × v = v × u ∈ l∞ and ‖u × v‖∞ ≤ ‖u‖q‖v‖q′ . In general, for
1 ≤ q1, . . . , qN ≤ ∞ satisfying 1/q1 + . . . + 1/qN = N − 1 and u1 = {u1n} ∈
lq1 , . . . ,uN = {uNn} ∈ lqN

, then

w = {wn} = u1 × . . .× uN ∈ l∞,

where

wn =
∑

k1+...+kN=n

u1k1 . . . uNkN
and ‖w‖∞ ≤ ‖u1‖q1 . . . ‖uN‖qN

.

For the convenience of readers, a brief review of the topological degree theory
for positive operators on Banach spaces is given here and we refer the readers to
the works of Krasnosel’skĭı [9], [10], Granas [6] and Benjamin et al [1] for details.

Let X be a Banach space equipped with the norm ‖ · ‖X . We define a closed
subset K ⊂ X as a cone, if the following conditions are satisfied:

(i) λK ≡ {λf : f ∈ K} ⊂ K for all λ ≥ 0,
(ii) K +K ≡ {f + g : f, g ∈ K} ⊂ K,
(iii) K ∩ {−K} ≡ K ∩ {−f : f ∈ K} = {0}.

For any 0 < r < R <∞, denote

Br = {f ∈ X : ‖f‖X < r}, ∂Br = {f ∈ X : ‖f‖X = r},

Kr = K ∩Br, ∂Kr = K ∩ ∂Br,

KR
r = {f ∈ K : r < ‖f‖X < R}.

An operator A defined on K is said to be positive if AK ⊂ K. A positive
operator A is compact if A(Kr) has a compact closure. Note that the operator
A is not necessarily linear. In fact, for the remaining of our paper, A will be
nonlinear.

A triple (K,A, U) is called admissible if

(i) K is a convex subset of X,
(ii) U ⊂ K is open in the relative topology on K,
(iii) A:K → K is continuous and A(U) is a subset of a compact set in K,

and
(iv) A has no fixed point on ∂U , the boundary of open set U in the relative

topology on K.
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Denote the set of all admissible triples by T . Let (K,A, U) ∈ T and A be
a constant mapping on K, namely, there is a point a ∈ K such that Au = a for
every u ∈ K. The fixed point index of the positive operator A on U is defined as

i(K,A, U) =

{
1 if a ∈ U,
0 if a /∈ U.

We mention here, among the many properties of i(K,A, U), the three that will
be of use in our current problem.

(a) (Homotopy invariance) If two triples (K,A, U) and (K,B, U) ∈ T and
A is homotopic to B on U , then i(K,A, U) = i(K,B, U).

(b) (Fixed point property) If (K,A, U) ∈ T and i(K,A, U) 6= 0, then A has
at least one fixed point in U ,

(c) (Additivity) If (K,A, U) ∈ T and U1, . . . , Un is a collection of mutually

disjoint open subsets of U such that Au 6= u for all u ∈ U \
n⋃

j=1

Uj , then

i(K,A, U) =
n∑

j=1

i(K,A, Ui).

The following three lemmas are taken directly from [1] in which K is a cone,
the operator A is positive, continuous and compact on K.

Lemma 2.1. Suppose that 0 < ρ <∞ and that either

(a) Ax− x /∈ K for all x ∈ ∂Kρ, or
(b) tAx 6= x for all x ∈ ∂Kρ and all t ∈ [0, 1].

Then i(K,A,Kρ) = 1.

Lemma 2.2. Suppose that 0 < ρ <∞ and that either

(c) x−Ax /∈ K for all x ∈ ∂Kρ, or
(d) there exists a non-zero x̃ ∈ K such that x − Ax 6= λx̃ for all x ∈ ∂Kρ

and all λ ≥ 0.

Then i(K,A,Kρ) = 0.

Lemma 2.3. Let (K,A, U) be admissible. If there exists a non-zero x̃ ∈ K

such that x−Ax 6= λx̃ for all x ∈ ∂U and all λ ≥ 0, then i(K,A, U) = 0.

The following theorem is an immediate consequence of the first two lemmas.

Theorem 2.4. Suppose that either (a) or (b) holds for an r satisfying 0 <
r < ∞ and that either (c) or (d) holds for an R satisfying r < R < ∞. Then
A has at least one fixed point in KR

r ≡ {f ∈ K, r < ‖f‖X < R}. Moreover,
i(K,A,KR

r ) = −1.

The theory described above will be utilized to establish the existence of
periodic traveling-wave solutions for (1.2) as follows. By substituting (1.3) into
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system (1.2) and equating the Fourier coefficients, an infinite system is derived
which can be posed as a fixed point problem on a certain cone. Using the
theory above, the index of the operator associated with this fixed point problem
is shown to be non-zero (hence, there must exist at least one solution in the
cone). The analysis is complicated a little bit by the fact that there are several
trivial (constant) solutions lying in the cone. By choosing the half-period l large
enough, however, one can exclude these trivial solutions. The case m = 2 is
studied in detail first to set foundations for the general case. The statement is
as follows.

Theorem 2.5. For a11, a12, a22 > 0 such that a2
12 − a11a22 > 0 and phase

speeds ω1, ω2 > 0 such that a12ω2 − a22ω1 > 0, a12ω1 − a11ω2 > 0, if the half-
period l is chosen large enough, there exist infinitely smooth periodic traveling-
wave solutions of the form (1.3) for the system (1.2). The more detailed proper-
ties of such solutions will be discussed in Theorem 3.8.

It will be made clear then how the theory can be extended to include the
general case (1.2) as well. The problem one has at hand is the exclusion of the
trivial fixed points. This could be a daunting task as one must consider all the
sub-cases when the system (1.2) collapses to lower-order ones. (For a related
discussion on this issue, see for example [11], [12].) Because of this, the special
case of ωj = ω for all j = 1, . . . ,m, ajk = akj = b when j 6= k, and ajj = a is
considered since the problem of collapsing to lower-order systems of (1.2) can be
handled in a straightforward manner and the trivial fixed points can be written
down explicitly. The statement for this part is as follows.

Theorem 2.6. Let b > a > 0 and ω > 0. If the half-period l is chosen large
enough, there exist infinitely smooth periodic traveling-wave solutions of the form
(1.3) for the system (1.2). The more detailed properties of such solutions will be
discussed in Theorem 4.8.

3. The case m = 2

In this section, we study first the case when m = 2, that is, the 2−coupled
system {

iut + uxx + (a11|u|2 + a12|v|2)u = 0,

ivt + vxx + (a21|u|2 + a22|v|2)v = 0.

For reason of clarity of notation, let a12 = a21 = b, a11 = a and a22 = c. Hence,
the system becomes

(3.1)

{
iut + uxx + (a|u|2 + b|v|2)u = 0,

ivt + vxx + (b|u|2 + c|v|2)v = 0.
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Let u(x, t) = φ(x− θt)ei(ω1−θ2/4)t+iθx/2 and v(x, t) = ψ(x− θt)ei(ω2−θ2/4)t+iθx/2

where φ, ψ ∈ R be the traveling-wave solution. Substituting these expressions
into (3.1) yields

(3.2)

{
−ω1φ+ φ′′ + (aφ2 + bψ2)φ = 0,

−ω2ψ + ψ′′ + (bφ2 + cψ2)ψ = 0,

where the primes denote the derivatives with respect to the moving frame ξ =
x − θt. Substituting (1.3) into (3.2) and equating the Fourier coefficients yield
the following system

(3.3)

{
−ω1φn − (nπ/l)2φn + a(Φ× Φ× Φ)n + b(Φ×Ψ×Ψ)n = 0,

−ω2ψn − (nπ/l)2ψn + b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n = 0.

The system (3.3) can be put into a more convenient matrix form

(3.4) Tn

[
φn

ψn

]
=

[
a(Φ× Φ× Φ)n + b(Φ×Ψ×Ψ)n

b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n

]
,

where

(3.5) Tn =
[
ω1 + (nπ/l)2 0

0 ω2 + (nπ/l)2

]
.

Notice that for any phase speeds ω1, ω2 > 0, the matrix Tn is invertible for all n
with

(3.6) T−1
n =

1
(ω1 + (nπ/l)2)(ω2 + (nπ/l)2)

[
ω2 + (nπ/l)2 0

0 ω1 + (nπ/l)2

]
.

The l∞-norm of T−1
n is defined as

(3.7) ‖T−1
n ‖∞ = max

{
1

ω1 + (nπ/l)2
,

1
ω2 + (nπ/l)2

}
.

To set up the problem as a fixed point problem, a set K ⊂ L3/2,2 is defined by

K = {(u,v) ∈ L3/2,2 : (un, vn) = (u−n, v−n),

u0 ≥ u1 ≥ . . . ≥ 0, v0 ≥ v1 ≥ . . . ≥ 0}.

One can easily verify that K is indeed a cone in L3/2,2 equipped with the norm

‖(u,v)‖3/2
L3/2,2

=
∞∑

n=−∞
(|un|3/2 + |vn|3/2) = ‖u‖3/2

3/2 + ‖v‖3/2
3/2.

An operator A onK is now defined as follows: for any Γ ≡ (Φ,Ψ) = {(φn, ψn)} ∈
K, AΓ = {(AΓ)n}, where

(3.8) (AΓ)n = T−1
n

[
a(Φ× Φ× Φ)n + b(Φ×Ψ×Ψ)n

b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n

]
.

Thus (3.4) can be written in the form Γ = AΓ and the fixed points of operator
A in the cone K are solutions of (3.4).
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Lemma 3.1. The operator A is continuous, positive and compact on the
cone K.

Proof. (a) A is a positive operator on K; i.e. A maps K into itself.
For any Γ = (Φ,Ψ) ∈ K, let

τn :≡ a(Φ× Φ× Φ)n + b(Φ×Ψ×Ψ)n

= a
∞∑

j,k=−∞

φkφj−kφn−j + b
∞∑

j,k=−∞

ψkψj−kφn−j ;

ηn :≡ b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n

= b
∞∑

j,k=−∞

φkφj−kψn−j + c
∞∑

j,k=−∞

ψkψj−kψn−j .

Using the facts that φ−n = φn and ψ−n = ψn, it is easy to verify that for all
n ≥ 0, τ−n = τn and η−n = ηn. Notice next that

a
∞∑

j,k=−∞

φkφj−kφn−j − a
∞∑

j,k=−∞

φkφj−kφn+1−j

= a
∞∑

j,k=0

(φkφj−k(φn−j − φn+1−j) + φkφj+1−k(φn+1+j − φn+2+j)

+ φk+1φj+1+k(φn−j − φn+1−j) + φk+1φj+2+k(φn+1+j − φn+2+j)) ≥ 0.

Likewise, one can see that

b

∞∑
j,k=−∞

ψkψj−kφn−j − b

∞∑
j,k=−∞

ψkψj−kφn+1−j ≥ 0.

Therefore, τn is a decreasing function of |n| and

(3.9) 0 ≤ τn ≤ τ0 ≤ max{a, b}(‖Φ‖33/2 + ‖Ψ‖23/2‖Φ‖3/2).

Similar arguments show that ηn is also a decreasing function of |n| and

(3.10) 0 ≤ ηn ≤ η0 ≤ max{b, c}(‖Ψ‖33/2 + ‖Φ‖23/2‖Ψ‖3/2).

Since each entry T−1
n (i, j) of T−1

n is positive, even in n, decreasing with respect
to |n| and

‖AΓ‖3/2
L3/2,2

≤
∞∑

n=−∞
‖T−1

n ‖3/2
∞ (|τn|3/2 + |ηn|3/2) <∞,

it follows immediately that AK ⊂ K.
(b) A is continuous.
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Let Γ = (Φ,Ψ) and Γ = (Φ,Ψ) be two arbitrary elements in K. For all n,
the difference (AΓ)n − (AΓ)n can be bounded component-wise, namely,

|(Φ× Φ× Φ)n − (Φ× Φ× Φ)n| ≤ C1‖Φ− Φ‖3/2;(i)

|(Φ× Φ×Ψ)n − (Φ× Φ×Ψ)n| ≤ C2(‖Φ− Φ‖3/2 + ‖Ψ−Ψ‖3/2);(ii)

|(Ψ×Ψ× Φ)n − (Ψ×Ψ× Φ)n| ≤ C3(‖Ψ−Ψ‖3/2 + ‖Φ− Φ‖3/2);(iii)

|(Ψ×Ψ×Ψ)n − (Ψ×Ψ×Ψ)n| ≤ C4‖Ψ−Ψ‖3/2(iv)

where Ci = Ci(‖Φ‖3/2, ‖Ψ‖3/2, ‖Φ‖3/2, ‖Ψ‖3/2). Hence, it follows that

‖AΓ−AΓ‖3/2
L3/2,2

≤
∞∑

n=−∞
‖T−1

n ‖3/2
∞ C5(‖Φ− Φ‖3/2 + ‖Ψ−Ψ‖3/2)3/2

≤ C6‖Γ− Γ‖3/2
L3/2,2

.

The operator A is now readily seen to be continuous from K into itself.
(c) A is compact.
Consider a bounded set M in L3/2,2, say M ⊂ {Γ = (Φ,Ψ) ∈ L3/2,2 :

‖Γ‖L3/2,2 ≤ B}. For each N , a cut-off operator AN is defined as follows:

(ANΓ)n =

{
(AΓ)n, for −N ≤ n ≤ N ,

0, otherwise.

Then AN is a compact operator having a rank of (2N + 1) as A is continuous.
For Γ ∈M ,

(3.11) |(AΓ)n| ≤ ‖T−1
n ‖∞ max{a, b, c}

[
‖Φ‖33/2 + ‖Ψ‖23/2‖Φ‖3/2

‖Φ‖23/2‖Ψ‖3/2 + ‖Ψ‖33/2

]
.

Thus, one can conclude that

‖AnΓ−AΓ‖3/2
L3/2,2

≤ C
∑
|n|≥N

‖T−1
n ‖3/2

∞ .

Consequently, sup
Γ∈M

‖ANΓ − AΓ‖L3/2,2 → 0 as N → ∞. Thus, A is compact as

it is the uniform limit of compact operators on bounded sets. �

We now turn our attention to the fixed points of A. It is clear that (3.4)
possesses some constant solutions which are not of interest to us. A fixed point
(p,q) = {(pn, qn)} of (3.4) is said to be trivial if pn = qn = 0 for all n 6= 0.
Notice that a trivial solution with p0 = q0 = 0 corresponds to the origin while
p0 6= 0 (or q0 6= 0, or both p0 6= 0 and q0 6= 0) corresponds to a non-zero constant
solution. The next proposition is straightforward to verify.
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Proposition 3.2. The operator A has nine trivial fixed points. However,
only the following four fixed points are inside K: the origin and (p∗i ,q

∗
i ) where

p∗i = ( . . . , 0, pi0, 0, . . . ) and q∗i = ( . . . , 0, qi0, 0, . . . )

with

(p10, q10) =
(

0,
√
ω2

c

)
; (p20, q20) =

(√
ω1

a
, 0

)
;

(p30, q30) =
(√

bω2 − cω1

b2 − ac
,

√
bω1 − aω2

b2 − ac

)
.

Let

β1 = min
{∥∥∥∥(

0,
√
ω2

c

)∥∥∥∥
L3/2,2

,

∥∥∥∥(√
ω1

a
, 0

)∥∥∥∥
L3/2,2

,(3.12) ∥∥∥∥(√
bω2 − cω1

b2 − ac
,

√
bω1 − aω2

b2 − ac

)∥∥∥∥
L3/2,2

}
β2 = max

{∥∥∥∥(
0,

√
ω2

c

)∥∥∥∥
L3/2,2

,

∥∥∥∥(√
ω1

a
, 0

)∥∥∥∥
L3/2,2

,(3.13) ∥∥∥∥(√
bω2 − cω1

b2 − ac
,

√
bω1 − aω2

b2 − ac

)∥∥∥∥
L3/2,2

}
;

and set

(3.14) γ = (max{a, b, c})1/2

( ∞∑
n=−∞

‖T−1
n ‖3/2

∞

)1/3

.

Proposition 3.3. For all r satisfying 0 < r < r0 ≡ min{1/(2γ), β1}, one
must have Γ 6= tAΓ for all Γ ∈ ∂Kr and all t ∈ [0, 1].

Proof. Suppose there exists a Γ ∈ ∂Kr and a t ∈ [0, 1] such that Γ = tAΓ.
Then, using (3.11) on all (AΓ)n yields

‖Γ‖3/2
L3/2,2

= r3/2 = t3/2
∞∑

n=−∞
|(AΓ)n|3/2

≤ 25/2r9/2
∞∑

n=−∞
‖T−1

n ‖3/2
∞ max{a, b, c}3/2

which implies that r ≥ 1/(2γ), a contradiction. �

Proposition 3.4. For any

R > R0 ≡ 4β2

( ∞∑
n=−∞

max
{
ω1‖T−1

n ‖∞, ω2‖T−1
n ‖∞,

1
1 + n2

}3/2)2/3

,
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there exists a nonzero Γ̃ ∈ K such that Γ − AΓ 6= λΓ̃, for all Γ ∈ ∂KR and all
λ ≥ 0.

Proof. Let Γ̃ = {(Φ̃, Ψ̃)n} be given by[
φ̃n

ψ̃n

]
=

1
1 + n2

[
1
1

]
.

It is clear that Γ̃ 6= 0 and Γ̃ ∈ K. Now, suppose to the contrary that there exist
a Γ = (Φ,Ψ) ∈ ∂KR and a λ ≥ 0 such that for all n,

(3.15)
[
φn

ψn

]
=


1

ω1 + (nπ/l)2
[a(Φ× Φ× Φ)n + b(Φ×Ψ×Ψ)n]

1
ω2 + (nπ/l)2

[b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n]

 + λΓ̃.

In particular,

(3.16)
[
φ0

ψ0

]
=

 1
ω1

(a(Φ× Φ× Φ)0 + b(Φ×Ψ×Ψ)0)

1
ω2

(b(Φ× Φ×Ψ)0 + c(Ψ×Ψ×Ψ)0)

 + λ

[
1
1

]
.

One can verify easily that

(Φ× Φ× Φ)0 ≥ φ3
0; (Ψ×Ψ× Φ)0 ≥ ψ2

0φ0;

(Φ× Φ×Ψ)0 ≥ φ2
0ψ0; (Ψ×Ψ×Ψ)0 ≥ ψ3

0 .

Consequently, it is drawn from (3.16) the following bounds: 0 ≤ φ0 ≤
√
ω1/a,

0 ≤ ψ0 ≤
√
ω2/c, 0 ≤ λ ≤ min{

√
ω1/a,

√
ω2/c}, and

τ0 = a(Φ× Φ× Φ)0 + b(Φ×Ψ×Ψ)0 ≤ ω1φ0 ≤ ω1

√
ω1

a
;

η0 = b(Φ× Φ×Ψ)0 + c(Ψ×Ψ×Ψ)0 ≤ ω2ψ0 ≤ ω2

√
ω2

c
.

Notice that while it is true that one also has the bounds 0 ≤ φ0 ≤
√
ω2/b,

0 ≤ ψ0 ≤
√
ω1/b, those bounds are less helpful in this case. It is also worth

noting that φ0 and ψ0 cannot be zero simultaneously as Γ = (Φ,Ψ) ∈ ∂KR, even
though each can vanish individually. One can see now from (3.15) and the fact
that τn and ηn are decreasing in |n| that

φn ≤
√
ω1

a

(
ω1‖T−1

n ‖∞ +
1

1 + n2

)
, ψn ≤

√
ω2

c

(
ω2‖T−1

n ‖∞ +
1

1 + n2

)
.

Therefore,

R3/2 ≤ β
3/2
2

∞∑
n=−∞

{(
ω1‖T−1

n ‖∞ +
1

1 + n2

)3/2

+
(
ω2‖T−1

n ‖∞ +
1

1 + n2

)3/2}

≤ 25/2β
3/2
2

∞∑
n=−∞

max
{
ω1‖T−1

n ‖∞, ω2‖T−1
n ‖∞,

1
1 + n2

}3/2

.
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Thus, it is deduced that

R ≤ 4β2

( ∞∑
n=−∞

max
{
ω1‖T−1

n ‖∞, ω2‖T−1
n ‖∞,

1
1 + n2

}3/2)2/3

,

a contradiction to the assumption on R. �

Remark 3.5. Notice that R > β2 since( ∞∑
n=−∞

[
1

1 + n2

]3/2)2/3

> 1.

Theorem 3.6. Let r and R be defined as above. Then the fixed point index
of A on KR

r = {Γ ∈ K : r < ‖Γ‖L3/2,2 < R} is i(K,A,KR
r ) = −1.

Proof. This follows immediately from Theorem 2.4 and Propositions 3.3
and 3.4. �

An immediate consequence of Theorem 3.6 is that there must be at least one
fixed point of A in KR

r . The analysis is not yet complete, however, since the
three constant solutions (p∗i ,q

∗
i ) where

(p10, q10) =
(

0,
√
ω2

c

)
; (p20, q20) =

(√
ω1

a
, 0

)
;

(p30, q30) =
(√

bω2 − cω1

b2 − ac
,

√
bω1 − aω2

b2 − ac

)
could be the only fixed points in KR

r (the origin does not belong to KR
r .) This

case is excluded through the following lemma.

Lemma 3.7. If for i = 1, 2, 3, (p∗i ,q
∗
i ) are the only fixed points of A in KR

r ,
then when the half-period l > 0 is chosen large enough,

3∑
i=1

i(K,A,Kε(p∗i ,q
∗
i )) = 0.

Proof. For i = 1, 2, 3, let εi = εi(l) > 0 be arbitrarily fixed, sufficiently
small numbers whose values will be determined later. Let

Kεi
(p∗i ,q

∗
i ) = {Γ = (Φ,Ψ) ∈ K : ‖(Φ,Ψ)− (p∗i ,q

∗
i )‖L3/2,2 < εi},

∂Kεi
(p∗i ,q

∗
i ) = {Γ = (Φ,Ψ) ∈ K : ‖(Φ,Ψ)− (p∗i ,q

∗
i )‖L3/2,2 = εi}.

The εi will be chosen small enough so that Kεi
is in KR

r and {Kεi
} forms

a collection of mutually disjoint open subsets of Kr
R. Notice then that if ε =

min{ε1, ε2, ε3}, then Kε(p∗i ,q
∗
i ) ⊂ KR

r and {Kε(p∗i ,q
∗
i )} forms a collection of

mutually disjoint open subsets of KR
r . Therefore, the lemma is proved, owing

to Lemma 2.4 and the additivity of the fixed point index, if one can show that
(I − A)∂Kε(p∗i ,q

∗
i ) omits the ray {λΓ̃ : λ ≥ 0}, where Γ̃ ∈ K is defined as in
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Proposition 3.4. So suppose that for each i = 1, 2, 3, there are a Γ = (Φ,Ψ) ∈
∂Kεi

(p∗i ,q
∗
i ) and a λ ≥ 0 such that Γ−AΓ = λΓ̃. Then for all n ∈ Z,

(3.17)
[
φn

ψn

]
=


1

ω1 + (nπ/l)2
[a(Φ× Φ× Φ)n + b(Ψ×Ψ× Φ)n]

1
ω2 + (nπ/l)2

[b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n]

 + λΓ̃.

In particular, for n = 1 and let A = 1/(ω1 + (π/l)2) and B = 1/(ω2 + (π/l)2),
one has

(3.18)
φ1 = A

(
Φ× (aΦ× Φ + bΨ×Ψ)

)
1

+
λ

2
;

ψ1 = B
(
Ψ× (bΦ× Φ + cΨ×Ψ)

)
1

+
λ

2
;

from which one can conclude

(3.19)
φ1 ≥ A(3aφ2

0φ1 + 2bφ0ψ0ψ1 + bψ2
0φ1) +

λ

2
;

ψ1 ≥ B(3cψ2
0ψ1 + 2bφ0ψ0φ1 + bφ2

0ψ1) +
λ

2
.

It is claimed next that when the half-period l is large enough, the εi(l) can be
chosen sufficiently small so that φn = ψn = 0 for all n 6= 0. One needs to consider
the following three cases separately.

Case 1. The fixed point (p∗1,q
∗
1) where (p10, q10) = (0,

√
ω2/c).

Since Γ ∈ ∂Kε1(p
∗
1,q

∗
1), it can be written as Γ = (Φ,Ψ) = (p∗1,q

∗
1)+ε1(Φ̃, Ψ̃)

where ‖(Φ̃, Ψ̃)‖L 3
2 ,2

= 1. Notice that ε1(Φ̃, Ψ̃) = (Φ,Ψ)− (p∗1,q
∗
1), therefore for

n ≥ 1 {
φ̃n = φn/ε1 ≥ 0,

ψ̃n = ψn/ε1 ≥ 0,
and

{
φ̃n ≥ φ̃n+1,

ψ̃n ≥ ψ̃n+1.

In terms of the new variables (Φ̃, Ψ̃), (3.19) yields

ε1φ̃1 ≥
Abω2

c
ε1φ̃1 + 2Ab

(√
ω2

c
+ ε1ψ̃0

)
ε1φ̃0ε1ψ̃1(3.20)

+ 2Ab
√
ω2

c
ε1ψ̃0ε1φ̃1 +

λ

2
;

ε1ψ̃1 ≥ 3Bω2ε1ψ̃1 + 6Bc
√
ω2

c
ε1ψ̃0ε1ψ̃1(3.21)

+ 2Bb
(√

ω2

c
+ ε1ψ̃0

)
ε1φ̃0ε1φ̃1 +

λ

2
.

First, choose l large enough so that both the following hold

Abω2

c
> 1 and 3Bω2 > 1.



142 N.V. Nguyen

The explicit condition for l is

(3.22) l2 > max
{

π2c

bω2 − cω1
,
π2

2ω2

}
:≡ L1.

The number ε1 = ε1(l) can now be chosen small enough so that

(3.23)

Abω2

c
ε1φ̃1 + 2Ab

(√
ω2

c
+ ε1ψ̃0

)
ε1φ̃0ε1ψ̃1 + 2Ab

√
ω2

c
ε1ψ̃0ε1φ̃1 > ε1φ̃1;

3Bω2ε1ψ̃1 + 6Bc
√
ω2

c
ε1ψ̃0ε1ψ̃1 + 2Bb

(√
ω2

c
+ ε1ψ̃0

)
ε1φ̃0ε1φ̃1 > ε1ψ̃1.

It follows immediately from (3.20), (3.21) and (3.23) that λ = 0 and φ̃1 = ψ̃1 = 0,
hence φn = ψn = 0 for all n 6= 0.

Case 2. The fixed point (p∗2,q
∗
2) where (p20, q20) = (

√
ω1/a, 0).

Suppose that there are a Γ = (Φ,Ψ) ∈ ∂Kε2(p
∗
2,q

∗
2) and a λ ≥ 0 such that

Γ − AΓ = λΓ̃. Since Γ ∈ ∂Kε2(p
∗
2,q

∗
2), it can be written as Γ = (Φ,Ψ) =

(p∗2,q
∗
2) + ε2(Φ̃, Ψ̃) where ‖(Φ̃, Ψ̃)‖L3/2,2 = 1. In terms of the new variables

(Φ̃, Ψ̃), one has

ε2φ̃1 ≥ 3Aω1ε2φ̃1 + 6Aa
√
ω1

a
ε2φ̃0ε2φ̃1(3.24)

+ 2Ab
(√

ω1

a
+ ε2φ̃0

)
ε2ψ̃0ε2ψ̃1 +

λ

2
;

ε2ψ̃1 ≥
Bbω1

a
ε2ψ̃1 + 2Bb

(√
ω1

a
+ ε2φ̃0

)
ε2ψ̃0ε2φ̃1(3.25)

+ 2Bb
√
ω1

a
ε2φ̃0ε2ψ̃1 +

λ

2
.

Now, choose l large enough so that both the following hold 3Aω1 > 1 and
Bbω1/a > 1. The explicit condition for l is

(3.26) l2 > max
{

π2a

bω1 − aω2
,
π2

2ω1

}
:≡ L2.

The number ε2 = ε2(l) can now be chosen small enough so that

(3.27)
3Aω1ε2φ̃1 + 6Aa

√
ω1

a
ε2φ̃0ε2φ̃1 + 2Ab

(√
ω1

a
+ ε2φ̃0

)
ε2ψ̃0ε2ψ̃1 > ε2φ̃1;

Bbω1

a
ε2ψ̃1 + 2Bb

(√
ω1

a
+ ε2φ̃0

)
ε2ψ̃0ε2φ̃1 + 2Bb

√
ω1

a
ε2φ̃0ε2ψ̃1 > ε2ψ̃1.

It follows from (3.24), (3.25) and (3.27) that λ = 0 and φ̃1 = ψ̃1 = 0, hence
φn = ψn = 0 for all n 6= 0.

Case 3. The fixed point (p∗3,q
∗
3) where

(p30, q30) =
(√

bω2 − cω1

b2 − ac
,

√
bω1 − aω2

b2 − ac

)
.
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Again, suppose that there are a Γ = (Φ,Ψ) ∈ ∂Kε3(p
∗
3,q

∗
3) and a λ ≥ 0 such

that Γ − AΓ = λΓ̃. Since Γ ∈ ∂Kε3(p
∗
3,q

∗
3), it can be written as Γ = (Φ,Ψ) =

(p∗3,q
∗
3) + ε3(Φ̃, Ψ̃) where ‖(Φ̃, Ψ̃)‖L3/2,2 = 1. In terms of the new variables

(Φ̃, Ψ̃), one has

(3.28)
A

(
2abω2 + ω1(b2 − 3ac)

)
b2 − ac

ε3φ̃1

+
(

6Aa

√
bω2 − cω1

b2 − ac
φ̃0 + 2Ab

√
bω1 − aω2

b2 − ac
ψ̃0

)
ε23φ̃1

+ 2Ab
(√

bω2 − cω1

b2 − ac
+ ε3φ̃0

)(√
bω1 − aω2

b2 − ac
+ ε3ψ̃0

)
ε3ψ̃1 ≤ ε3φ̃1;

and

(3.29)
B

(
2bcω1 + ω2(b2 − 3ac)

)
b2 − ac

ε3ψ̃1

+
(

6Bc

√
bω1 − aω2

b2 − ac
ψ̃0 + 2Bb

√
bω2 − cω1

b2 − ac
φ̃0

)
ε23ψ̃1

+ 2Bb
(√

bω2 − cω1

b2 − ac
+ ε3φ̃0

)(√
bω1 − aω2

b2 − ac
+ ε3ψ̃0

)
ε3φ̃1 ≤ ε3ψ̃1.

First, choose l large enough so that both the following hold

A(2abω2 + b2ω1 − 3acω1)
(b2 − ac)

> 1 and
B(2bcω1 + b2ω2 − 3acω2)

(b2 − ac)
> 1.

The explicit condition for l is

(3.30) l2 > max
{

π2(b2 − ac)
2a(bω2 − cω1)

,
π2(b2 − ac)

2c(bω1 − aω2)

}
:≡ L3.

The number ε3 = ε3(l) can now be chosen small enough so that

(3.31) ε3(φ̃1 + ψ̃1) <
A

(
2abω2 + ω1(b2 − 3ac)

)
b2 − ac

ε3φ̃1

+
B

(
2bcω1 + ω2(b2 − 3ac)

)
b2 − ac

ε3ψ̃1

+
(

6Aa

√
bω2 − cω1

b2 − ac
φ̃0 + 2Ab

√
bω1 − aω2

b2 − ac
ψ̃0

)
ε23φ̃1

+
(

6Bc

√
bω1 − aω2

b2 − ac
ψ̃0 + 2Bb

√
bω2 − cω1

b2 − ac
φ̃0

)
ε23ψ̃1

+ 2b
(√

bω2 − cω1

b2 − ac
+ ε3φ̃0

)
·
(√

bω1 − aω2

b2 − ac
+ ε3ψ̃0

)
(Bε3φ̃1 +Aε3ψ̃1).
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It follows from (3.28), (3.29) and (3.31) that λ = 0 and φn = ψn = 0 for all
n 6= 0. Thus, the claim is proved. Next, let

(3.32) l2 > max{L1, L2, L3},

and redefines ε̃1(l), ε̃2(l), ε̃3(l) if necessary so that for

(3.33) ε(l) = min{ε̃1, ε̃2, ε̃3},

the expressions (3.23), (3.27) and (3.31) hold. Under these conditions, λ = 0
and for all n 6= 0, φn = ψn = 0.

Using (3.17) for n = 0, one sees that

(3.34)

{
ω1φ0 = aφ3

0 + bφ0ψ
2
0 ,

ω2ψ0 = bφ2
0ψ0 + cψ3

0 .

The only solutions for (3.34) are(
0,

√
ω2

c

)
,

(√
ω1

a
, 0

)
,

(√
bω2 − cω1

b2 − ac
,

√
bω1 − aω2

b2 − ac

)
.

But then this contradicts with the facts that {Kε(p∗i ,q
∗
i )} forms a collection of

mutually disjoint open subsets of KR
r and Γ = (Φ,Ψ) ∈ ∂Kε(p∗i ,q

∗
i ), i = 1, 2, 3

for small ε when the half-period l is chosen large enough as in (3.32). The proof
of Lemma 3.7 is hence concluded. �

Theorem 3.8. For a, b, c > 0 such that b2−ac > 0 and phase speeds ω1, ω2 >

0 such that bω2 − cω1 > 0, bω1 − aω2 > 0, if the half-period l is chosen large
enough as in (3.32), then the operator A must have at least one non-trivial fixed
point Γ = (Φ,Ψ) in the cone segment Kr

R. Moreover,

(a) either both sequences of components φn, ψn > 0 for every n ∈ Z and one
obtains a vector solution (Φ,Ψ), or one of the sequences φn, ψn vanishes
for every n ∈ Z while the other remains strictly positive for every n ∈ Z,
in which case one obtains semi-trivial solutions (Φ, 0) or (0,Ψ);

(b) for any σ ≥ 0, the sequences {|n|σφn} and {|n|σψn} are in l1. There-
fore, the non-trivial fixed point solutions are infinitely smooth.

Proof. The existence of a non-trivial fixed point follows immediately from
Theorem 3.6 and Lemma 3.7. It is left to establish (a) and (b). Recall that the
solution Γ = (Φ,Ψ) must satisfy for all n ∈ Z,

(3.35)
[
φn

ψn

]
=


1

ω1 + (nπ/l)2
[a(Φ× Φ× Φ)n + b(Ψ×Ψ× Φ)n]

1
ω2 + (nπ/l)2

[b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n]

 .
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In order to establish (a), we will show that there are only three possibilities:
either

(i) φ0 = 0, in which case ψn > 0 for all n ∈ Z; or
(ii) ψ0 = 0, in which case φn > 0 for all n ∈ Z; or
(iii) φ0 > 0 and ψ0 > 0, in which case both φn, ψn > 0 for all n ∈ Z.

Case 1. Suppose φ0 = 0. Let N be the smallest non-negative integer such
that ψN = 0. Notice that N > 1 because if ψ1 = 0 then this will lead to the
trivial solution (0,

√
ω2/c). It follows from (3.35) that

0 =
c

ω2 + (Nπ/l)2

∞∑
j,k=∞

ψkψj−kψN−j ≥
c

ω2 + (Nπ/l)2
ψN−1ψ1ψ0 > 0

which is a contradiction. Thus, it must be the case that ψn > 0 for all n ∈ Z
and the non-trivial fixed point is (0,Ψ).

Case 2. Suppose ψ0 = 0. Using exact same argument, one concludes that
φn > 0 for all n ∈ Z in which case the non-trivial fixed point is (Φ, 0).

Case 3. Suppose φ0 > 0 and ψ0 > 0. Let N be the smallest non-negative
integer such that either φn or ψn is zero. Notice that if φ1 = 0 then since

0 ≥ 2bφ0ψ0ψ1

ω1 + (π/l)2

this implies that ψ1 = 0 which leads to the trivial solution(√
bω2 − cω1

b2 − ac
,

√
bω1 − aω2

b2 − ac

)
.

Similar situation occurs if ψ1 = 0. Hence N > 1. Without loss of generality,
assume that φN = 0 (exact argument holds when ψN = 0). It follows from (3.35)
that

0 =
1

ω1 + (Nπ/l)2

(
a

∞∑
j,k=−∞

φkφj−kφN−j + b
∞∑

j,k=−∞

ψkψj−kφN−j

)

>
3aφ

2

0φ1

ω1 + (Nπ/l)2
> 0

which is a contradiction. Thus, it must be the case that φn, ψn > 0 for all n ∈ Z
and the non-trivial fixed point is (Φ,Ψ). Thus (a) is proved.

Since

(Φ× Φ× Φ)n ≤ ‖Φ‖3/2
3/2 <∞, (Ψ×Ψ× Φ)n ≤ ‖Ψ‖23/2‖Φ‖3/2 <∞;

(Ψ×Ψ×Ψ)n ≤ ‖Ψ‖3/2
3/2 <∞, (Φ× Φ×Ψ)n ≤ ‖Φ‖23/2‖Ψ‖3/2 <∞;
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it follows that for |n| ≥ 1, there exists a constant C0 > 0 independent of n
satisfying

(3.36) φn ≤ C‖T−1
n ‖∞ ≤ C0

n2
and ψn ≤ C‖T−1

n ‖∞ ≤ C0

n2
.

Therefore, {φn} and {ψn} are in l1.
One deduces from (3.36) that |n|φn ≤ C0/|n|, |n|ψn ≤ C0/|n| and conse-

quently,
∞∑

n=−∞
(1 + |n|)3/2φ

3/2

n ≤ C,
∞∑

n=−∞
(1 + |n|)3/2ψ

3/2

n ≤ C.

Notice next that for any j, k, n ∈ Z,

1 + |n| ≤ (1 + |n− j − k|)(1 + |j|)(1 + |k|).

Thus, for any u,v,w ∈ l3/2 one has

(u× v ×w)n =
∞∑

j,k=−∞

(1 + |k|)uk(1 + |j − k|)vj−k(1 + |n− j|)wn−j

(1 + |k|)(1 + |j − k|)(1 + |n− j|)

≤ 1
(1 + |n|)

∞∑
j,k=−∞

(1 + |k|)uk(1 + |j − k|)vj−k(1 + |n− j|)wn−j ≤
C

(1 + |n|)
.

It then follows that for |n| ≥ 1,

φn ≤ ‖T−1
n ‖∞(a(Φ× Φ× Φ)n + b(Ψ×Ψ× Φ)n) ≤ C

|n|3
,

ψn ≤ ‖T−1
n ‖∞(b(Φ× Φ×Ψ)n + c(Ψ×Ψ×Ψ)n) ≤ C

|n|3
.

Thus, the sequences {|n|φn} and {|n|ψn} are in l1. It is readily seen by continuing
this bootstrapping argument that ∀σ ≥ 0, the sequences {|n|σφn} and {|n|σψn}
are in l1. �

4. The general case

It is clear that the above theory can be extended to include the general
case (1.2) as well. The issue one has at hand is how to exclude the trivial fixed
points of the operator A. This could be a daunting task as one must consider all
the sub-cases when the system (1.2) collapses to a lower-order ones. (Readers
are referred to [11], [12] for a related discussion on this issue.) In this section,
the special case of ωj = ω for all j = 1, 2, . . . ,m, ajk = akj = b when j 6= k,
and ajj = a is considered since the problem of collapsing to lower-order systems
of (1.2) can be handled in a straightforward manner and the trivial fixed points
can be written down explicitly.
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The system now takes the form

(4.1) iujt + ujxx + a|uj |2uj +
m∑

k=1, k 6=j

b|uk|2uj = 0.

Substituting (1.3) into (4.1) and equating the Fourier coefficients yield the fol-
lowing system

(4.2) −ωφjn−
(
nπ

l

)2

φjn+a(Φj×Φj×Φj)n+b
(

Φj×
m∑

k=1, k 6=j

(Φk×Φk)
)

n

= 0.

The system (4.2) can be put into a more convenient matrix form

(4.3) Tn[φjn] =
[
a(Φj × Φj × Φj)n + b

(
Φj ×

m∑
k=1, k 6=j

(Φk × Φk)
)

n

]
,

where the m×m matrix Tn is given by

(4.4) Tn =
(
ω +

(
nπ

l

)2)
I

with I being the m×m identity matrix. Notice that

(4.5) ‖T−1
n ‖∞ =

1
ω + (nπ/l)2

.

For j = 1, . . . ,m, define a set K ⊂ L3/2,m as follows

K = {(u1, . . . ,um) ∈ L3/2,m :

(u1n, . . . , umn) = (u−1n, . . . , u−mn), uj0 ≥ uj1 ≥ . . . ≥ 0}.

One can easily verify that K is indeed a cone in L3/2,m equipped with the norm

‖(u,v)‖3/2
L3/2,m

=
∞∑

n=−∞
(|u1n|3/2 + . . .+ |umn|3/2) = ‖u1‖3/2

3/2 + . . .+ ‖um‖3/2
3/2.

An operator B on K is now defined as follows: for any Γ ≡ (Φ1, . . . ,Φm) =
{(φ1n, . . . φmn)} ∈ K, BΓ = {(BΓ)n}, where

(4.6) (BΓ)n = T−1
n

[
a(Φj × Φj × Φj)n + b

(
Φj ×

m∑
k=1, k 6=j

(Φk × Φk)
)

n

]
.

Thus (4.3) can be written in the form Γ = BΓ and the fixed points of operator B
in the cone K are solutions of (4.3). The proof of the next Lemma follows from
the same argument used in Lemma 3.1 hence is omitted.
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Lemma 4.1. The operator B is continuous, positive and compact on the
cone K.

It is now important to make clear of what it means for a solution to be
called a trivial fixed point. A fixed point (p1, . . . ,pm) = {(p1n, . . . , pmn)}
of (4.3) is said to be trivial if p1n = . . . = pmn = 0 for all n 6= 0. We
will make no distinction between the permutations of the k-nonvanishing triv-
ial solutions; for example, all the 1-nonvanishing trivial solutions (A, 0, . . . , 0),
(0, A, 0, . . . , 0), . . . , (0, . . . , 0, A) belong to the same class. Again, a trivial solu-
tion with p10 = . . . = pm0 = 0 corresponds to the origin. The next Proposition
is straight forward to verify.

Proposition 4.2. Up to permutations, the operator B has (m + 1) trivial
fixed points that lie inside K : the origin and (p∗1, . . . ,p

∗
m) where (p∗10, . . . , p

∗
m0)

takes on the following form:

(a) 1-nonvanishing:
(√

ω

a
, 0, . . . , 0

)
;

(b) k-nonvanishing:
( √

ω

a+ (k − 1)b
, . . . ,

√
ω

a+ (k − 1)b︸ ︷︷ ︸
k

, 0, . . . , 0
)

;

(c) m-nonvanishing (or vector solution):(√
ω

a+ (m− 1)b
, . . . ,

√
ω

a+ (m− 1)b

)
.

Let

(4.7) β̃1 = min
{∥∥∥∥(√

ω

a
, 0, . . . , 0

)∥∥∥∥
L3/2,m

,∥∥∥∥( √
ω

a+ (k − 1)b
, . . . ,

√
ω

a+ (k − 1)b︸ ︷︷ ︸
k

, 0, . . . , 0
)∥∥∥∥

L3/2,m

,

∥∥∥∥(√
ω

a+ (m− 1)b
, . . . ,

√
ω

a+ (m− 1)b

)∥∥∥∥
L3/2,m

}
;

(4.8) β̃2 = max
{∥∥∥∥(√

ω

a
, 0, . . . , 0

)∥∥∥∥
L3/2,m

,∥∥∥∥( √
ω

a+ (k − 1)b
, . . . ,

√
ω

a+ (k − 1)b︸ ︷︷ ︸
k

, 0, . . . , 0
)∥∥∥∥

L3/2,m

,

∥∥∥∥(√
ω

a+ (m− 1)b
, . . . ,

√
ω

a+ (m− 1)b

)∥∥∥∥
L3/2,m

}
;
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and set

γ̃ =
(
max{a, b}

)1/2
( ∞∑

n=−∞
‖T−1

n ‖3/2
∞

)1/3

.

Proposition 4.3. For all r satisfying 0 < r < r0 ≡ min{1/(mγ), β̃1}, one
must have Γ 6= tBΓ for all Γ ∈ ∂Kr and all t ∈ [0, 1].

Proof. Suppose there exists a Γ ∈ ∂Kr and a t ∈ [0, 1] such that Γ = tBΓ.
Then, using (3.11) on all (BΓ)n yields

‖Γ‖3/2
L3/2,m

= r3/2 = t3/2
∞∑

n=−∞
|(BΓ)n|3/2 ≤ m5/2r9/2

∞∑
n=−∞

‖T−1
n ‖3/2

∞ max{a, b}3/2

which implies that r ≥ 1/(mγ), a contradiction. �

Proposition 4.4. For any

R > R0 ≡ 2β̃2

(
m

∞∑
n=−∞

max
{
ω‖T−1

n ‖∞,
1

1 + n2

}3/2)2/3

,

there exists a nonzero Γ̃ ∈ K such that Γ − BΓ 6= λΓ̃, for all Γ ∈ ∂KR and all
λ ≥ 0.

Proof. Let Γ̃ = {(Φ̃1, . . . , Φ̃m)n} be given by φ̃1n
...

φ̃mn

 =
1

1 + n2

 1
...
1

 .
It is clear that Γ̃ 6= 0 and Γ̃ ∈ K. Now, suppose to the contrary that there exist
a Γ = (Φ1, . . . ,Φm) ∈ ∂KR and a λ ≥ 0 such that for all n,

(4.9) [φ1j ] =
1

ω + (nπ/l)2

[
a(Φj×Φj×Φj)n+b

(
Φj×

m∑
k=1, k 6=j

(Φk×Φk)
)

n

]
+λΓ̃.

In particular,

(4.10) [φj0] =
1
ω

[
a(Φj × Φj × Φj)0 + b

(
Φj ×

m∑
k=1, k 6=j

(Φk × Φk)
)

0

]
+ λ[1].

One can verify easily that (Φj×Φj×Φj)0 ≥ φ3
j0. Consequently, it is drawn from

(4.10) the following bounds: 0 ≤ φj0 ≤
√
ω/a, 0 ≤ λ ≤

√
ω/a, and

τj0 = a(Φj × Φj × Φj)0 + b

(
Φj ×

m∑
k=1, k 6=j

(Φk × Φk)
)

0

≤ ωφj0 ≤ ω

√
ω

a
.
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It is worth noting that all the terms φj0 cannot be zero simultaneously as Γ =
(Φ1, . . . ,Φm) ∈ ∂KR, even though each can vanish individually. One can see
now from (4.9) and the fact that τjn is decreasing in |n| that

φjn ≤
√
ω

a

(
ω‖T−1

n ‖∞ +
1

1 + n2

)
.

Therefore,

R3/2 ≤ β̃
3/2
2 m

∞∑
n=−∞

(
ω‖T−1

n ‖∞ +
1

1 + n2

)3/2

≤ 23/2β̃
3/2
2 m

∞∑
n=−∞

max
{
ω‖T−1

n ‖∞,
1

1 + n2

}3/2

.

Thus, it is deduced that

R ≤ 2β̃2

(
m

∞∑
n=−∞

max
{
ω‖T−1

n ‖∞,
1

1 + n2

}3/2)2/3

,

a contradiction to the assumption on R. �

Remark 4.5. Notice that R > β2 since( ∞∑
n=−∞

[
1

1 + n2

]3/2)2/3

> 1.

The next theorem follows from Theorem 2.4 and Propositions 4.3 and 4.4.

Theorem 4.6. Let r and R be defined as above. Then the fixed point index
of B on KR

r = {Γ ∈ K : r < ‖Γ‖L3/2,m
< R} is i(K,B,KR

r ) = −1.

Thus, there must be at least one fixed point of B in KR
r . The analysis is not

yet complete, however, since the above m constant periodic solutions could be
the only fixed points in KR

r (the origin does not belong to KR
r .)

Lemma 4.7. If for j = 1, . . . ,m, (p∗1, . . . ,p
∗
m) are the only fixed points of B

in KR
r , then for the half-period l > 0 chosen large enough,∑

i(K,B,Kε(p∗1, . . . ,p
∗
m)) = 0.

Proof. For j = 1, . . . ,m, let εj = εj(l) > 0 be arbitrarily fixed, sufficiently
small numbers whose values will be determined later. Let

Kεj
(p∗1, . . . ,p

∗
m) = {Γ = (Φ1, . . . ,Φm) ∈ K :

‖(Φ1, . . . ,Φm)− (p∗1, . . . ,p
∗
m)‖L3/2,m

< εj},

∂Kεj
(p∗1, . . . ,p

∗
m) = {Γ = (Φ1, . . . ,Φm) ∈ K :

‖(Φ1, . . . ,Φm)− (p∗1, . . . ,p
∗
m)‖L3/2,m

= εj}.
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The εj will be chosen small enough so that Kεj
is in KR

r and {Kεj
} forms

a collection of mutually disjoint open subsets of Kr
R.

Notice then that if ε = min{ε1, . . . , εm}, then Kε(p∗1, . . . ,p
∗
m) ⊂ KR

r and
{Kε(p∗1, . . . ,p

∗
m)} forms a collection of mutually disjoint open subsets of KR

r .
Therefore, the lemma is proved, owing to Lemma 2.4 and the additivity of the
fixed point index, if one can show that (I − B)∂Kε(p∗1, . . . ,p

∗
m) omits the ray

{λΓ̃ : λ ≥ 0}, where Γ̃ ∈ K is defined as in Proposition 4.4. So suppose that
for each j = 1, . . . ,m, there are a Γ = (Φ1, . . . ,Φm) ∈ ∂Kεj (p

∗
1, . . . ,p

∗
m) and

a λ ≥ 0 such that Γ− BΓ = λΓ̃. Then, for all n ∈ Z,

(4.11) [φjn] =
1

ω + (nπ/l)2

[
a(Φj × Φj × Φj)n

+ b

(
Φj ×

m∑
k=1, k 6=j

(Φk × Φk)
)

n

]
+ λΓ̃.

In particular, for n = 1, one has

(4.12) φj1 ≥ A

[
3aφ2

j0φj1 + b

m∑
k=1, k 6=j

(2φj0φk0φk1 + φj1φ
2
k0)

]
+
λ

2

where A = 1/(ω + (π/l)2). It is claimed next that when the half-period l is large
enough, the εj(l) can be chosen sufficiently small so that φjn = 0 for all n 6= 0
and all j = 1, . . . ,m. One needs to consider the following cases separately.

Case 1. 1-nonvanishing fixed point (p∗1, . . . ,p
∗
m) where (p∗10, . . . , p

∗
m0) =

(
√
ω/a, 0, . . . , 0).
Since Γ ∈ ∂Kε1(p

∗
1, . . . ,p

∗
m), it can be written as Γ = (Φ1, . . . ,Φm) =

(p∗1, . . . ,p
∗
m) + ε1(Φ̃1, . . . , Φ̃m) where ‖(Φ̃1, . . . , Φ̃m)‖L3/2,m

= 1. Note that

ε1(Φ̃1, . . . , Φ̃m) = (Φ1, . . . ,Φm)− (p∗1, . . . ,p
∗
m),

therefore, for n ≥ 1, φ̃jn = φjn/ε1 ≥ 0, and φ̃jn ≥ φ̃j(n+1).
In terms of the new variables (Φ̃1, . . . , Φ̃m), (4.12) yields

ε1φ̃11 ≥ 3Aωε1φ̃11 + 6Aa
√
ω

a
ε1φ̃10ε1φ̃11

+Ab
m∑

k=2

2
(√

ω

a
+ ε1φ̃10

)
ε1φ̃k0ε1φ̃k1 +

λ

2
;

and for j = 2, . . . ,m

(4.13) ε1φ̃j1 ≥
Abω

a
ε1φ̃j1 + 2Ab

√
ω

a
ε1φ̃10ε1φ̃j1

+ 2Ab
m∑

k=1,k 6=j

ε1φ̃j0ε1φ̃k0ε1φ̃k1 +
λ

2
.
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First, choose l large enough such that both following conditions hold: 3Aω > 1
and Abω/a > 1. The explicit condition for l is

(4.14) l2 > max
{

π2a

(b− a)ω
,
π2

2ω

}
:≡ L1.

The number ε1 = ε1(l) can now be chosen small enough so that there hold both

(4.15) 3Aωε1φ̃11 + 6Aa
√
ω

a
ε1φ̃10ε1φ̃11

+Ab
m∑

k=2

2
(√

ω

a
+ ε1φ̃10

)
ε1φ̃k0ε1φ̃k1 > ε1φ̃11;

(4.16)
Abω

a
ε1φ̃j1 + 2Ab

√
ω

a
ε1φ̃10ε1φ̃j1 + 2Ab

m∑
k=1, k 6=j

ε1φ̃j0ε1φ̃k0ε1φ̃k1 > ε1φ̃j1.

It follows immediately from (4.13), (4.15) and (4.16) that λ = 0 and φ̃j1 = 0,
hence φjn = 0 for all n 6= 0 and all j = 1, . . . ,m.

Case 2. k-nonvanishing fixed point (p∗1, . . . ,p
∗
m) where

(p∗10, . . . , p
∗
m0) =

( √
ω

a+ (k − 1)b
, . . . ,

√
ω

a+ (k − 1)b︸ ︷︷ ︸
k

, 0, . . . , 0
)
.

Since Γ ∈ ∂Kε2(p
∗
1, . . . ,p

∗
m), it can be written as

Γ = (Φ1, . . . ,Φm) = (p∗1, . . . ,p
∗
m) + ε2(Φ̃1, . . . , Φ̃m)

where ‖(Φ̃1, . . . , Φ̃m)‖L3/2,m
= 1. Note that

ε2(Φ̃1, . . . , Φ̃m) = (Φ1, . . . ,Φm)− (p∗1, . . . ,p
∗
m),

therefore, for n ≥ 1, φ̃jn = φjn/ε2 ≥ 0 and φ̃jn ≥ φ̃j(n+1).
In terms of the new variables (Φ̃1, . . . , Φ̃m), (4.12) yields for j = 1, . . . , k

(4.17) ε2φ̃j1 ≥
Aω(3a+ bk − b)
a+ (k − 1)b

ε2φ̃j1 − C1ε
2
2 +

λ

2
;

and for j = k + 1, . . . ,m

(4.18) ε2φ̃j1 ≥
Abkω

a+ (k − 1)b
ε2φ̃j1 − C2ε

2
2 +

λ

2
.

First, choose l large enough so that both the following conditions hold

Aω(3a+ bk − b)
a+ (k − 1)b

> 1 and
Abkω

a+ (k − 1)b
> 1.

The explicit condition for l is

(4.19) l2 > max
{
π2[a+ (k − 1)b]

(b− a)ω
,
π2[a+ (k − 1)b]

2aω

}
:≡ L2.
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The number ε2 = ε2(l) can now be chosen small enough so that there hold both

(4.20)

Aω(3a+ bk − b)
a+ (k − 1)b

ε2φ̃j1 − C1ε
2
2 > ε2φ̃j1 for j = 1, . . . , k;

Abkω

a+ (k − 1)b
ε2φ̃j1 − C2ε

2
2 > ε2φ̃j1 for j = k + 1, . . . ,m.

It follows immediately from (4.17), (4.18) and (4.20) that λ = 0 and φ̃j1 = 0,
hence φjn = 0 for all n 6= 0 and all j = 1, . . . ,m.

Case 3. m-nonvanishing (or vector) fixed point (p∗1, . . . ,p
∗
m) where

(p∗10, . . . , p
∗
m0) =

(√
ω

a+ (m− 1)b
, . . . ,

√
ω

a+ (m− 1)b

)
.

As before, since Γ ∈ ∂Kε3(p
∗
1, . . . ,p

∗
m), it can be written as

Γ = (Φ1, . . . ,Φm) = (p∗1, . . . ,p
∗
m) + ε3(Φ̃1, . . . , Φ̃m)

where ‖(Φ̃1, . . . , Φ̃m)‖L3/2,m
= 1. Note that

ε3(Φ̃1, . . . , Φ̃m) = (Φ1, . . . ,Φm)− (p∗1, . . . ,p
∗
m),

therefore, for n ≥ 1 φ̃jn = φjn/ε3 ≥ 0 and φ̃jn ≥ φ̃j(n+1).
In terms of the new variables (Φ̃1, . . . , Φ̃m), (4.12) yields for j = 1, . . . ,m

(4.21) ε3φ̃j1 ≥
Aω(3a+ bm− b)
a+ (m− 1)b

ε3φ̃j1 − C3ε
2
3 +

λ

2
.

Now, one can choose l large enough so that

Aω(3a+ bm− b)
a+ (m− 1)b

> 1.

The explicit condition for l is

(4.22) l2 >
π2[a+ (m− 1)b]

2aω
:≡ L3.

The number ε3 = ε3(l) can now be chosen small enough so that there holds

(4.23)
Aω(3a+ bm− b)
a+ (m− 1)b

ε3φ̃j1 − C3ε
2
3 > ε3φ̃j1.

It follows immediately from (4.21) and (4.23) that λ = 0 and φ̃j1 = 0, hence
φjn = 0 for all n 6= 0 and all j = 1, . . . ,m. Thus, the claim is proved.

Next, let

(4.24) l2 > max{L1, L2, L3},

and redefine ε̃1(l), ε̃2(l), ε̃3(l) if necessary so that for

(4.25) ε(l) = min{ε̃1, ε̃2, ε̃3},
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the expressions (4.15), (4.16), (4.20) and (4.23) hold. Under these conditions,
λ = 0 and for all n 6= 0 and all j = 1, . . . ,m, one has φjn = 0.

Using (4.11) for n = 0, one sees that

(4.26) ωφj0 = aφ3
j0 + bφj0

m∑
k=1,k 6=j

φ2
k0.

Up to permutation, the only solutions for (4.26) are the origin and (p∗1, . . . ,p
∗
m)

where (p∗10, . . . , p
∗
m0) takes on the following form:

(a) 1-nonvanishing:
(√

ω

a
, 0, . . . , 0

)
;

(b) k-nonvanishing:
( √

ω

a+ (k − 1)b
, . . . ,

√
ω

a+ (k − 1)b︸ ︷︷ ︸
k

, 0, . . . , 0
)

;

(c) m-nonvanishing (or vector solution):(√
ω

a+ (m− 1)b
, . . . ,

√
ω

a+ (m− 1)b

)
.

But then this contradicts with the facts that {Kε(p∗1, . . . ,p
∗
m)} forms a col-

lection of mutually disjoint open subsets of KR
r and

Γ = (Φ1, . . . ,Φm) ∈ ∂Kε(p∗1, . . . ,p
∗
m)

for small ε when the half-period l is chosen large enough as in (4.24). The proof
of Lemma 4.7 is hence concluded. �

Straightforward calculations similar to the proof of Theorem 3.8 gives the
following.

Theorem 4.8. Let b > a > 0 and ω > 0. If the half-period l is chosen large
enough as in (4.24), then the operator B must have at least one non-trivial fixed
point Γ = (Φ1, . . . ,Φm) in the cone segment Kr

R. Moreover,

(a) either all the sequences of components φjn > 0 for every n ∈ Z and all
j = 1, . . . ,m in which case one obtains a vector solution (Φ1, . . . ,Φm),
or it must be the case that (m−k) of the sequences φjn vanish for every
n ∈ Z, k = 1, . . . ,m − 1, while the others remain strictly positive for
every n ∈ Z in which case one obtains, up to permutation, semi-trivial
solutions (k-nonvanishing) (Φ1, . . . ,Φk, 0, . . . , 0);

(b) for any σ ≥ 0, the sequences {|n|σφjn} are in l1. Therefore, the non-
trivial fixed point solutions are infinitely smooth.
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