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CONTROLLABILITY FOR SYSTEMS GOVERNED
BY SECOND-ORDER DIFFERENTIAL INCLUSIONS

WITH NONLOCAL CONDITIONS

Tran Dinh Ke — Valeri Obukhovskĭi

Abstract. We study a controllability problem for a system governed by

a semilinear second-order differential inclusion involving control perturba-

tions and nonlocal conditions in a Hilbert space. By using the fixed point
theory for condensing multimaps, the (E0, X0)-controllability result for the

mentioned problem is proved under the assumption that the corresponding
linear system is (E0, X0)-controllable.

1. Introduction

We consider the following control problem

x′′(t)−Ax(t)−Bu(t) ∈ F (t, x(t), u(t)), t ∈ J := [0, T ],(1.1)

x(0) + g(x) = x0, x
′(0) + h(x) = x1,(1.2)

where the state function x takes values in a Hilbert space X, the control u ∈
L2(J ;V ), where V is a Hilbert space of controls. The linear operator A is the
infinitesimal generator of a strongly continuous cosine function family {C(t)}t∈R,
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the control operator B:V → X is a bounded linear operator and the nonlinearity
F : J×X×V (X is a multivalued map. The nonlocal functions g, h:C(J ;X)→X

and the initial data (x0, x1) ∈ X2 are given.
The linear system corresponding to (1.1)–(1.2) is the following:

x′′(t) = Ax(t) + Bu(t), t ∈ J,(1.3)

x(0) = x0, x
′(0) = x1.(1.4)

The mild solution x ∈ C(J ;X) of (1.3)–(1.4) with respect to a control u is
represented by

x(t) = C(t)x0 + S(t)x1 +
∫ t

0

S(t− s)Bu(s) ds,

where {S(t)}t∈R is the sine family associated to {C(t)}t∈R. As far as the non-
linear system (1.1)–(1.2) is concerned, a function x ∈ C(J ;X) is called a mild
solution with respect to a control u if there exists a function f ∈ L1(J ;X) such
that f(t) ∈ F (t, x(t), u(t)) for almost every t ∈ J and

x(t) = C(t)[x0 − g(x)] + S(t)[x1 − h(x)] +
∫ t

0

S(t− s)[Bu(s) + f(s)] ds.

For second-order differential equations in Banach spaces and cosine function
theory, we refer the reader to [14], [26], [29].

The solvability for nonlinear second order differential equations with nonlocal
conditions have been investigated by many authors. We refer the reader to the
works in [2], [4], [17], [18], among others.

Set

W (x0, x1, u)(t) = C(t)x0 + S(t)x1 +
∫ t

0

S(t− s)Bu(s) ds,

and let Σ(x0, x1, u) be the solution set of (1.1)–(1.2) with respect to a control u

and initial data (x0, x1). It should be noted that there are several concepts of
controllability for second-order differential system (see the survey [3]). We recall
the definition of controllability along trajectory: the linear system (1.3)–(1.4)
is said to be exactly controllable if for given (x0, x1) ∈ X2, one has WT = X,
where

WT := {W (x0, x1, u)(T ) : u ∈ L2(J ;V )}.
Similarly, we say that the nonlinear system (1.1)–(1.2) is exactly controllable if
for given initial data (x0, x1) ∈ X2, we have ΣT = X, where

ΣT := {y(T ) : y ∈ Σ(x0, x1, u), u ∈ L2(J ;V )}.

For the notions and facts of controllability for first-order differential systems, the
reader is referred to, e.g. [3], [6], [8], [11], [13], [21].
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Let us mention that there is an increasing interest in controllability of non-
linear second-order differential equations and inclusions in the recent research
literature.

In [5], [10], the controllability results for nonlinear second-order integrod-
ifferential systems were obtained under Lipschitz type conditions imposed on
nonlinearity. The control problem involving neutral functional differential in-
clusions was studied in [22]. The reader can find some controllability results
for nonlinear impulsive differential equations or impulsive neutral functional dif-
ferential inclusions in [8], [23], [25]. Regarding control problems with nonlocal
conditions, we refer the reader to some recent works, e.g. [4], [7], [16].

In order to deal with control problems for systems governed by nonlinear
second-order differential systems in the mentioned works, the authors employed
a crucial assumption that the linear controllability operator

BT u =
∫ T

0

S(T − s)Bu(s) ds

has a bounded inverse B−1
T :X → L2(J ;V )/kerBT . This requires that BT is

surjective and hence WT = X.
It is known that, for the linear system (1.3)–(1.4), the reachable set WT

cannot coincide with X if, e.g. S( · ) is compact and X is an infinite dimensional
space (see [27], [28]). In this situation, WT is a proper subspace of X. Hence the
requirement that BT is surjective cannot be applied, even to the standard wave
equation (see the example in the last section for details).

By this limitation, the concept of exact controllability to a subspace is useful.
Let X0 be a closed subspace of X and E0 ⊂ X ×X. Then the linear system is
said to be exactly controllable to X0 from E0 (or (E0, X0)-controllable for short)
if for any (x0, x1) ∈ E0, xT ∈ X0, there exists a control u ∈ L2(J ;V ) such that
W (x0, x1, u)(T ) = xT . Suppose that

{C(T )x0 + S(T )x1 : (x0, x1) ∈ E0} ⊂ X0.

Then the condition R[BT ] = X0 ensures (E0, X0)-controllability for (1.3)–(1.4),
where R[BT ] is the range of BT . The aim of our work is to find suitable conditions
imposed on the nonlinearity F and the nonlocal functions g, h in such a way
that the nonlinear system (1.1)–(1.2) is (E0, X0)-controllable provided that the
linear system (1.3)–(1.4) possesses this property.

Let us give a short description of the features in our work. In comparison with
the above-mentioned works, our system allows to have the control perturbations,
that is, the nonlinearity may contain the control function. In addition, instead of
Lipschitz conditions required for nonlinearity and nonlocal functions, we assume
some more general conditions being the regularity properties expressed in the
terms of the Hausdorff measure of noncompactness (MNC) (see Remarks 3.1
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and 3.2 for precise explanations). To prove the controllability results, we are
applying the fixed point theory for condensing multivalued maps (see, e.g. [19]).
More precisely, by constructing a suitable MNC in a product space and then
using the MNC-estimates, we demonstrate the condensivity property for the
solution multioperator, that allows to use the corresponding fixed point result.
It is worth noting that at the present time this approach is widely used for the
study of nonlinear differential equations, inclusions and control problems, see
e.g. [19] and references therein and, among others, [9], [12], [20], [21].

The rest of our work is organized as follows. Section 2 gives some notions and
facts related to measures of noncompactness, multivalued maps and the control-
lability of linear second-order differential systems. Section 3 is devoted to our
main results: in particular, we prove the controllability assertion (Theorem 3.12)
for the nonlinear system (1.1)–(1.2). The last section presents an application to
the controllability problem for a system governed by the nonlinear wave equa-
tion. We demonstrate that the system is controllable to a dense subspace, that
yields its approximate controllability.

2. Preliminaries

2.1. Measure of noncompactness and multivalued maps. Let us recall
some basic facts from the theories of condensing and multivalued maps, which
will be employed in this paper (for details, see, e.g. [1], [15], [19]).

Let E be a Banach space. We denote

C(E) = {A ∈ P(E) : A is closed},
K(E) = {A ∈ P(E) : A is compact},

Kv(E) = {A ∈ K(E) : A is convex}.

We will use the following definition of the measure of noncompactness.

Definition 2.1. Let (A,≥) be a partially ordered set. A function β:P(E)→A
is called a measure of noncompactness (MNC) in E if

β(co Ω) = β(Ω) for every Ω ∈ P(E),

where co Ω is the closure of the convex hull of Ω. An MNC β is called:

(a) monotone, if Ω0,Ω1 ∈ P(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);
(b) nonsingular, if β({a} ∪ Ω) = β(Ω) for any a ∈ E ,Ω ∈ P(E);
(c) invariant with respect to union with compact set, if β(K ∪ Ω) = β(Ω)

for every relatively compact set K ⊂ E and Ω ∈ P(E);

If A is a cone in a normed space, we say that β is:

(d) algebraically semi-additive, if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any
Ω0,Ω1 ∈ P(E);
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(e) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC, which satisfies all
above properties:

χ(Ω) = inf{ε : Ω has a finite ε-net}.
Based on the Hausdorff MNC χ in E , one can define the sequential MNC χ0 as
follows:

(2.1) χ0(Ω) = sup{χ(D) : D ∈ ∆(Ω)},

where ∆(Ω) is the collection of all at-most-countable subsets of Ω (see [1]). We
know that

(2.2)
1
2
χ(Ω) ≤ χ0(Ω) ≤ χ(Ω),

for all bounded set Ω ⊂ E . Then the following property is evident:

Proposition 2.2. Let χ be the Hausdorff MNC in E and Ω ⊂ E be a bounded
set. Then for every ε > 0, there exists a sequence {xn} ⊂ Ω such that

χ(Ω) ≤ 2χ({xn}) + ε.

Let us remind that X and V are Hilbert spaces of states and controls, re-
spectively. We will denote by χX and χV the Hausdorff MNCs in these spaces.
For J = [0, T ], let χCX and χCV be the Hausdorff MNCs in the spaces of con-
tinuous functions C(J ;X) and C(J ;V ), respectively. We recall the following
facts (see e.g. [1], [19]), which will be used in our paper: for each bounded set
D ⊂ C(J ;X), one has

• χX(D(t)) ≤ χCX(D), for all t ∈ J , where D(t) := {x(t) : x ∈ D}.
• If D is an equicontinuous set then

χCX(D) = sup
t∈J

χX(D(t)).

In this paper, we use the MNC κC in the product space C(J ;X)×C(J ;V ),
which is defined as follows: let π1 and π2 be the canonical projections to C(J ;X)
and C(J ;V ), respectively, then

(2.3) κC(A) = χCX(π1(A)) + χCV (π2(A)),

for all bounded set A ⊂ C(J ;X) × C(J ;V ). It is easy to check that κC has all
properties described in Definition 2.1, including the regularity.

Let us now recall the notion of MNC-norm (see [1], [19]), which will be used
in the sequel. Assume that E1, E2 are Banach spaces and T : E1 → E2 is a bounded
linear operator. Let β1 and β2 be MNCs in E1 and E2, respectively. Define

‖T ‖β1,β2 = inf{k : β2(T (Ω)) ≤ kβ1(Ω) for all bounded sets Ω}.
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It is known that, for a linear bounded operator T , the number ‖T ‖β1,β2 is finite
and it is called (β1, β2)-norm of T . In particular,

(2.4) β2(T (Ω)) ≤ ‖T ‖β1,β2β1(Ω).

Let Y be a metric space.

Definition 2.3. A multivalued map (multimap) F :Y → P(E) is said to be:

(a) upper semi-continuous (u.s.c) if F−1(V ) = {y ∈ Y : F(y) ⊂ V } is an
open subset of Y for every open set V ⊂ E ;

(b) closed if its graph ΓF = {(y, z) : z ∈ F(y)} is a closed subset of Y × E ;
(c) compact if its range F(Y ) is relatively compact in E ;
(d) quasicompact if its restriction to any compact subset A ⊂ Y is compact.

Definition 2.4. A multimap F :D(F) ⊆ E → K(E) is said to be condensing
with respect to an MNC β (β-condensing) if for every bounded set Ω ⊂ D(F)
that is not relatively compact, we have β(F(Ω)) 6= β(Ω).

The application of the topological degree theory for condensing multimaps
(see e.g. [19]) yields the following fixed point result.

Theorem 2.5 ([19, Corollary 3.3.1]). Let M be a bounded convex closed
subset of E and F :M→ Kv(M) an u.s.c. β-condensing multimap, where β be
a monotone nonsingular MNC in E. Then the fixed point set fixF := {x : x ∈
F(x)} is nonempty and compact.

Definition 2.6. Let G: J → K(E) be a multivalued function (multifunc-
tion). Then G is said to be

(a) integrable, if it admits a Bochner integrable selection. That is there
exists g: J → E , g(t) ∈ G(t) for almost every t ∈ [0, d] such that∫ T

0

‖g(s)‖E ds < ∞;

(b) integrably bounded, if there exists a function ξ ∈ L1(J) such that

‖G(t)‖ := sup{‖g‖E : g ∈ G(t)} ≤ ξ(t) for a.e. t ∈ J.

The set of all integrable selections of G will be denoted by S1
G.

The multifunction G is called measurable if G−1(V ) measurable (with respect
to the Lebesgue measure on J) for every open subset V of E . We say that G

is strongly measurable if there exists a sequence Gn: J → K(E), n = 1, 2, . . . of
step multifunctions such that

lim
n→∞

H(Gn(t), G(t)) = 0 for a.e. t ∈ J,

where H is the Hausdorff metric on K(E).
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It is known that, when E is separable, the notions of measurable and strongly
measurable multifunctions are equivalent, and they are also equivalent to the
assertion that the function t 7→ dist(x,G(t)) is measurable for each x ∈ E .
Furthermore, if G is measurable and integrably bounded, then it is integrable.
In this case, we have a multifunction t ∈ J 7→

∫ t

0
G(s) ds defined by∫ t

0

G(s) ds :=
{ ∫ t

0

g(s) ds : g ∈ S1
G

}
.

We have the following χ-estimate for the multivalued integral in the case when
E is separable.

Proposition 2.7 ([19, Theorem 4.2.3]). Let E be a separable Banach space
and G: J → P(E) an integrable, integrably bounded multifunction such that

χ(G(t)) ≤ q(t)

for almost every t ∈ J , where q ∈ L1(J). Then

χ

( ∫ t

0

G(s) ds

)
≤

∫ t

0

q(s) ds

for all t ∈ J . In particular, if G: J → K(E) is measurable and integrably bounded
then the function χ(G( · )) is integrable and

χ

( ∫ t

0

G(s) ds

)
≤

∫ t

0

χ(G(s)) ds

for all t ∈ J .

Consider an abstract operator L:L1(J ; E) → C(J ; E) satisfying the following
conditions:

(L1) there exists a constant C > 0 such that

‖L(f)(t)− L(g)(t)‖E ≤ C

∫ t

0

‖f(s)− g(s)‖E ds,

for all f, g ∈ L1(J ; E), t ∈ J ;
(L2) for each compact set K ⊂ E and sequence {fn} ⊂ L1(J ; E) such that

{fn(t)} ⊂ K for almost every t ∈ J , the weak convergence fn ⇀ f0

implies L(fn) → L(f0) strongly in C(J ; E).

As mentioned in [19, Remark 4.2.3], the integral operator

(2.5) GI(f)(t) =
∫ t

0

f(s) ds,

presents an example of operator which satisfies (L1)–(L2).
One has the following assertion, which is a basic MNC-estimate for our pur-

pose.
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Proposition 2.8 ([19]). Let L satisfy (L1)–(L2) and {ξn} ⊂ L1(J ; E) be
integrably bounded, that is

‖ξn(t)‖E ≤ ν(t), for a.e. t ∈ J,

where ν ∈ L1(J). Assume that there exists q ∈ L1(J) such that

χ({ξn(t)}) ≤ q(t), for a.e. t ∈ J.

Then

χ({L(ξn)(t)}) ≤ 2C

∫ t

0

q(s) ds

for any t ∈ J , where C comes from assumption (L1).

Using Proposition 2.8, we have the following result:

Proposition 2.9. Let Ω ⊂ L1(J ; E) be a bounded set such that

(a) for all ξ ∈ Ω, ‖ξ(t)‖E ≤ ν(t) for almost every t ∈ J ,
(b) χ(Ω(t)) ≤ q(t) for almost every t ∈ J ,

where Ω(t) = {ξ(t) : ξ ∈ Ω}, ν and q are functions in L1(J). Let L satisfy
(L1)–(L2). Then

χ(L(Ω)(t)) ≤ 4C

∫ t

0

q(s) ds.

Proof. Using Proposition 2.2, for any ε>0, there exists a sequence {ξn}⊂Ω
such that

(2.6) χ(L(Ω)(t)) ≤ 2χ({L(ξn)(t)}) + ε,

for any t ∈ J . Since Ω is integrably bounded, so is {ξn}. Furthermore,

χ({ξn(t)}) ≤ χ(Ω(t)) ≤ q(t), for a.e. t ∈ J.

Applying Proposition 2.8, one has

χ({L(ξn)(t)}) ≤ 2C

∫ t

0

q(s) ds, t ∈ J.

Putting this into (2.6), we have

χ(L(Ω)(t)) ≤ 4C

∫ t

0

q(s) ds + ε, t ∈ J.

Since ε is arbitrary, we get the conclusion as desired. �

In what follows, we employ the notion of semicompact sequence:

Definition 2.10. A sequence {ξn} ⊂ L1(J ; E) is called semicompact if it
is integrably bounded and the set {ξn(t)} is relatively compact in E for almost
every t ∈ J .

Following [19, Theorems 4.2.1 and 5.1.1], we have
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Proposition 2.11. If {ξn} ⊂ L1(J ; E) is a semicompact sequence, then
{ξn} is weakly compact in L1(J ; E) and {L(ξn)} is relatively compact in C(J ; E).
Moreover, if ξn ⇀ ξ0 then L(ξn) → L(ξ0).

2.2. Cosine function and controllability of a second-order linear
system. Let us recall that a family {C(t)}t∈R of bounded linear operators in X

is called a strongly continuous cosine family if

(a) C(0) = I;
(b) C(t + s) + C(t− s) = 2C(t)C(s), for all t, s ∈ R;
(c) for each x ∈ X, the map t 7→ C(t)x is strongly continuous.

The sine family {S(t)}t∈R, associated to a given strongly continuous cosine family
{C(t)}t∈R, is defined by

S(t)x =
∫ t

0

C(s)x ds, x ∈ X, t ∈ R.

The operator A:D(A) ⊂ X → X is said to be the infinitesimal generator of
a cosine family {C(t)}t∈R if and only if

Ax =
d2

dt2
C(t)x

∣∣∣∣
t=0

.

We have the following proposition.

Proposition 2.12 ([26]). Let {C(t)}t∈R be a strongly continuous cosine
family in X. Then there exist constants M ≥ 1 and ω ≥ 0 such that

(a) ‖C(t)‖ ≤ Meω|t| for all t ∈ R;
(b) ‖S(t2)− S(t1)‖ ≤ M

∫ t2
t1

eω|s| ds for all t1, t2 ∈ R, t1 < t2.

For more details on the cosine function theory, the reader is referred to [14]
and [26].

Let X0, E0 be the spaces mentioned in Section 1. It is known that the
linear system (1.3)–(1.4) is (E0, X0)-controllable if and only if R[BT ] = X0. The
following result is useful for our purpose:

Lemma 2.13 ([11, Corollary 3.5]). Let V, W, Z be reflexive Banach spaces
and G0 ∈ L(V;Z), G1 ∈ L(W;Z). Then the following statements are equivalent:

(a) R[G0] ⊂ R[G1],
(b) there exists γ > 0 such that

√
γ‖G∗0z∗‖V∗ ≤ ‖G∗1z∗‖W∗ , for all z∗ ∈ Z∗.

By using this lemma with V = X0, W = L2(J ;V ), Z = X, G0 being the
injection from X0 into X and G1 = BT , the controllability condition is equivalent
to the inequality

(2.7) ‖B∗T z‖L2(J;V ) ≥
√

γ‖z‖X∗
0
, γ > 0,
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for all z ∈ X∗
0 . Here B∗T : X → L2(J ;V ) is the adjoint operator of BT . The last

inequality implies that (BTB∗T z, z)X ≥ γ‖z‖2X∗
0
, for all z ∈ X. Moreover, the

arguments in the proof of [11, Theorem 3.7] show that B∗T = B∗S∗(T − · ), and
then the operator ΓT

0 :X → X0 defined by

(2.8) ΓT
0 (z) = BTB∗T z =

∫ T

0

S(T − s)BB∗S∗(T − s)z ds, z ∈ X

is invertible and

(2.9) ‖(ΓT
0 )−1‖ ≤ 1

γ
.

By the hypothesis that the linear system is (E0, X0)-controllable, for given xT ∈
X0, the feedback control is defined by

u(t) = B∗S∗(T − t)(ΓT
0 )−1[xT − C(T )x0 − S(T )x1].

3. Controllability result

We start this section by giving our assumptions on the control problem (1.1)–
(1.2). The following suggestion will be used in this section:

(SA) The linear system (1.3)–(1.4) is (E0, X0)-controllable. Furthermore,
(a) {C(t)x0 + S(t)x1 : (x0, x1) ∈ E0} ⊂ X0,
(b)

∫ T

0
S(T − s)f(s) ds ∈ X0 for all f ∈ L1(J ;X).

In addition, let us impose some regularity conditions on F , g and h. Concerning
the multivalued nonlinearity F , we assume that:

(F1) F : J ×X ×V → Kv(X) is such that F ( · , x( · ), v( · )) admits a strongly
measurable selection for each (x, v) ∈ C(J ;X)× L2(J ;V );

(F2) For almost every t ∈ J , F (t, · , · ):X × V → Kv(X) is u.s.c.;
(F3) There exists a continuous nondecreasing function Ψ: R+ → R+ such

that

‖F (t, η, ζ)‖ := sup{‖z‖X : z ∈ F (t, η, ζ)} ≤ µ(t)Ψ(‖η‖X + ‖ζ‖V ),

for almost every t ∈ J, (η, ζ) ∈ X × V , where µ ∈ L1(J);
(F4) There are functions k, q ∈ L1(J) such that

χX(F (t,Ω, Q)) ≤ k(t)χX(Ω) + q(t)χV (Q), for a.e. t ∈ J,

for all bounded subsets Ω ⊂ X and Q ⊂ V .

Remark 3.1. We now give a comment on hypothesis (F4). If X is a finite
dimension space, one can drop (F4) since it can be deduced from (F2)–(F3).
That is F (t, · , · ) maps bounded set in X × V into bounded set in X, and
therefore χX(F (t, Ω, Q)) = 0 for all bounded sets Ω ⊂ X and Q ⊂ V .
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Now we show that if F (t, · , · ) is a Lipschitz multifunction with respect to
the Hausdorff metric H on K(X), that is for all x, y ∈ X, ξ, η ∈ V :

(3.1) H(F (t, x, ξ), F (t, y, η)) ≤ k(t)‖x− y‖X + q(t)‖ξ − η‖V ,

then (F4) is satisfied. Indeed, by definition of the Hausdorff MNC, for given
ε > 0, one can choose {y1, . . . , ym} ⊂ X and {η1, . . . , ηp} ⊂ V such that

Ω ⊂
m⋃

i=1

B(yi, χX(Ω) + ε), Q ⊂
p⋃

k=1

B(ηk, χV (Q) + ε).

Now for any z ∈ F (t, Ω, Q), there exists (x, ξ) ∈ Ω×Q such that z ∈ F (t, x, ξ).
Taking yi and ηk such that

‖x− yi‖X ≤ χX(Ω) + ε, ‖ξ − ηk‖V ≤ χV (Q) + ε,

we obtain

‖z−zik‖X ≤ k(t)‖x−yi‖X +q(t)‖ξ−ηk‖V ≤ k(t)(χX(Ω)+ε)+q(t)(χV (Q)+ε),

due to (3.1), here zik ∈ F (t, yi, ηk). Thus

F (t,Ω, Q) ⊂
⋃

i=1,...,m
k=1,...,p

B(zik, k(t)(χX(Ω) + ε) + q(t)(χV (Q) + ε)).

The last inequality implies (F4).

Concerning g and h, we suppose that:

(GH1) g, h:C(J ;X) → X are continuous and for x ∈ C(J ;X), (g(x), h(x)) ∈
E0;

(GH2) There exist numbers Cg, Ch ≥ 0 and nondecreasing functions Ψg,Ψh:
R+ → R+ such that

‖g(x)‖X ≤ CgΨg(‖x‖C), ‖h(x)‖X ≤ ChΨh(‖x‖C),

where ‖x‖C = ‖x‖C(J;X);
(GH3) We have

χCX(C( · )g(D)) ≤ mgχCX(D), χCX(S( · )h(D)) ≤ mhχCX(D),

for all bounded subsets D ⊂ C(J ;X), where mg, mh are nonnegative
constants.

Remark 3.2. (a) If g and h are Lipschitz continuous, then (GH3) is true.
Indeed, we can show this fact, e.g. for g. Let

‖g(x)− g(y)‖X ≤ lg‖x− y‖C , lg ≥ 0, for all x, y ∈ C(J ;X).

Then
sup
t∈J

‖C(t)g(x)− C(t)g(y)‖X ≤ lg sup
t∈J

C(t)‖x− y‖C .
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It implies

‖C( · )g(x)− C( · )g(y)‖C ≤ mg‖x− y‖C ,

where mg := lg sup
t∈J

C(t). This leads to the first inequality in (GH3). In addition,

it is easy to check that g and h satisfy (GH2), due to the fact that

‖g(x)‖X ≤ lg‖x‖C + ‖g(0)‖X ,

and a similar estimate for h.
(b) If g and h are completely continuous, i.e. they send any bounded set in

C(J ;X) to a relatively compact set in X, then (GH3) is fulfilled with mg =
mh = 0. Indeed, let D ⊂ C(J ;X) be a bounded set. Then g(D) is a relatively
compact set in X. It follows that C( · )g(D) is equicontinuous and then

χCX(C( · )g(D)) = sup
t∈J

χX(C(t)g(D)) = 0,

due to the fact that C(t)g(D) is relatively compact for each t ∈ J . The same
arguments show that

χCX(S( · )g(D)) = sup
t∈J

χX(S(t)g(D)) = 0.

For each (x, u) ∈ C(J ;X)× L2(J ;V ), set

S1
F (x, u) = {f ∈ L1(J ;X) : f(t) ∈ F (t, x(t), u(t)), t ∈ J}.

Definition 3.3. A function x ∈ C(J ;X) is said to be a mild solution of the
nonlinear system (1.1)–(1.2) if there exists f ∈ S1

F (x, u) such that

x(t) = C(t)[x0 − g(x)] + S(t)[x1 − h(x)] +
∫ t

0

S(t− s)[Bu(s) + f(s)] ds.

For the sake of convenience, to obtain the controllability of (1.1)–(1.2), we
will divide our arguments into steps. As the first step, we define a solution
mutioperator, whose fixed points are the solutions of the control problem (1.1)–
(1.2).

Define the evaluation operator Q:C(J ;X) → X by Qy = y(T ) and the
integral operator L as follows:

L : L1(J ;X) → C(J ;X),(3.2)

L(f)(t) =
∫ t

0

S(t− s)f(s) ds.(3.3)

In addition, define the operator G on C(J ;X):

(3.4) G(x)(t) = C(t)[x0 − g(x)] + S(t)[x1 − h(x)].
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We are in a position to construct the multioperator

F :C(J ;X)× L2(J ;V ) → P(C(J ;X)× C(J ;V )),(3.5)

F(x, u) = {(y(x, u, f), z(x, u, f)) : f ∈ S1
F (x, u)},(3.6)

where

z(x, u, f) = B∗S∗(T − · )(ΓT
0 )−1[xT −QG(x)−QL(f)],(3.7)

y(x, u, f) = G(x) + LBz(x, u, f) + L(f).(3.8)

Here the operator ΓT
0 is defined by (2.8) and xT ∈ X is given.

Notice that the multioperator F is well-defined by virtue of assumption (SA).
Let us mention also that the projections of F on C(J ;X) and C(J ;V ), respec-
tively, can be written as

π1F(x, u) = {y(x, u, f) : f ∈ S1
F (x, u)},

π2F(x, u) = {z(x, u, f) : f ∈ S1
F (x, u)}.

Moreover, if (x∗, u∗) is a fixed point of F , then there exists f ∈ S1
F (x∗, u∗) such

that

x∗ = G(x∗) + L(Bu∗ + f),(3.9)

u∗ = B∗S∗(T − · )(ΓT
0 )−1[xT −QG(x∗)−QL(f)].(3.10)

Therefore, it is easy to check that the control u∗ given above steers the initial
profile (x0, x1) to xT = x∗(T ).

Since we are searching for a fixed point of F satisfying (3.9)–(3.10), the
multioperator F can be restricted to C(J ;X)×C(J ;V ). We call F the solution
multioperator.

As the second step, we will study some properties of the solution multiope-
rator F . The following results will be useful in the sequel:

Proposition 3.4. The operator L defined by (3.2)–(3.3) satisfies (L1)–(L2)
with constant C = M0 := sup

t∈J
‖S(t)‖. Furthermore, it maps any bounded set in

L1(J ;X) into an equicontinuous one in C(J ;X).

Proof. Taking the arguments from [19, Lemma 4.2.1], we see that L fulfills
(L1)–(L2). On the other hand, if Q ⊂ L1(J ;X) is a bounded set, then for all
f ∈ Q and t1, t2 ∈ J , t2 > t1, we have

‖L(f)(t2)− L(f)(t1)‖X =
∥∥∥∥∫ t2

0

S(t2 − s)f(s) ds−
∫ t1

0

S(t1 − s)f(s) ds

∥∥∥∥
X

≤
∫ t1

0

‖S(t2 − s)− S(t1 − s)‖‖f(s)‖X ds +
∫ t2

t1

‖S(t2 − s)‖‖f(s)‖X ds.
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Using Proposition 2.12, one obtains that

‖S(t2 − s)− S(t1 − s)‖ ≤ M

∫ t2−s

t1−s

eωζ dζ ≤ M(t2 − t1)eωT .

Making use of this estimate, we arrive at

‖L(f)(t2)− L(f)(t1)‖X ≤ M(t2 − t1)eωT

∫ t1

0

‖f(s)‖X ds + M0

∫ t2

t1

‖f(s)‖X ds.

The last inequality ensures the second conclusion of Proposition 3.4. �

Proposition 3.5. Let A be a bounded set in C(J ;X)× C(J ;V ). Then the
set π2F(A) is equicontinuous in C(J ;V ).

Proof. Let D = π1(A). Then D is a bounded set in C(J ;X). For any
v ∈ π2F(A), there exists an (x, u) ∈ A and f ∈ S1

F (x, u) such that

v(t) = B∗S∗(T − t)(ΓT
0 )−1[xT −QG(x)−QL(f)].

Then

‖v(t2) − v(t1)‖V ≤ ‖B∗‖ · ‖S∗(T − t2)− S∗(T − t1)‖(3.11)

· ‖(ΓT
0 )−1‖(‖xT ‖X + ‖QG(x)‖X + ‖QL(f)‖X)

≤ 1
γ
‖B‖ · ‖S(T − t2)− S(T − t1)‖

· (‖xT ‖X + ‖QG(x)‖X + ‖QL(f)‖X)

≤ 1
γ
‖B‖M |t2 − t1|eωT (‖xT ‖X + ‖QG(x)‖X + ‖QL(f)‖X).

Here we have used (2.9) and Proposition 2.12. Applying (GH2), we have

‖QG(x)‖X = ‖C(T )[x0 − g(x)] + S(T )[x1 − h(x)]‖X

≤‖C(T )‖(‖x0‖X + CgΨg(‖x‖C)) + ‖S(T )‖(‖x1‖X + ChΨh(‖x‖C)).

Thus one can find M1 > 0 such that

(3.12) ‖QG(x)‖X ≤ M1, for all x ∈ D.

In addition, by (F3), we see that

‖QL(f)‖X =
∥∥∥∥∫ T

0

S(T − s)f(s) ds

∥∥∥∥
X

≤ M0Ψ(‖x‖C + ‖u‖C)
∫ T

0

µ(s) ds

for any f ∈ S1
F (x, u). Since A is bounded, there is a number M2 > 0 such that

(3.13) ‖QL(f)‖X ≤ M2,

for all (x, u) ∈ A. Hence putting (3.12) and (3.13) into inequality (3.11), we
obtain that π2F(A) is equicontinuous in C(J ;V ). �
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Lemma 3.6 ([19, Lemma 5.1.1]). Let F satisfy (F1)–(F2) and {(xn, un)} ⊂
C(J ;X) × C(J ;V ) be a sequence converging to (x∗, u∗) ∈ C(J ;X) × C(J ;V ).
Suppose that the sequence {φn} such that φn ∈ S1

F (xn, un) weakly converges to φ∗

in L1(J ;X), then φ∗ ∈ S1
F (x∗, u∗).

Lemma 3.7 ([19, Theorem 1.1.12]). Let X and Y be metric spaces and
G:X → P(Y ) a closed quasi-compact multimap with compact values. Then G is
u.s.c.

We can describe now the first property for the solution multioperator.

Lemma 3.8. Let (F1)–(F3) and (GH1)–(GH2) hold. Then the multioperator
F given by (3.5)–(3.8) is a quasi-compact multimap.

Proof. Let K ⊂ C(J ;X) × C(J ;V ) be a compact set and D = π1(K),
C = π2(K). It follows from (3.7) that

χV (π2F(K)(t)) = χV (B∗S∗(T − t)(ΓT
0 )−1[xT −QG(D)−QLS1

F (K)])

≤ ‖B∗S(T − t)(ΓT
0 )−1‖χX ,χV

χX(xT −QG(D)−QLS1
F (K))

≤ ‖B∗S(T − t)(ΓT
0 )−1‖χX ,χV

[χX(QG(D)) + χX(QLS1
F (K))].

Here we used the MNC-norm estimate (2.4) and the fact that xT is singleton.
We have

χX(QG(D)) = χX(C(T )[x0 − g(D)] + S(T )[x1 − h(D)])

≤ ‖C(T )‖χX(g(D)) + ‖S(T )‖χX(h(D)) = 0,

due to the fact that g, h : C(J ;X) → X are continuous and D ⊂ C(J ;X) is
compact, which leads to the compactness of g(D) and h(D). On the other hand,

(3.14) χX({f(s) : f ∈ S1
F (K)}) ≤ χX(F (s,D(s), C(s))) = 0 for each s ∈ J,

thanks to the fact that F (s, · , · ) is u.s.c and D(s) ⊂ X, C(s) ⊂ V are compact.
Thus, the use of Proposition 2.9 yields

(3.15) χX(QLS1
F (K)) = χX

({ ∫ T

0

S(T − s)f(s) ds : f ∈ S1
F (K)

})
= 0.

Hence

(3.16) χV (π2F(K)(t)) = 0 for each t ∈ J.

Since K is a bounded set, by virtue of Proposition 3.5, π2F(K) is equicontinuous
in C(J ;V ). Taking into account (3.16) and using the Arzela-Ascoli theorem, one
concludes that π2F(K) is a relatively compact set in C(J ;V ).

Regarding π1F(K), one has

(3.17) χX(π1F(K)(t)) = χX(G(D)(t) + L[Bπ2F(K) + S1
F (K)])

≤ χX(G(D)(t))+χX(LBπ2F(K)(t))+χX(LS1
F (K)(t)).



392 T.D. Ke — V. Obukhovskĭı

By the continuity of C(t), S(t), g, h and the compactness of D, one has

χX(G(D)(t)) = χX(C(t)[x0 − g(D)] + S(t)[x1 − h(D)])(3.18)

≤ χX(C(t)g(D)) + χX(S(t)h(D)) = 0,

for t ∈ J . Since π2F(K) is relatively compact and B is linear bounded, we have

(3.19) χX(LBπ2F(K)(t)) = 0, t ∈ J.

Moreover, by using the arguments as in (3.14)–(3.15), we get

χX(LS1
F (K)(t)) = 0, t ∈ J.

This fact together with (3.18)–(3.19) implies

χX(π1F(K)(t)) = 0, t ∈ J.

In order to show that π1F(K) is a compact set in C(J ;X), it remains to prove
that π1F(K) is equicontinuous. In view of the compactness of g(D) and h(D),
we deduce that G(D) = C( · )[x0− g(D)]+S( · )[x1−h(D)] is equicontinuous. In
addition, Bπ2F(K) and S1

F (K) are bounded sets in L1(J ;X), then, by applying
Proposition 3.4 we see that LBπ2F(K) and LS1

F (K) are equicontinuous as well.
Therefore π1F(K) is an equicontinuous set in C(J ;X). �

Lemma 3.9. Let the hypotheses of Lemma 3.8 hold. Then the solution mul-
tioperator F is u.s.c.

Proof. Using Lemmas 3.7 and 3.8, it suffices to prove that F is a closed mul-
timap. Let {(xn, un)} ⊂ C(J ;X) × C(J ;V ) converge to (x∗, u∗) and (yn, zn) ∈
F(xn, un). Suppose that (yn, zn) converges to (y∗, z∗). We will show that
(y∗, z∗) ∈ F(x∗, u∗). Indeed, by the definition of F , for each n ≥ 1, there
exists fn ∈ S1

F (xn, un) such that

yn = G(xn) + L(Bun + fn),(3.20)

zn = B∗S∗(T − · )(ΓT
0 )−1[xT −QG(xn)−QLfn].(3.21)

Let K = {(xn, un)}. Then K is a compact set in C(J ;X) × C(J ;V ). Noting
that fn(t) ∈ F (t, K(t)), we see that {fn(t)} ⊂ X is compact. In addition, it
follows from (F3) that {fn} is integrably bounded, thanks to the fact that K is
a bounded set. Thus {fn} is a semicompact sequence. By Proposition 2.11, {fn}
converges weakly to a function f∗ in L1(J ;X) and then Lfn converges to Lf∗

strongly in C(J ;X). Now one can pass to the limits in equalities (3.20)–(3.21)
to get that

y∗ = G(x∗) + L(Bu∗ + f∗),(3.22)

z∗ = B∗S∗(T − · )(ΓT
0 )−1[xT −QG(x∗)−QLf∗].(3.23)
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Finally, by using Lemma 3.6, we have f∗ ∈ S1
F (x∗, u∗) and then (3.22)–(3.23)

guarantees that (y∗, z∗) ∈ F(x∗, u∗). �

For the sake of simplicity, we set

N0 = sup
t∈J

‖C(t)‖,(3.24)

M∗ = sup
t∈J

‖B∗S∗(T − t)(ΓT
0 )−1‖χX ,χV

,(3.25)

k0 = mg + mh + 2M0

∫ T

0

k(s) ds,(3.26)

q0 = 2M0

∫ T

0

q(s) ds.(3.27)

We are in a position to present the following key statement.

Theorem 3.10. Let the nonlinearity F satisfy (F1)–(F2) and (F4), g and h

obey (GH1), (GH3). Then the solution operator F is κC-condensing, provided

(3.28) ` := max{2k0(1 + 2M0M
∗T‖B‖χX ,χV

),

2q0(1 + 2M0M
∗T‖B‖χX ,χV

)} < 1,

where the MNC κC is defined in (2.3).

Proof. Let A be a bounded set in C(J ;X)× C(J ;V ) such that

(3.29) κC(F(A)) ≥ κC(A).

We will demonstrate that A is relatively compact. By the definitions of κC

in (2.3) and F in (3.5)–(3.8), we have

(3.30) κC(F(A)) = χCX(π1F(A)) + χCV (π2F(A)).

We first give some estimates for χCV (π2F(A)). In view of Proposition 3.5,
π2F(A) is equicontinuous. Let D = π1(A), C = π2(A). Then

(3.31) χCV (π2F(A)) = sup
t∈J

χV (π2F(A)(t))

≤ sup
t∈J

‖B∗S∗(T − t)(ΓT
0 )−1‖χX ,χV

χX(xT −QG(D)−QLS1
F (A))

≤ sup
t∈J

‖B∗S∗(T − t)(ΓT
0 )−1‖χX ,χV

[χX(QG(D)) + χX(QLS1
F (A))].

Dealing with χX(QG(D)), one gets

χX(QG(D)) = χX(C(T )[x0 − g(D)] + S(T )[x1 − h(D)])(3.32)

≤ χX(C(T )g(D)) + χX(S(T )h(D))

≤ χCX(C( · )g(D)) + χCX(S( · )h(D))

≤ (mg + mh)χCX(D),
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according to (GH3). On the other hand, by (F4) we have

χX(F (s,D(s), C(s))) ≤ k(s)χX(D(s)) + q(s)χV (C(s))
≤ k(s)χCX(D) + q(s)χCV (C), s ∈ J.

Therefore,

(3.33) χX(QLS1
F (A))

≤ χX

( ∫ T

0

S(T − s)f(s) ds : f ∈ L1(J ;X), f(s) ∈ F (s,D(s), C(s))
)

≤ 4M0

(
χCX(D)

∫ T

0

k(s) ds + χCX(C)
∫ T

0

q(s) ds

)
,

due to Proposition 2.9. Putting the last inequality and (3.32) into (3.31), we get

(3.34) χCV (π2F(A)) ≤ M∗(k0χCX(D) + q0χCV (C)).

Now we implement estimates for χCX(π1F(A)). One can write

χCX(π1F(A)) = χCX(G(D) + L[Bπ2F(A) + S1
F (A)])(3.35)

≤ χCX(G(D)) + χCX(LBπ2F(A) + χCX(LS1
F (A)).

Taking similar estimates as in (3.32), we have

(3.36) χCX(G(D)) ≤ (mg + mh)χCX(D).

Moreover, by virtue of the boundedness of Bπ2F(A) and Proposition 3.4, the
set LBπ2F(A) is equicontinuous. Then

χCX(LBπ2F(A)) = sup
t∈J

χX(LBπ2F(A)(t)).

In order to get estimates for the last term, we observe that

χX(Bπ2F(A)(t)) ≤ ‖B‖χX ,χV
χV (π2F(A)(t)) ≤ ‖B‖χX ,χV

χCV (π2F(A))

≤ ‖B‖χX ,χV
M∗(k0χCX(D) + q0χCV (C)),

thanks to (3.34). Accordingly, by Proposition 2.9 we have

(3.37) χCX(LBπ2F(A)) ≤ 4M0T‖B‖χX ,χV
M∗(k0χCX(D) + q0χCV (C)).

Since the set S1
F (A) is integrably bounded, LS1

F (A) is an equicontinuous set and
the last term in (3.35) is proceeded similarly to (3.33):

(3.38) χCX(LS1
F (A)) = sup

t∈J
χX(LS1

F (A)(t))

≤ sup
t∈J

χX

( ∫ t

0

S(t− s)f(s) ds : f ∈ L1(J ;X), f(s) ∈ F (s,D(s), C(s))
)

≤ 4M0

(
χCX(D)

∫ T

0

k(s) ds + χCV (C)
∫ T

0

q(s) ds

)
.
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The combination of (3.35)–(3.38) gives

χCX(π1F(A)) ≤
(

mg + mh + 4M0M
∗k0T‖B‖χX ,χV

+4M0

∫ T

0

k(s) ds

)
χCX(D)

+
(

4M0M
∗q0T‖B‖χX ,χV

+ 4M0

∫ T

0

q(s) ds

)
χCV (C)

= (k0 + 4M0M
∗k0T‖B‖χX ,χV

)χCX(D)

+ (q0 + 4M0M
∗q0T‖B‖χX ,χV

)χCV (C).

The last inequality together with (3.34) implies

κC(F(A)) =χCX(π1F(A)) + χCV (π2F(A))

≤ 2k0(1 + 2M0M
∗T‖B‖χX ,χV

)χCX(D)

+ 2q0(1 + 2M0M
∗T‖B‖χX ,χV

)χCV (C).

It means that κC(F(A)) ≤ `(χCX(D)+χCV (C)) = `κC(A). Taking into account
(3.29) and the fact that ` < 1, we obtain κC(A) = 0 and then A is a relatively
compact set, due to the regularity of κC . �

Remark 3.11. If S(t) is compact for t ∈ J and X is separable, one can
drop hypothesis (F4). In fact, we use (F4) for estimates (3.33) and (3.38). Now
with the assumptions of this remark, one gets estimate (3.33) directly due to
Proposition 2.7:

χX(QLS1
F (A))

= χX

( ∫ T

0

S(T − s)f(s) ds : f ∈ L1(J ;X), f(s) ∈ F (s,D(s), C(s))
)

≤
∫ T

0

χX(S(T − s)f(s) : f ∈ L1(J ;X), f(s) ∈ F (s,D(s), C(s)) ds = 0

due to the compactness of S(T − s). Estimate (3.38) can be obtained by the
same manner. Thus, in this case q0 = 0, k0 = mg + mh in (3.28) and then
condition (3.28) is reduced to

2k0(1 + 2M0M
∗T‖B‖χX ,χV

) < 1.

It should be noted that, the situation mentioned in this remark appears in numer-
ous models of control problems involving PDEs, including parabolic equations.
It follows that the exact controllability for these models cannot be obtained.

We are in the last step to prove the main theorem of this section. It is the
controllability result, that is, we will demonstrate the (E0, X0)-controllability of
the system (1.1)–(1.2).
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Theorem 3.12. Let (SA), (F1)–(F4) and (GH1)–(GH3) hold. Suppose that
(3.28) and the following inequality

lim
n→∞

1
n

(
N0CgΨg(n) + M0ChΨh(n) + M0Ψ(n)

∫ T

0

µ(s) ds

)
<

1
1 + M∗(1 + M0T‖B‖)

hold. Then the nonlinear system (1.1)–(1.2) is (E0, X0)-controllable.

Proof. We will apply Theorem 2.5 to show that the solution multioperator
F has a fixed point. We have proved in Lemma 3.9 and Theorem 3.10 that F is
u.s.c. and κC-condensing. It remains to show that there exists R > 0 such that
F(BR) ⊂ BR, where

BR = {(x, u) ∈ C(J ;X)× C(J ;V ) : ‖x‖C + ‖u‖C ≤ R}.

Assume to the contrary that for each n ∈ N, there exists (xn, un) ∈ C(J ;X) ×
C(J ;V ) such that

‖xn‖C + ‖un‖C ≤ n,(3.39)

‖yn‖C + ‖zn‖C > n,(3.40)

for some (yn, zn) ∈ F(xn, un). Let fn ∈ S1
F (xn, un) be such that

yn = G(xn) + L(Bzn + fn),

zn = B∗S∗(T − · )(ΓT
0 )−1[xT −QG(xn)−QL(fn)].

Estimating zn, one has

(3.41) ‖zn‖C ≤M∗(‖xT ‖X + ‖C(T )[x0 − g(xn)]‖X)

+ M∗
(
‖S(T )[x1 − h(xn)]‖X +

∥∥∥∥∫ T

0

S(T − s)fn(s) ds

∥∥∥∥
X

)
≤M∗(‖xT ‖X + ‖C(T )‖[‖x0‖+ CgΨg(‖xn‖C)])

+ M∗(‖S(T )‖[‖x1‖+ ChΨh(‖xn‖C)])

+ M∗M0

∫ T

0

µ(s)Ψ(‖xn(s)‖X + ‖un(s)‖V ) ds

≤C∗ + M∗(‖C(T )‖CgΨg(‖xn‖C) + ‖S(T )‖ChΨh(‖xn‖C))

+ M∗M0Ψ(‖xn‖C + ‖un‖C)
∫ T

0

µ(s) ds,

where C∗ = M∗(‖xT ‖X + ‖C(T )‖‖x0‖ + ‖S(T )‖‖x1‖X). In the foregoing esti-
mates we have used (GH2) and (F3).
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Regarding yn, we have

‖yn(t)‖X ≤‖C(t)[x0 − g(xn)] + S(t)[x1 − h(xn)]‖X

+
∥∥∥∥∫ t

0

S(t− s)Bzn(s) ds

∥∥∥∥
X

+
∥∥∥∥∫ t

0

S(t− s)fn(s) ds

∥∥∥∥
X

≤N0(‖x0‖X + CgΨg(‖xn‖C)) + M0(‖x1‖X + ChΨh(‖xn‖C))

+ M0T‖B‖‖zn‖C + M0

∫ t

0

µ(s)Ψ(‖xn(s)‖X + ‖un(s)‖V ) ds

where N0 = sup
t∈J

‖C(t)‖, again due to (GH2) and (F3). Hence

‖yn‖C ≤C∗
0 + N0CgΨg(‖xn‖C) + M0ChΨh(‖xn‖C)(3.42)

+ M0T‖B‖‖zn‖C + M0Ψ(‖xn‖C + ‖un‖C)
∫ T

0

µ(s)ds,

where C∗
0 = N0‖x0‖X + M0‖x1‖X .

It is convenient to denote

Λ(r, ζ) = N0CgΨg(r) + M0ChΨh(r) + M0Ψ(r + ζ)
∫ T

0

µ(s) ds.

Then it follows from (3.41) and (3.42) that

‖zn‖C ≤ C∗ + M∗Λ(‖xn‖C , ‖un‖C),

‖yn‖C ≤ C∗
0 + M0T‖B‖‖zn‖C + Λ(‖xn‖C , ‖un‖C).

Therefore

(3.43) ‖yn‖C + ‖zn‖C ≤C∗
0 + (1 + M0T‖B‖)‖zn‖C + Λ(‖xn‖C , ‖un‖C)

≤C∗
0 + (1 + M0T‖B‖)C∗

+ [1 + M∗(1 + M0T‖B‖)]Λ(‖xn‖C , ‖un‖C).

Taking into account (3.39)–(3.40), one deduces from (3.43) that

1 <
1
n

(‖yn‖C + ‖zn‖C) ≤ 1
n

(C∗
0 + (1 + M0T‖B‖)C∗)

+ [1 + M∗(1 + M0T‖B‖)]
1
n

Λ(‖xn‖C , ‖un‖C).

Then

1
1 + M∗(1 + M0T‖B‖)

≤ lim
n→∞

1
n

Λ(‖xn‖C , ‖un‖C)

≤ lim
n→∞

1
n

(
N0CgΨg(n) + M0ChΨh(n) + M0Ψ(n)

∫ T

0

µ(s) ds

)
,

which is the contradiction. �
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4. Application

Consider the following control system

∂2x(t, θ)
∂t2

=
∂2x(t, θ)

∂θ2
+ u(t, θ) + f(t, x(t, θ), u(t, θ)),(4.1)

t ∈ [0, T ], θ ∈ [0, π],

x(t, 0) = x(t, π) = 0,(4.2)

x(0, θ) = x0(θ)−
m∑

k=1

∫ θ

0

gk(η)x(tk, η) dη,(4.3)

tk ∈ [0, T ], k = 1, . . . , m,

∂

∂t
x(0, θ) = x1(θ)−

m∑
k=1

∫ tk

0

∫ π

0

hk(θ, η)x(s, η) dη ds,(4.4)

where control u ∈ L2(0, T ;L2(0, π)).
Let X = L2(0, π). Define A:X → X by Ay = y′′ with the domain

D(A) = H2(0, π) ∩H1
0 (0, π).

It is well known that A is the infinitesimal generator of a strongly continuous
cosine family {C(t)}t∈R on X. More precisely,

(C(t)y)(θ) =
∞∑

n=1

2
π

( ∫ π

0

y(η) sinnη dη

)
cos nt sinnθ.

Here {φn(θ) =
√

2/π sinnθ : n = 1, 2, . . . } is the orthonormal basis of L2(0, π)
and its elements are the eigenfunctions corresponding to the eigenvalues {λn =
n2 : n = 1, 2, . . . } of −A. The norm in L2(0, π) is defined as:

‖y‖2 =
∞∑

n=1

2
π

( ∫ π

0

y(θ) sinnθ dθ

)2

.

In addition, the associated sine family {S(t)}t∈R is given by

(4.5) (S(t)y)(θ) =
∞∑

n=1

2
nπ

( ∫ π

0

y(η) sinnη dη

)
sinnt sinnθ.

Noting that −A is positive definite and self-adjoint, one can define the fractional
operator (−A)α, α ∈ R as follows:

(−A)αy(θ) =
∞∑

n=1

λα
n〈y, φn〉L2(0,π)φn =

∞∑
n=1

n2α 2
π

( ∫ π

0

y(η) sinnη dη

)
sinnθ.

This implies

‖(−A)αy‖2 =
∞∑

n=1

2n4α

π

( ∫ π

0

y(η) sinnη dη

)2

.
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On the other hand

‖y‖2H1
0 (0,π) = 〈−Ay, y〉L2(0,π) = 〈(−A)1/2y, (−A)1/2y〉L2(0,π) = ‖(−A)1/2y‖2.

Then

‖y‖2H1
0 (0,π) =

∞∑
n=1

2n2

π

( ∫ π

0

y(η) sinnη dη

)2

and, moreover, we have D((−A)1/2) = H1
0 (0, π). Let H−1 be the dual space of

H1
0 (0, π). Then one can easily see that H−1 = D((−A)−1/2) and the norm in

H−1 is given by

‖y‖2H−1 =
∞∑

n=1

2
n2π

( ∫ π

0

y(η) sinnη dη

)2

.

Notice that S(t) is compact. Indeed, since the embedding H1
0 (0, π) ⊂ L2(0, π) is

compact, it suffices to show that S(t)D is bounded in H1
0 (0, π) provided that D

is bounded in L2(0, π). We deduce from (4.5) that

‖S(t)y‖2H1
0 (0,π) =

∞∑
n=1

2
π

( ∫ π

0

y(η) sinnη dη

)2

sin2 nt ≤ ‖y‖2L2(0,π).

Thus, we obtain that S(t)D is bounded in H1
0 (0, π).

Let X0 = H1
0 (0, π) and E0 = H1

0 (0, π) × L2(0, π). Then we can verify the
(E0, X0)-controllability for the linear system

∂2x(t, θ)
∂t2

=
∂2x(t, θ)

∂θ2
+ u(t, θ), t ∈ [0, T ], θ ∈ [0, π],

x(t, 0) = x(t, π) = 0,

x(0, θ) = x0(θ),
∂

∂t
x(0, θ) = x1(θ).

Indeed, we have

‖B∗S∗(T − · )y‖2L2(J;X) = ‖S∗(T − ·)y‖2L2(J;X) =
∫ T

0

‖S(T − s)y‖2X ds

=
∞∑

n=1

2
n2π

( ∫ π

0

y(η) sinnη dη

)2 ∫ T

0

sin2 n(T − s) ds

=
∞∑

n=1

(T − (1/2n) sin 2nT )
n2π

( ∫ π

0

y(η) sinnη dη

)2

due to the presentation of S(t) in (4.5). Therefore, if T > 1/2, one can find
a number γ > 0 such that

‖B∗S∗(T − s)y‖2L2(J;X) ≥ γ‖y‖2H−1 .
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Now taking into account (4.5) again, one observes that S(t)y ∈ H1
0 (0, π) for all

y ∈ L2(0, π). Additionally, if y ∈ H1
0 (0, π) then C(t)y ∈ H1

0 (0, π) as well. Hence

{C(t)x0 + S(t)x1 : (x0, x1) ∈ H1
0 (0, π)× L2(0, π)} ⊂ H1

0 (0, π)

and condition (SA)(a) is satisfied. Now for f ∈ L1(0, T ;L2(0, π)), we have

S(T − s)f(s, · ) ∈ H1
0 (0, π) for a.e. s ∈ [0, T ].

Thus
∫ T

0
S(T − s)f(s, · ) ds ∈ H1

0 (0, π) and condition (SA)(b) is verified.
As far as the nonlinear system (4.1)–(4.4) is concerned, we assume that

(N1) The nonlinearity f : [0, T ] × R2 → R is continuous. Furthermore, there
exists a function µ ∈ L1(0, T ) such that |f(t, ξ, η)| ≤ µ(t)(|ξ| + |η|) for
all ξ, η ∈ R;

(N2) For each k = 1, . . . , m, gk ∈ L2(0, π) and hk ∈ L2([0, π]2).

It is easy to check that f satisfies (F1)–(F3) due to (N1). Since S(t) is compact
and X is separable, one can drop (F4) as it was mentioned in Remark 3.11.

Now setting

g(x)(θ) =
m∑

k=1

∫ θ

0

gk(η)x(tk, η) dη,

h(x)(θ) =
m∑

k=1

∫ tk

0

∫ π

0

hk(θ, η)x(s, η) dη ds,

we see that g, h:C([0, T ];L2(0, π)) → L2(0, π) are Lipschitz functions. Indeed,

|g(x)(θ)− g(y)(θ)| ≤
m∑

k=1

∫ π

0

|gk(θ)‖x(tk, η)− y(tk, η)| dη

≤
m∑

k=1

‖gk‖L2(0,π)‖x(tk, · )− y(tk, · )‖L2(0,π) ≤
( m∑

k=1

‖gk‖L2(0,π)

)
‖x− y‖C .

Thus

(4.6) ‖g(x)− g(y)‖L2(0,π) ≤
(√

π
m∑

k=1

‖gk‖L2(0,π)

)
‖x− y‖C .

For the nonlocal function h, we have

|h(x)(θ)− h(y)(θ)| ≤
m∑

k=1

∫ tk

0

∫ π

0

|hk(θ, η)‖x(s, η)− y(s, η)| dη ds

≤
m∑

k=1

∫ tk

0

‖hk(θ, · )‖L2(0,π)‖x(s, · )− y(s, · )‖L2(0,π) ds

≤
(

T
m∑

k=1

‖hk(θ, · )‖L2(0,π)

)
‖x− y‖C .
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Then

(4.7) ‖h(x)− h(y)‖L2(0,π) ≤
(√

2 T
m∑

k=1

‖hk‖L2([0,π]2)

)
‖x− y‖C .

Hence, by Remark 3.2, g and h satisfy (GH2)–(GH3). It is obvious that g(x) ∈
H1

0 (0, π) for all x ∈ L2(0, π), thanks to the definition of g. Then (g(x), h(x)) ∈
E0 = H1

0 (0, π)× L2(0, π) for all x ∈ L2(0, π) and (GH1) is verified.
Let

Cg =
√

π
m∑

k=1

‖gk‖L2(0,π), Ch =
√

2 T
m∑

k=1

‖hk‖L2([0,π]2),

M∗ = sup
t∈[0,T ]

‖S∗(T − t)(ΓT
0 )−1‖χX

,

mg = N0Cg, mh = M0Ch, k0 = mg + mh.

We have the following controllability result for (4.1)–(4.4).

Theorem 4.1. Assume (N1)–(N2). Let the following inequalities hold:

2k0(1 + 2M0M
∗T ) < 1,

N0Cg + M0Ch + M0

∫ T

0

µ(s) ds <
1

1 + M∗(1 + M0T )
.

Then the nonlinear system (4.1)–(4.4) is (H1
0 × L2,H1

0 )-controllable.
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[1] R.R. Akhmerov, M.I. Kamenskĭı, A.S. Potapov, A.E. Rodkina and B.N. Sa-
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Faculty of Physics and Mathematics

Voronezh State Pedagogical University

394043 Voronezh, RUSSIA

E-mail address: valerio-ob2000@mail.ru

TMNA : Volume 42 – 2013 – No 2


