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GRADIENT-LIKE NONLINEAR SEMIGROUPS
WITH INFINITELY MANY EQUILIBRIA

AND APPLICATIONS TO CASCADE SYSTEMS

Eder R. Aragao-Costa — Alexandre N. Carvalho

Pedro Maŕın-Rubio — Gabriela Planas

Abstract. We consider an autonomous dynamical system coming from
a coupled system in cascade where the uncoupled part of the system satis-

fies that the solutions comes from −∞ and goes to∞ to equilibrium points,

and where the coupled part generates asymptotically a gradient-like nonlin-
ear semigroup. Then, the complete model is proved to be also gradient-like.

The interest of this extension comes, for instance, in models where a con-

tinuum of equilibrium points holds, and for example a Łojasiewicz–Simon
condition is satisfied. Indeed, we illustrate the usefulness of the theory with

several examples.

1. Introduction

The study of the structure of invariant sets for infinite-dimensional dynam-
ical systems and its characterization has received a lot of attention in the last
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few decades. Actually, while the finite-dimensional case has been deeply under-
stood, the same goal for the infinite-dimensional case used to be reduced to very
particular examples, for instance, a gradient (or gradient-like) structure in the
equations (or directly in the attractor), e.g. see [13], [21], [24] and the references
therein.

A deeper understanding of structure of attractors for autonomous and non-
autonomous dynamical systems that generalize the above comes by some recent
developments in [5]–[7] for dynamical systems where the equilibrium points are
hyperbolic, and therefore there exists a finite number of them. It involves a new
class, called of gradient-like nonlinear semigroups, which roughly speaking means
that all complete trajectories in the attractor come from and go to equilibrium
points (in particular the attractor is gradient-like) and there is no homoclinic
structure among these points.

However, in many situations, the set of equilibrium points is not finite but
indeed they form a continuum and the above results cannot be applied. Never-
theless, in that context a new tool can be employed: the study of the asymptotic
behaviour in the finite-dimensional setting of a gradient system associated to
an analytic function in [15], [16] lead in [22] to the study of the asymptotic be-
haviour of semilinear parabolic equations when an additional condition, called
Łojasiewicz–Simon’s inequality, holds. That condition ensures that any solution
tends as t → ∞ to a unique stationary solution (for instance see also [10], [25],
[14] and the references therein).

Our main goal in this paper is to analyse the behaviour of a coupled system
in cascade where the uncoupled part of the system satisfies that the solutions
comes from −∞ and goes to ∞ to equilibrium points, and where the coupled
part generates asymptotically a gradient-like nonlinear semigroup. This leads
to a new gradient-like nonlinear semigroup concept, and in particular allows to
describe the attractor of the system as the union of unstable manifolds of all
equilibria. The interest of this extension comes for instance in models where
a continuum of equilibrium points holds, and for example a Łojasiewicz–Simon
condition is satisfied. However, this condition has been applied to the study of
the behaviour of a solution only when t→∞. We present an extension to deal
also with the case t→ −∞.
The convergence of solutions to equilibrium can also be proved assuming that

the manifold of equilibria is normally hyperbolic (see [19, Theorem 6.1] or [20]
for the case when the set of equilibria is normally stable). For this, instead of
normal hyperbolicity, here we use the Łojasiewicz–Simon condition.

The structure of the paper is as follows. In Section 2 we state the problem.
In Section 3 we give our main result (cf. Theorem 3.4); that is, we give condi-
tions ensuring that the coupled system generates a (new type of) gradient-like
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nonlinear semigroup, and therefore having a gradient-like attractor. In Section 4
we study the convergence to equilibria of any solution in the attractor, not only
when t → ∞ but also for t → −∞ using the Łojasiewicz–Simon inequality (its
proof is revised here, cf. Theorem 4.1). Problems of first and second order in
time are analysed. In Section 5 we provide several examples to illustrate the
applicability of the theory. Finally, in the Appendix we prove the backwards
convergence to equilibrium stated in Section 4.

2. Basic facts and notions

In this section we introduce the basic facts and notions that are needed
to state and prove our main results.
Let Z be a metric space with metric d:Z × Z → R+, where R+ := [0,∞).

Given a subset A ⊂ Z, the ε-neighbourhood of A is the set

Oε(A) = {z ∈ Z : d(z, a) < ε for some a ∈ A}.

Definition 2.1. An evolution process in Z is a two parameter family

{T (t, τ) : t ≥ τ ∈ R}

of continuous maps from Z into itself such that:

(a) T (τ, τ) = IZ , with IZ being the identity in Z,
(b) T (t, σ)T (σ, τ) = T (t, τ), for all t ≥ σ ≥ τ in R,
(c) The map P × Z 3 (t, τ, z) 7→ T (t, τ)z ∈ Z is continuous, where P :=
{(t, τ) ∈ R2 : t ≥ τ}.

If T (t, τ) = T (t − τ, 0) for all t ≥ τ ∈ R the process {T (t, τ) : t ≥ τ ∈ R} is
called an autonomous evolution process and the family {T (t) : t ≥ 0}, defined
by T (t) := T (t, 0) for t ≥ 0, is called a semigroup. Clearly

(a’) T (0) = IZ , with IZ being the identity in Z,
(b’) T (t+ s) = T (t)T (s), for all t, s ∈ R+, and
(c’) R+ × Z 3 (t, z) 7→ T (t)z ∈ Z is continuous.

A continuous map z:R → Z is called a global solution for the evolution
process {T (t, τ) : t ≥ τ} if it satisfies

T (t, τ)z(τ) = z(t), for all t ≥ τ ∈ R.

We note that the term global solution is often applied to refer solutions that are
defined for all positive times. Here it is always used to indicate solutions defined
for all real numbers.
In particular, a global solution for a semigroup {T (t) : t ≥ 0} is a continuous

map ξ:R→ Z with the property that T (t)ξ(s) = ξ(t+s) for all s ∈ R and for all
t ∈ R+. We say that ξ:R→ Z is a global solution through z ∈ Z if it is a global
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solution and ξ(0) = z and that ξ is a equilibrium point (or stationary solution)
when the function ξ(t) = ξ for all t ∈ R is a solution. The unstable set of an
equilibrium z∗ is the set

Wu(z∗) =
{
z ∈ Z : there is a global solution ζ through z

such that lim
t→−∞

dist(ζ(t), z∗) = 0
}
.

The notion of invariance plays a fundamental role in the study of the asymp-
totic behaviour of semigroups.

Definition 2.2. A subset A of Z is said invariant under the action of the
semigroup {T (t) : t ≥ 0} if T (t)A = A for all t ≥ 0.

Now we will introduce the notions of attraction and absorption. For that we
recall the definitions of Hausdorff semi-distance and distance. For A,B ⊂ Z, the
Hausdorff semi-distance from A to B is given by

dist(A,B) := sup
a∈A
inf
b∈B

d(a, b),

and the Hausdorff distance between A and B is defined by

dH(A,B) := max{dist(A,B),dist(B,A)}.

Definition 2.3. Given two subsets A, B of Z we say that A attracts B
under the action of the semigroup {T (t) : t ≥ 0} if dist(T (t)B,A) t→∞−−−→ 0, and
we say that A absorbs B under the action of {T (t) : t ≥ 0} if there is a tB > 0
such that T (t)B ⊂ A for all t ≥ tB .

With these elements we can introduce the notion of global attractors.

Definition 2.4. A subset A of Z is a global attractor for a semigroup {T (t) :
t ≥ 0} if it is compact, invariant and for every bounded subset B of Z we have
that A attracts B under the action of {T (t) : t ≥ 0}.

Next, we will introduce the notions of pullback attractor and generalized
gradient-like process (see [6]). In order to do it, we first need the definition of
invariance and of isolated global solution.

Definition 2.5. Let {T (t, τ) : t ≥ τ} be an evolution process and {Ξ(t) :
t ∈ R} a family of subsets of Z. We say that {Ξ(t) : t ∈ R} is invariant under
the process {T (t, τ) : t ≥ τ}, when

T (t, τ)Ξ(τ) = Ξ(t) for t ≥ τ.
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Definition 2.7. Let ξ:R→ Z be a solution for a nonlinear evolution process
{T (t, τ) : t ≥ τ ∈ R}. The set

Γ := {ξ(t) : t ∈ R}

is called trace of ξ:R→ Z. If ξ:R→ Z is a solution and there exists δ > 0 such
that, any global solution ζ:R→ Z with ζ(R) ⊂ Oδ(Γ) := {z ∈ Z : dist(z,Γ) < δ}
must satisfy ζ(t) = ξ(t) for all t ∈ R, then we say that ξ:R → Z is an isolated
global solution. Ξ = {ξ1, . . . , ξn} is said a set of isolated global solutions if each ξi
is an isolated global solution and there exists δ > 0 such thatOδ(Γi)∩Oδ(Γj) = ∅,
1 ≤ i < j ≤ n, where Γi is the trace of ξi:R→ Z.

Definition 2.8. A pullback attractor for an evolution process {T (t, τ) : t ≥
τ ∈ R} is an invariant family {A(t) : t ∈ R} of compact sets with

⋃
t≤τ
A(t)

bounded for each τ ∈ R and such that, for each t ∈ R and bounded subset B
of Z, we have that

lim
τ→−∞

dist(T (t, τ)B,A(t)) = 0.

Remark 2.9. It must be pointed out that this is not the most general defi-
nition of a pullback attractor. Indeed, the assumption that

⋃
t≤τ
A(t) is bounded

does not appear in many of the definitions in the literature. However, this suites
our purposes in this paper.

Let {T (t, τ) : t ≥ τ ∈ R} be a nonlinear evolution process with a pullback at-
tractor {A(t) : t ∈ R} which contains a finite number of isolated global solutions
Ξ = {ξ1, . . . , ξn}. Let Γi be the trace of ξi.

Definition 2.10 (cf. [11]). Let δ be as in Definition 2.7 and fix ε0 ∈ (0, δ).
For ξ ∈ Ξ and ε ∈ (0, ε0), an ε-chain from ξ to ξ is a sequence of natural
numbers `i ∈ {1, . . . , n}, a sequence of real numbers, τi < σi < ti, and a

sequence zi in Z, 1 ≤ i ≤ k, such that zi ∈ Oε(Γ`i), T (σi, τi)zi /∈ Oε0
( n⋃
j=1
(Γj)
)

and T (ti, τi)zi ∈ Oε(Γ`i+1), 1 ≤ i ≤ k, with ξ = ξ`k+1 = ξ`1 . We say that
ξ ∈ Ξ is chain recurrent if there is an ε0 ∈ (0, δ) and ε-chain from ξ to ξ for each
ε ∈ (0, ε0).

We are now ready to define gradient-like evolution processes.

Definition 2.11. Let Z be a metric space and {T (t, τ) : t ≥ τ} be a non-
linear evolution process in Z. Let {A(t) : t ∈ R} be the pullback attractor for
{T (t, τ) : t ≥ τ}. We say that {T (t, τ) : t ≥ τ} is a generalized gradient-like
process if the following two hypotheses are satisfied:

(H1) {A(t) : t ∈ R} contains a finite number of isolated global solutions
Ξ = {ξ1, . . . , ξn} with the property that any global solution ξ:R→ Z



350 E.R. Aragao-Costa — A.N. Carvalho — P. Maŕın-Rubio — G. Planas

in {A(t) : t ∈ R} satisfies

lim
t→−∞

dist(ξ(t), ξi(t)) = 0 and lim
t→∞
dist(ξ(t), ξj(t)) = 0,

for some 1 ≤ i, j ≤ n.
(H2) Ξ = {ξ1, . . . , ξn} does not contain any chain recurrent isolated solution.

Next we seek to introduce the notion of gradient-like semigroups (see [6]).
To that end we first need the definition of homoclinic structure.

Definition 2.12. Let {T (t) : t ≥ 0} be a semigroup which has a set E
of equilibrium points. A homoclinic structure associated to E is a finite subset
{z∗1 , . . . , z∗p} of E together with a set of global solutions {ξ1, . . . , ξp} such that

z∗j
t→−∞←−−−− ξj(t)

t→∞−−−−→ z∗j+1, 1 ≤ j ≤ p

where z∗p+1 := z
∗
1 .

Now, for the autonomous case, we recall the definition of a gradient-like
semigroup (which indeed is slightly different from that in [6]).

Definition 2.13. Consider a metric space (Z, d) and a nonlinear semigroup
{T (t) : t ≥ 0} in Z, which has a global attractor A and a set of equilibrium points
E (possible infinite). We say that {T (t) : t ≥ 0} is a gradient-like semigroup
when

(G1) For any bounded global solution ξ:R→ Z for {T (t) : t ≥ 0}, there exist
two equilibrium points z∗1 and z

∗
2 in E such that

lim
t→−∞

d(ξ(t), z∗1) = 0 and lim
t→∞

d(ξ(t), z∗2) = 0.

(G2) The attractor A does not contain homoclinic structures.

Remark 2.14. We remark that, in the context of this definition, it is possible
that a gradient system is not gradient-like, since the condition (G1) above, may
not hold for a general gradient system. In [1], the notion of generalized gradient-
like semigroups is proved to coincide with the notion of generalized gradient
semigroups (replacing equilibria by isolated invariant sets). It is fairly difficult
to find examples of gradient semigroups which do not satisfy (G1) (one example
can be found in [17, p. 15]).

Our goal is to describe the asymptotic dynamics of the following partially
coupled (autonomous) model:

(2.1)


x′ = Ax+ g(x), t > 0,

y′ = By + f(x, y), t > 0,

x(0) = x0 ∈ X, y(0) = y0 ∈ Y,
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where X and Y are Banach spaces, the operators A:D(A) ⊂ X → X and
B:D(B) ⊂ Y → Y generate strongly continuous semigroups of linear operators
and f , g are suitable nonlinearities. Let also assume that there exists a vectorial
subspace D(C) in D(A)×D(B) (possibly all D(A)×D(B)) dense in Z = X×Y ,
and we consider the linear operator C:D(C) ⊂ Z → Z given by Cz = C(x, y) :=
(Ax,By) for z = (x, y) ∈ D(C) and suppose that C generates a C0-semigroup
in Z (or even a singular semigroup). Then define h:Z → Z as h(z) = h(x, y) :=
(g(x), f(x, y)) for z = (x, y) ∈ Z. So, problem (2.1) can be reformulated as

(2.2)

{
z′ = Cz + h(z), t > 0,

z(0) = z0 ∈ Z.

Finally, assume that f :X × Y → Y and g:X → X are so that the systems (2.2)
and {

x′ = Ax+ g(x), t > 0,

x(0) = x0 ∈ X,

generate, respectively, a nonlinear semigroup {T (t) : t ≥ 0} in Z with global
attractor AC and set of equilibrium points EC , and a nonlinear semigroup {S(t) :
t ≥ 0} in X, which is gradient with Lyapunov functional E:X → R, global
attractor A, and set of equilibrium points EA.
We aim to establish conditions so that the semigroup {T (t) : t ≥ 0} related

to (2.2) is gradient-like in the sense of Definition 2.13. In order to obtain this,
we introduce the notion of hyperbolic equilibrium and recall two theorems which
will be useful for our results.

Definition 2.15. An equilibrium solution x∗0 for the problem{
x′ = Dx+m(x), t > 0,

x(0) = x0 ∈ X,

is hyperbolic when the spectrum of D̃ := D+m′(x∗0) does not intersect the imag-
inary axis, the set σ+ = {λ ∈ σ(D̃) : Reλ > 0} is compact and, if γ is a smooth
closed simple curve in ρ(D̃) ∩ {λ ∈ C : Reλ > 0} oriented counterclockwise and
enclosing σ+,

Q = Q(σ+) := 1
2πi

∫
γ

(λ− D̃)−1dλ,

Qe eD t = e eD tQ, R(Q) ⊂ D(D̃) and there are constants M1 ≥ 1, β > 0, such that

‖e eDtQ‖L(X) ≤M1eβt, t ≤ 0,

‖e eDt(I −Q)‖L(X) ≤M1e−βt, t ≥ 0.
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Next we define exponential dichotomy for a linear evolution process and
introduce the concept of global hyperbolic solutions, which is the analogous
non-autonomous of the concept of hyperbolic equilibrium.

Definition 2.16. We say that a linear evolution process {U(t, s) : t ≥ s} ⊂
L(X) in a Banach space X has exponential dichotomy with exponent ω and
constant M if there exists a family of projections {Q(t) : t ∈ R} ⊂ L(X) such
that

(a) Q(t)U(t, s) = U(t, s)Q(s), for all t ≥ s;
(b) The restriction U(t, s)|R(Q(s)) , t ≥ s is an isomorphism from R(Q(s))
into R(Q(t)) and its inverse is denoted by U(s, t):R(Q(t))→ R(Q(s));

(c) for some ω > 0

‖U(t, s)(I −Q(s))‖ ≤Me−ω(t−s), t ≥ s,
‖U(t, s)Q(s)‖ ≤Meω(t−s), t ≤ s.

We will say that a global solution ζ:R → X of a nonlinear evolution process
{T (t, τ) : t ≥ τ} in X, generated by a semilinear equation{

y′ = By + f(t, y), t > τ,

y(τ) = y0,

is a global hyperbolic solution when the linearization around it, i.e. the linear
equation {

y′ = By + fy(t, ζ (t))y, t > τ,

y(τ) = y0,
has solution operator with exponential dichotomy.

With the above definitions and notation we can state the following result.

Theorem 2.17 (cf. [8]). Consider Y – a Banach space, {fη:R × Y →
Y }η∈(0,1] – a family of applications with each element having continuous partial
derivative with respect to the second variable in R × Y , f0:Y → Y – a conti-
nuously differentiable map and B:D(B) ⊂ Y → Y the generator of a strongly
continuous semigroup. Consider the following problems:{

y′ = By + fη(t, y), t > τ,

y(τ) = y0,
(2.3) {

y′ = By + f0(y), t > τ,

y(τ) = y0.
(2.4)

Assume that {fη:R×Y → Y }η∈(0,1] and f0:Y → Y are such that (2.3) and (2.4)
generate nonlinear evolution processes {Tη(t, τ): t ≥ τ}η∈(0,1], and a nonlinear
semigroup {T0(t) : t ≥ 0}, respectively. Suppose also that T0 has a global attractor
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with a finite number of equilibrium points E = {y∗1 , . . . , y∗n}, all of them being
hyperbolic.
If for each r > 0 it holds that

lim
η→0+

sup
t∈R

sup
‖y‖Y ≤r

{‖fη(t, y)− f0(y)‖Y + ‖(fη)y(t, y)− f ′0(y)‖L(Y )} = 0,

then there exists η0 ∈ (0, 1] such that for each η ≤ η0 there exist ξ∗i,η:R → Y ,
i = 1, . . . , n, global solutions for (2.3), that are hyperbolic, and satisfying

lim
η→0
sup
t∈R
‖ξ∗i,η(t)− y∗i ‖Y = 0, for all i = 1, . . . , n.

Theorem 2.18 (cf. [6]). Consider Y a Banach space, and {Tη(t, τ) : t ≥ τ}
a nonlinear evolution process on Y with a pullback attractor {Aη(t) : t ∈ R} for
η ∈ [0, 1]. Assume that the following conditions hold:
(a)

⋃
η∈[0,1]

⋃
t∈R
Aη(t) is compact.

(b) {T0(t, τ) : t ≥ τ} is an autonomous process, i.e. T0(t, τ) = S(t − τ)
for all t ≥ τ , where {S(t) : t ≥ 0} is a semigroup, which addition-
ally is gradient-like with a finite number of equilibrium points E =
{y∗1,0, . . . , y∗n,0}.

(c) For each η ∈ (0, 1], {Tη(t, τ) : t ≥ τ ∈ R} has n global isolated solutions
ξ∗i,η:R → Y i = 1, . . . , n, such that, if Γi,η is the trace of ξ∗i,η:R → Y ,
for i = 1, . . . , n and η ∈ (0, 1], then one has that

lim
η→0+

sup
1≤i≤

dH(y∗i,0,Γi,η) = 0.

(d) For each T > 0 and compact set K ⊂ Y , it holds

lim
η→0+

sup
τ∈R
sup
t∈[0,T ]

sup
y∈K
‖Tη(t+ τ, τ)y − T0(t+ τ, τ)y‖Y = 0.

(e) There exist δ > 0 and η1 ∈ (0, 1] such that if ξη:R → Y is a bounded
solution of {Tη(t, τ) : t ≥ τ ∈ R} with η ≤ η1 so that there ex-
ists t0 ∈ R and some i ∈ {1, . . . , n} with sup

t≤t0
dist(ξη(t),Γi,η) < δ

(resp. sup
t≥t0
dist(ξη(t),Γi,η) < δ), then lim

t→−∞
‖ξη(t)− ξ∗i,η(t)‖Y = 0 (resp.

lim
t→∞

‖ξη(t)− ξ∗i,η(t)‖Y = 0).

Then, there exists η0 ∈ (0, η1] such that, for each η ∈ (0, η0], {Tη(t, τ) : t ≥ τ ∈
R} is a non-autonomous gradient-like evolution process.

3. Gradient like cascade systems

Combining Theorems 2.17 and 2.18, we will be able to establish our first
result, concerning the asymptotic behaviour of system (2.1). But firstly let us
give one last definition.
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Definition 3.1. Let f :R × Y → Y be an application such that the semi-
linear problem:

(3.1)

{
y′ = By + f(t, y), t > τ,

y(τ) = y0,

generates a nonlinear evolution process {T (t, τ) : t ≥ τ ∈ R} which has a pullback
attractor {A(t) : t ∈ R}.
Denote, for any ν > 0 and µ > 0, the applications fν , fµ:R× Y → Y as

fν(t, y) =

{
f(t, y) if t ≤ −ν,
f(−ν, y) if t > −ν,

and

fµ(t, y) =

{
f(t, y) if t ≥ µ,
f(µ, y) if t < µ.

We will say that f is compatible from the left (resp. from the right) with respect
to the system (3.1) if there exists ν0 (resp. µ0) such that for all ν ≥ ν0 (resp.
µ ≥ µ0) the problem {

y′ = By + fν(t, y), t > τ,

y(τ) = y0,(
resp. the problem {

y′ = By + fµ(t, y), t > τ,

y(τ) = y0,

)
generates a nonlinear evolution process {Tν(t, τ) : t ≥ τ} which has a pullback
attractor {Aν(t) : t ∈ R} with

⋃
ν≥ν0

⋃
t∈R
Aν(t) relatively compact (resp. generates

a nonlinear evolution process {Tµ(t, τ) : t ≥ τ} which has a pullback attractor
{Aµ(t) : t ∈ R} with

⋃
µ≥µ0

⋃
t∈R
Aµ(t) relatively compact).

Lemma 3.2. With the above notation, suppose that the uncoupled equation
of system (2.1), x′ = Ax+ g(x), generates a nonlinear semigroup {S(t) : t ∈ R}
which has a global attractor A, set of equilibria E , and such that any global
solution in the attractor converges to equilibrium points when t→ ±∞. Assume
also that for any equilibrium point x∗ ∈ E the autonomous semilinear problem{

y′ = By + f(x∗, y), t > τ,

y(τ) = y0

defines a semigroup {Sx∗(t) : t ≥ 0} which is gradient-like, has global attrac-
tor Ax∗ and a finite number of equilibrium points Ex∗ , all of them hyperbolic.
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Let ξ = (ϕ,ψ):R → X × Y be a (global) solution in the global attractor related
to (2.2), and denote f(t, y) := f(ϕ(t), y) for (t, y) ∈ R × Y . Assume that the
non-autonomous problem:

(3.2)

{
y′ = By + f(t, y), t > τ,

y(τ) = y0,

generates a nonlinear evolution process {S(t, τ) : t ≥ τ} which has a pullback
attractor {A(t) : t ∈ R}, and that f is compatible from the left and from the
right with respect to the system (3.2). According to the above assumption, there
exist equilibrium points x∗−, x

∗
+ ∈ E such that

lim
t→−∞

‖ϕ(t)− x∗−‖X = 0 and lim
t→∞

‖ϕ(t)− x∗+‖X = 0.

If for each r > 0, it holds that

(3.3) lim
t→−∞

sup
‖y‖Y ≤r

{‖f(t, y)− f(x∗−, y)‖Y + ‖fy(t, y)− fy(x∗−, y)‖L(Y )} = 0

and

(3.4) lim
t→∞

sup
‖y‖Y ≤r

{‖f(t, y)− f(x∗+, y)‖Y + ‖fy(t, y)− fy(x∗+, y)‖L(Y )} = 0,

then there exist equilibrium points y∗− ∈ Ex∗− and y
∗
+ ∈ Ex∗+ such that

lim
t→−∞

‖ξ(t)− z∗−‖X×Y = 0 and lim
t→∞

‖ξ(t)− z∗+‖X×Y = 0,

where z∗− = (x
∗
−, y

∗
−) and z

∗
+ = (x

∗
+, y

∗
+).

Proof. We will only deal with the case t→ −∞, since the case t→∞ can
be treated analogously.
For each ν > 0, define the map fν :R × Y → Y as before. Now we consider

the family of semilinear problems

(3.5)

{
y′ = By + fν(t, y), t > τ,

y(τ) = y0.

From the compatibility assumption we know that fν is such that there exists
a family of evolution processes {Tν(t, τ) : t ≥ τ} with ν ∈ (ν0,∞), for some
ν0 > 0, such that each of them has a pullback attractor {Aν(t) : t ∈ R} with⋃
ν≥ν0

⋃
t∈R
Aν(t) relatively compact on Y .

It is not difficult to see that for t ≤ −ν it holds that Tν(t, τ) = S(t, τ) for all
τ ≤ t. We also have that if ζ:R → Y is a global solution for {S(t, τ) : t ≥ τ}
then ζ(t) = S(t, τ)ζ(τ) = Tν(t, τ)ζ(τ) provided that τ ≤ t ≤ −ν. So, defining
for each ν ≥ ν0, ζν :R→ Y as

ζν(t) =

{
ζ(t) if t ≤ −ν,
Tν(t,−ν)ζ(−ν) if t > −ν,
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then ζν :R→ Y is a global solution for {Tν(t, τ) : t ≥ τ}.
Now, using (3.3), one has that

(3.6) lim
ν→∞
sup
t∈R
sup
‖y‖Y ≤r

{‖fν(t, y)−f(x∗−, y)‖Y +‖(fν)y(t, y)−fy(x∗−, y)‖L(Y )} = 0.

Therefore, from Theorem 2.17 we deduce that there exists ν1 > 0 such that
for each ν ≥ ν1 problem (3.5) has n global hyperbolic solutions ξ∗i,ν :R → Y ,
i = 1, . . . , n which satisfy

(3.7) lim
ν→∞
sup
t∈R
‖ξ∗i,ν(t)− y∗i,−‖Y = 0, for all i = 1, . . . , n,

where Ex∗− = {y
∗
1,−, . . . , y

∗
n,−}.

From (3.6) we deduce that for each T > 0 and each compact set K ⊂ Y , it
holds

lim
ν→∞
sup
τ∈R
sup
t∈[0,T ]

sup
y∈K
‖Tν(t+ τ, τ)y − Sx∗−(t+ τ, τ)y‖Y = 0.

Thus, from the above and the hyperbolicity of the solutions ξ∗i,ν :R → Y , i =
1, . . . , n, the assumptions in Theorem 2.18 are fulfilled. Therefore, there exists
ν2 ≥ ν1 such that for each ν ≥ ν2, {Tν(t, τ) : t ≥ τ} is a non-autonomous
gradient-like process.

Finally, consider ψ : R→ Y as in the statement. This is a bounded solution
of {S(t, τ) : t ≥ τ}. This implies that the functions ψν :R → Y associated to
ψ:R → Y are solutions for {Tν(t, τ) : t ≥ τ} and they are in {Aν(t) : t ∈ R},
as long as they are bounded because they coincide with ψ for t ≤ −ν. But in
{Aν(t) : t ∈ R} there exists a (unique) value i0 ∈ {1, . . . , n} such that for ν big
enough it holds that

lim
t→−∞

‖ψ(t)− ξ∗i0,ν(t)‖Y = limt→−∞ ‖ψν(t)− ξ
∗
i0,ν(t)‖Y = 0.

This, jointly with (3.7), means, as desired, that

lim
t→−∞

‖ψ(t)− y∗i0,−‖Y = 0. �

Remark 3.3. We note that, if the problem x′ = Ax+ g(x) generates a non-
linear gradient (or just gradient-like) semigroup {S(t) : t ∈ R} which has a global
attractor A and a finite set of equilibria E , then the condition “any global so-
lution in the attractor converges to equilibrium points when t→ ±∞”, that we
have used in the previous lemma, is automatically satisfied.

Under the same assumptions of the above lemma we can prove now our main
result in this section, which is that the semilinear problem (2.2) is gradient-like.
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Theorem 3.4. Under the assumptions in Lemma 3.2, the semigroup {T (t) :
t ≥ 0}, associated to problem (2.2), is gradient-like.

Proof. Firstly observe that Lemma 3.2 means that {T (t) : t ≥ 0} fulfills
condition (G1) in Definition 2.13.
So, it remains to check that (G2) holds. We will proceed by contradiction.

Assume that there exist a finite number of global solutions {ξi = (ξ(1)i , ξ
(2)
i ): R→

X×Y : i = 1, . . . , k} and equilibrium points {z∗i = (x
(1)∗
i , y

(2)∗
i ) : i = 1, . . . , k} ⊂

E which are part of a homoclinic structure in the attractor of {T (t) : t ≥ 0}.
Each ξ(1)i :R → X is a global solution of x′ = Ax + g(x) and each ξ(2)i :R → Y

solves the non-autonomous equation y′ = By+ f(ξ(1)i (t), y). Now we distinguish
two cases.

Case 1. Assume that there exists some i0 ∈ {1, . . . , k} such that ξ(1)i0 :R→ X

is a non-constant solution of x′ = Ax + g(x). Then it yields that ξ(1)i0 :R → X

belongs to some homoclinic structure in the attractor A of x′ = Ax+ g(x). But
this contradicts the fact that x′ = Ax+ g(x) is a gradient system.

Case 2. For every i ∈ {1, . . . , k} the solutions ξ(1)i :R → X are equilibrium
points. Of course in this case all the solutions x(1)∗i are forced to coincide in
a same fixed element, say x(1)∗i0 , i.e. ξ

(1)
i (t) = x

(1)∗
i0
for all i = 1, . . . , k and

all t ∈ R. Then, all maps ξ(2)i :R → Y solve the same equation, namely y′ =
By + f(x(1)∗i0 , y) and jointly with the equilibrium points {y(2)∗`1 , . . . , y

(2)∗
`k
}, are

part of a homoclinic structure in the attractor related to the problem y′ =
By + f(x(1)∗i0 , y). But this contradicts the assumption of y′ = By + f(x(1)∗i0 , y)
being gradient-like. The proof is complete. �

Corollary 3.5. Under the assumptions of Lemma 3.2, the attractor AC
of the semigroup {T (t) : t ≥ 0} is gradient-like, i.e. it is given by the union of
unstable manifolds of its equilibrium points.

Proof. From Lemma 3.2 we deduce that any bounded solution of (2.2)
converges when t→ −∞ to an equilibrium point, whence the result follows. �

Corollary 3.6. Under the assumptions of Lemma 3.2, if the set E of equi-
librium points of x′ = Ax + g(x) is finite, then the semigroup {T (t) : t ≥ 0} is
gradient in the sense of [13].

Proof. Indeed, by results from [1], both concepts, gradient and gradient-
like, are the same, and the corollary follows. �

4. Łojasiewicz–Simon inequality

The aim of this section is to present a sufficient condition such that a global
solution in the attractor converges to equilibrium points when times goes to ±∞.
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This was an assumption in Theorem 3.4. A well-known condition that guarantees
this convergence is the Łojasiewicz–Simon inequality for gradient systems, which
can be formulated in an abstract way in Hilbert spaces. To our knowledge, this
has been applied to analyse the behaviour of the problem when t →∞ (see for
instance [10], [25], [14]). In Section 6 we present an extension of this result to
deal also with the case t→ −∞. Here, we give another proof of the Łojasiewicz–
Simon inequality, which will be used in Section 6 to establish the convergence of
solutions when t→ −∞.
We point out briefly the importance of this kind of condition. In the case

of a finite number of equilibrium points, if the semigroup is gradient with rela-
tively compact orbits, then the omega-limit of a solution (which is connected)
is a singleton. However for the case of a continuum of equilibrium points, the
convergence of a solution when t→ ±∞ to equilibrium points may not hold (see
[17], [18] for a counter example).
The analysis we will carry out in this section involves conditions such that the

results of previous section can be applied. In particular, we will study abstract
problems of first and second order in time.
Consider V = (V, ( · , · )V ) and H = (H, ( · , · )H) real Hilbert spaces with V

dense in H and with compact injection. We will identify H with its topological
dual H ′, so we have the chain of dense and compact injections

V ↪→ H ↪→ V ′.

We establish now a slight variant of the well-known Łojasiewicz–Simon in-
equality, e.g. cf. [14], [23]. The proof is similar to the previous ones but, since
we use a different projector, we give the details.

Theorem 4.1 (Łojasiewicz–Simon inequality). Consider G ∈ C2(V ;R) and
denote M := G′ = ∇G:V → V ′. Let ϕ ∈ V be a solution of M(u) = 0 such that
the following conditions are satisfied:

(a) The linearization L := M ′(ϕ) ∈ L(V, V ′) of M in ϕ is given as L =
Λ+B, where Λ:V → V ′ is an isomorphism and B : V → V ′ is a compact
operator.

(b) If ker(L) (dim(ker(L)) <∞ for L has compact resolvent) is non-trivial,
we assume that the map L:V ⊂ V ′ → V ′ has non-empty resolvent set
and, denote by Π:H → H the projection defined by

Πu :=
1
2πi

∫
γ

(λ− L)−1u dλ,

where γ: [0, 1]→ ρ(L) is a closed, simple and smooth contour of λ0 = 0
with
∫
γ
(1/ζ) dζ = 2πi, and d := dim(R(Π)) ∈ N, (dim(R(Π)) < ∞ for

L has compact resolvent) then we assume that there exists an open set
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U ⊂ Rd and a homeomorphism h:U → h(U), such that ϕ ∈ h(U) ⊂
M−1(0).

Then, the Łojasiewicz–Simon inequality is satisfied at ϕ, i.e. there exist σ > 0
and c > 0 such that for all u ∈ V with ‖u− ϕ‖V < σ it holds

|G(u)−G(ϕ)| ≤ c‖M(u)‖2V ′ .

Proof. Case 1. Assume that ker(L) = {0}. In this case, L:V → V ′ is
an isomorphism.
Using Taylor expansion of second order in G around ϕ we obtain for all u

that

G(u)−G(ϕ) = 〈G′′(ϕ)(u− ϕ), u− ϕ〉+ o(‖u− ϕ‖2V ),
This yields

(4.1) |G(u)−G(ϕ)| ≤ C1‖u− ϕ‖2V ,

for u close enough to ϕ.
On the other hand, using again Taylor expansion of first order for M = G′

around ϕ we have

M(u) =M(ϕ) + L(u− ϕ) + o(‖u− ϕ‖V ′) = L(u− ϕ) + o(‖u− ϕ‖V ),

which yields

u− ϕ = L−1[M(u)] + o(‖u− ϕ‖V ).
Then, for values u close enough to ϕ we deduce ‖u − ϕ‖V ≤ C2‖M(u)‖V ′ ,
for some constant C2 > 0. From this and (4.1), there exists σ > 0 such that
‖u − ϕ‖V < σ implies that |G(u) − G(ϕ)| ≤ C‖M(u)‖2V ′ , for some constant
C > 0, which concludes the proof in this case.

Case 2. Assume that ker(L) 6= {0}. Making a change of variables, we
can consider ϕ = 0 and G(ϕ) = 0. In fact, we can define G0:V → R by
G0(u) := G(u + ϕ) − G(ϕ) and observe that the result for G0 is equivalent to
the result for G.
Let L:V → V ′ be the linear operator given by

Lu := Πu+ Lu, u ∈ V.

Claim 2.1. L is injective.
Indeed, let u0 ∈ V be such that 0 = Lu0 = Πu0 + Lu0. As L commute

with Π, it holds that 0 = Π2u0 + ΠLu0 = Πu0 + LΠu0. Let n0 ∈ N be the
least positive integer such that R(Π) = N(Ln0). From this and the fact that
Πu0 = −Lu0 we have that Ln0−1Πu0 = −Ln0Πu0 = 0 and Ln0−1Πu0 = 0. By
induction Πu0 = 0. Consequently, Lu0 = −Πu0 = 0 and u0 ∈ N ⊂ R(Π). Hence
u0 = Πu0 = 0.
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Using the decomposition of L given in the assumption (a) we have

Λ−1L = IV + Λ−1(Π +B),

with Λ−1L:V → V injective. As Λ−1(Π + B):V → V is compact, from Fred-
holm Alternative follows that Λ−1L:V → V is also surjective, and therefore an
isomorphism.
Consider now the map N :V → V ′ given by

Nu := Πu+M(u), u ∈ V.

From assumptions about G we deduce thatN is C1 withN ′(0) = Π+M ′(0) = L.
Then, by the Inverse Function Theorem, there exist an open set W1(0) ⊂ V

with 0 ∈ W1(0) and an open set W2(0) ⊂ V ′ with 0 ∈ W2(0), such that N is
a diffeomorphism fromW1(0) ontoW2(0). So, there exists a C1 map Ψ:W2(0)→
W1(0) which is the inverse of N :W1(0)→W2(0).
Taking smaller open sets W1(0) and W2(0) if necessary, and using the Mean

Value inequality we may assume that

(4.2)
‖Ψ(g1)−Ψ(g2)‖V ≤ C1‖g1 − g2‖V ′ for all g1, g2 ∈W2(0),
‖M(u)−M(v)‖V ′ ≤ C2‖u− v‖V for all u, v ∈W1(0),

for certain constants C1 and C2 > 0.
Now, we consider an orthonormal basis ϕ1, . . . , ϕd, for R(Π) = N(Ln0),

relative to the inner product of H and we define the map f :Rd → V ′ by

f(ξ) :=
d∑
j=1

ξjϕj , for ξ = (ξ1, . . . , ξd) ∈ Rd.

It is clear that f is an isomorphism between Rd and N(Ln0). Then

W̃2(0) := f−1(W2(0)) = {ξ ∈ Rd : f(ξ) ∈W2(0)}

is an open set of Rd which contain 0.
Consider then the real function Γ: W̃2(0)→ R given by

Γ(ξ) := (G ◦Ψ ◦ f)(ξ), ξ ∈ W̃2(0).

Clearly, Γ is C1 in W̃2(0).
Now we define W̃1(0) := {u ∈W1(0) : Πu ∈W2(0)}. It is not difficult to see,

using that Π−1(W2(0)) is open in H and the continuous inclusion V ↪→ H, that
W̃1(0) is open in V .
Then, for each u ∈ W̃1(0) consider ξ ∈ W̃2(0) such that f(ξ) = Πu ∈W2(0).

Claim 2.2 Estimate for G(u) − Γ(ξ). There exists a constant C > 0, inde-
pendent of u and ξ, such that

(4.3) |G(u)− Γ(ξ)| ≤ C‖M(u)‖2V ′ .
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Indeed,

|G(u)− Γ(ξ)| = |G(u)−G(Ψ(f(ξ)))| =
∣∣∣∣ ∫ 1
0

d

dt
{G(u+ t[Ψ(f(ξ))− u])} dt

∣∣∣∣
≤
∫ 1
0
‖M(u+ t[Ψ(f(ξ))− u])‖V ′‖Ψ(f(ξ))− u‖V dt

= ‖Ψ(f(ξ))− u‖V
∫ 1
0
‖M(u+ t[Ψ(f(ξ))− u])‖V ′ dt.

Using (4.2) we have that

‖M(u+ t[Ψ(f(ξ))− u])‖V ′ = ‖M(u+ t[Ψ(f(ξ))− u])−M(u) +M(u)‖V ′

≤ ‖M(u)‖V ′ + C2‖t[Ψ(f(ξ))− u]‖V ′ .

Applying this to the above inequality, we deduce that

(4.4) |G(u)−Γ(ξ)| ≤ ‖Ψ(f(ξ))−u‖V
∫ 1
0
{‖M(u)‖V ′+tC2‖[Ψ(f(ξ))−u]‖V ′} dt.

Now, by (4.2) we have

(4.5) ‖Ψ(f(ξ))− u‖V = ‖Ψ(f(ξ))−Ψ(Πu+M(u))‖V ≤ C1‖M(u)‖V ′ .

This, jointly with (4.4), leads to (4.3).
Observe that, provided that (4.3) holds, the proof will complete if we conclude

that Γ(ξ) = 0 for any ξ small enough.
For each k = 1, . . . , d from the chain rule we have

(4.6)
∂Γ
∂ξk
(ξ) = 〈M(Ψ(f(ξ))),Ψ′(f(ψ))ϕk〉 = (M(Ψ(f(ξ))),Ψ′(f(ψ))ϕk)H ,

where the last equality is due to the fact thatM(Ψ(f(ξ))) = f(ξ)−Π(Ψ(f(ξ))) ∈
N(Ln0) ⊂ H ↪→ V ′.
As M(Ψ(f(ξ))) ∈ N(Ln0) one has

M(Ψ(f(ξ))) =
d∑
k=1

(M(Ψ(f(ξ))), ϕk)Hϕk.

This, jointly with (4.6), implies that∥∥∥∥ d∑
k=1

∂Γ
∂ξk
(ξ)ϕk −M(Ψ(f(ξ)))

∥∥∥∥
V ′

=
∥∥∥∥ d∑
k=1

[(M(ξ(f(ξ))),Ψ′(f(ξ))ϕk − ϕk)H ]ϕk
∥∥∥∥
V ′

≤C3‖M(Ψ(f(ξ)))‖V ′
d∑
k=1

‖Ψ′(f(ξ))ϕk − ϕk‖V ,
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for some constant C3 > 0 depending only on the embedding V ↪→ H and on the
choice of the elements {ϕ1, . . . , ϕd} of N(Ln0).
On the other hand, since Ψ′(0) = L−1 and Lϕk = Πϕk + Lϕk = ϕk, the

above inequality yields∥∥∥∥ d∑
k=1

∂Γ
∂ξk
(ξ)ϕk −M(Ψ(f(ξ)))

∥∥∥∥
V ′

≤ C3‖M(Ψ(f(ξ)))‖V ′‖Ψ′(f(ξ))−Ψ′(0)‖L(V ′,V )
d∑
k=1

‖ϕk‖V .

From the continuity of Ψ′:V ′ → L(V ′, V ), we deduce the existence of a contin-
uous function ρ: W̃2(0)→ [0,∞) with ρ(0) = 0 such that

(4.7)
∥∥∥∥ d∑
k=1

∂Γ
∂ξk
(ξ)ϕk −M(Ψ(f(ξ)))

∥∥∥∥
V ′
≤ C3ρ(ξ)‖M(Ψ(f(ξ)))‖V ′ .

Therefore, taking a smaller open set W̃2(0), if necessary, we may assume that

(4.8) ‖M(Ψ(f(ξ)))‖V ′ ≤ C‖∇Γ(ξ)‖,

for all ξ ∈ W̃2(0) where C > 0 is some constant.
On the other hand, from the continuity of Ψ′ and since N(Ln0) was finite-

dimensional, (4.7) also gives

‖∇Γ(ξ)‖ ≤ C4‖M(Ψ(f(ξ)))‖V ′ ,

for certain constant C4 > 0. Combining this and the above manipulations, it
yields to

‖∇Γ(ξ)‖ ≤ C4‖M(Ψ(f(ξ)))‖V ′ ≤ C4‖M(Ψ(f(ξ)))−M(u)‖V ′ + C4‖M(u)‖V ′

≤ C5‖Ψ(f(ξ))− u‖V + C4‖M(u)‖V ′ ≤ C6‖M(u)‖V ′ .

where we have used (4.5). Hence,

(4.9) ‖∇Γ(ξ)‖ ≤ C6‖M(u)‖V ′ , u ∈ W̃1(0), f(ξ) = Πu.

Claim 2.3. The following equality holds:

(4.10) {u ∈ W̃1(0) :M(u) = 0} = Ψ({f(ξ) : ξ ∈ W̃2(0)and ∇Γ(ξ) = 0}).

Indeed, consider u0 ∈ W̃1(0) with M(u0) = 0. Then u0 = Ψ(N (u0)) =
Ψ(Πu0) and, if ξ0 ∈ W̃2(0) is such that f(ξ0) = Πu0, then u0 = Ψ(f(ξ0)). Since
(4.9) implies ∇Γ(ξ0) = 0, the inclusion

{u ∈ W̃1(0) :M(u) = 0} ⊂ Ψ({f(ξ) : ξ ∈ W̃2(0) and ∇Γ(ξ) = 0})

holds.
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For the opposite, consider u0 = Ψ(f(ξ0)) ∈ W1(0) with ξ0 ∈ W̃2(0) and
∇Γ(ξ0) = 0. Then, from (4.8) we have M(u0) = 0, whence

Πu0 = ΠΨ(f(ξ0)) = ΠΨ(f(ξ0))+M(Ψ(f(ξ0))) = N (Ψ(f(ξ0))) = f(ξ0) ∈W2(0).

Therefore u0 ∈ W̃1(0) and the inclusion follows.

Claim 2.4. Γ(ξ) = 0 for ξ small enough. Now we take into account assump-
tion (b).

Since {u ∈ W̃1(0) : M(u) = 0} = W̃1(0) ∩M−1(0) is an open set of M−1(0)
with the topology induced by V , it implies that

Ũ = h−1({u ∈ W̃1(0) :M(u) = 0})

is an open set of Rd and

h(Ũ) = {u ∈ W̃1(0) :M(u) = 0} ⊂ Ψ({f(ξ) : ξ ∈ W̃2(0)}) = (Ψ ◦ f)(W̃2(0)).

Observe that h(Ũ) and (Ψ ◦ f)(W̃2(0)) are topological manifolds of the same di-
mension (d), whence h(Ũ) must be an open subset of (Ψ◦f)(W̃2(0)) (cf. Brouwer
Domain Invariance Theorem in [12]). Hence, taking a smaller set W̃2(0) if nec-
essary, we may assume the following equalities

{u ∈ W̃1(0) :M(u) = 0} = h(Ũ) = (Ψ ◦ f)(W̃2(0)).

This and (4.10) gives us

Ψ({f(ξ) : ξ ∈ W̃2(0) and ∇Γ(ξ) = 0}) = Ψ({f(ξ) : ξ ∈ W̃2(0)}),

whence ∇Γ(ξ) = 0 for any ξ ∈ W̃2(0). Without lost of generality, we may
assume that W̃2(0) is convex, so we deduce that Γ is constant in W̃2(0) and,
since Γ(0) = 0, it must be that Γ(ξ) = 0 for any ξ ∈ W̃2(0), which concludes the
proof taking (4.3) into account. �

Remark 4.2. We observe that, we have used a spectral projection Π, in the
proof of Theorem 4.1. This was done because it is not clear that the orthogonal
projection onto the kernel of the operator L:V → V ′ commutes with L:V → V ′

(which may not be symmetric).

Under the assumptions of Theorem 4.1 we can prove the forwards and back-
wards convergence to equilibria. The forwards proof is standard, we include
in the Appendix a proof of backwards convergence for the convenience of the
reader.
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Theorem 4.3. Assume that the assumptions of Theorem 4.1 are fulfilled for
any element of E = {z∗ ∈ V :M(z∗) = 0}. Consider a global solution u:R→ V

of the problem:

(4.11)

{
u′ +M(u) = 0,

u(0) = u0 ∈ V,

such that the orbit γu(u0) = {u(t) ∈ V : t ∈ R} is relatively compact in V . Then,
there are ϕ,ψ ∈ E such that

lim
t→−∞

‖u(t)− ϕ‖V = 0 and lim
t→∞

‖u(t)− ψ‖V = 0.

Next we adapt, following [14], the previous results to deal with an abstract
problem of second-order in time.
Consider −A:D(A) ⊂ H → H a sectorial operator in H, with compact

resolvent.
Let f :V → H be a smooth enough map, β > 0 and consider the following

semilinear problem of second order

(4.12)


u′′ + βu′ = Au+ f(u),

u(0) = u0 ∈ V,
u′(0) = u1 ∈ H.

We assume that there exists G ∈ C2(V ;R) with M := G′:V → V ′ satisfying for
u ∈ D(A)

−M(u) = Au+ f(u).
Problem (4.12) can be rewritten as a semilinear problem of first order (with-

out lost of generality we assume β = 1 making if necessary the change of variables
t = s/β):

(4.13)

{
z′ = Cz + f0(z),

z(0) = z0 ∈ Z,

where z ∈ Z := V ×H, equipped with the inner product

((v1, v2), (w1, w2))Z := (v1, w1)V + (v2, w2)H ,

C:D(C) ⊂ Z → Z being the linear operator with D(C) := D(A)× V given by

C :=
(
0 I

A −I

)
,

I the identity in V, and f0:Z → Z defined by f0(z) := f0(u, v) := (0, f(u)), for
z = (u, v) ∈ Z = V ×H.
With the above notation and assumptions, we have that the linear operator

C generates a C0 semigroup of contractions in Z and (4.13) has an associated
nonlinear semigroup {S(t) : t ≥ 0} in Z as the solution operator.
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With this, the following result holds (again, a proof of the backwards con-
vergence to equilibrium is included in the Appendix).

Theorem 4.4. Assume that the hypotheses of Theorem 4.1 are fulfilled for
any ϕ ∈ EA := {ϕ ∈ D(A) : −Aϕ = f(ϕ)}. Then, if u:R → V is a global
(strong) solution for (4.12) with its orbit {(u(t), u′(t)) : t ∈ R} relatively compact
in V ×H, and with ‖M ′(u(t))u′(t)‖V ′ ≤ a‖u′(t)‖V ′ for all t ∈ R and some a > 0,
then there exist ϕ and ψ ∈ EA such that:

lim
t→−∞

‖u(t)− ϕ‖V = 0, lim
t→−∞

‖u′(t)‖H = 0,

lim
t→∞

‖u(t)− ψ‖V = 0, lim
t→∞

‖u′(t)‖H = 0.

5. Examples

In this section, we present some examples for which the results in Sec-
tion 4 can be applied. Observe that we can couple any of these examples with
a gradient-like problem such that we may take advantage of Theorem 3.4 to de-
scribe the attractor of the semigroup associated to a coupled system in cascade.
In this way, we also present some examples of coupled system (2.1) to illustrate
the results in Section 3.

There are a large variety of examples of the form

x′ = Ax+ f(x), x(0) = x0 ∈ X

arising in partial differential equations such that X is a Hilbert space, for each
x0 ∈ X the solution x(t, x0) of the above initial value problem is defined for
all t ≥ 0 and the semigroup {S(t) : t ≥ 0} defined by S(t)x0 := x(t, x0),
t ≥ 0, x0 ∈ X has a global attractor, is gradient and for which either the set
of equilibria of the uncoupled equation is finite or, otherwise, the Łojasiewicz–
Simon inequality is satisfied. With this, {T (t) : t ≥ 0} (as in Lemma 3.2, see
also equation (2.2) is gradient-like in the sense of Definition 2.13.

Our first example is a simple system with one-sided coupling for which we can
apply the abstract theory developed here to conclude the gradient-like structure.
We note that, in this example, the nonlinearity is not assumed to be analytic
(C2 is enough) enhancing the applicability of Theorem 4.1.

For the other examples, we can assume that, either the set of equilibria for
the uncoupled equation is finite or, otherwise, the nonlinear term in it is analytic
to use the Theorem 4.1 (for the analytic case, see [23]).

Example 5.1. Let g:R→ R be a C2(R) function such that g(s) 6= 0 for all
s ∈ R and consider the function G:R2 → R given by G(s, t) := t2g(s). It follows
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that G ∈ C2(R2,R) with M(s, t) := G′(s, t) = (t2g′(s), 2tg(s)) and

G′′(s, t) =
(
t2g′′(s) 2tg′(s)
2tg′(s) 2g(s)

)
for all (s, t) ∈ R2,

particularly, G′′(s, t) is a symmetric matrix for all s and t, so the orthogonal
projection coincides with the spectral one.
It is clear that M−1(0) = R× {0} and therefore, since

G′′(s, 0) =
(
0 0
0 2g(s)

)
,

we have that dimker(G′′(x∗)) = 1 for each x∗ ∈M−1(0).
Now, the map h:R → R × R given by h(s) := (s, 0) is a homeomorphism

between R andM−1(0). Thus, the mapG satisfies hypothesis (b) in Theorem 4.1.
Let Y be a Banach space and f :R2 × Y → Y a smooth map such that for

every bounded set B ⊂ R2 the restriction of f to B × Y is bounded.
Also, let −A:D(A) ⊂ Y → Y be a sectorial operator such that the analytic

semigroup generated for it, {eAt : t ≥ 0}, satisfies ‖eAt‖L(Y ) ≤ Me−δt for every
t > 0 and some constants M ≥ 1 and δ > 0.
Under these assumptions, by using the results from [3] on existence of pull-

back attractors, it is not difficult to see that, for any bounded solution ϕ:R→ R2

of x′ +M(x) = 0, the map fϕ:R × Y → Y , given by fϕ(t, y) := f(ϕ(t), y), is
compatible from the left and from the right respect to the system{

y′ = Ay + fϕ(t, y), t > τ,

y(τ) = y0 ∈ Y.

If for every equilibrium point x∗ ∈ M−1(0), the equilibria of the problem y′ =
Ay + f(x∗, y) t > 0 are all hyperbolic, then

x′ +M(x) = 0, t > 0,

y′ = Ay + f(x, y), t > 0,

x(0) = x0 ∈ R2, y(0) = y0 ∈ Y,
is gradient-like.

The next examples are applications of Theorem 4.1. More exactly, we con-
sider applications to differential systems and to PDE, in particular, the reaction-
diffusion equation, the damped wave equation and the Cahn–Hilliard equation.

Example 5.2. Let φ ∈ C2(Rn,R) be such that φ(u) → ∞ as ‖u‖Rn → ∞
and consider the ordinary differential equations:

(5.1) x′ = −∇φ(x), x(0) = x0 ∈ Rn,

or, for β > 0,

(5.2) x′′ + βx′ = −∇φ(x), x(0) = x0 ∈ Rn, x′(0) = v0 ∈ Rn.
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Then, (5.1) and (5.2) have global attractors A1 in Rn and A2 in Rn × Rn,
respectively. If E = {x ∈ Rn : ∇φ(x) = 0}, it follows from the Łojasiewicz–
Simon condition (which we assume) and from the results in Section 4 that

A1 =
⋃
x∈E

Wu(x) and A2 =
⋃
x∈E

Wu
(
x

0

)
.

We remark that we are not assuming that the set of equilibria E is finite and
without the Łojasiewicz–Simon condition we only have that

A1 =Wu(E) and A2 =Wu
(
E
0

)
.

Example 5.3. Let f ∈ C2(R,R) be such that

(5.3) lim sup
|u|→∞

f(u)
u
≤ −δ < 0

and

(5.4) |f ′′(u)| ≤ c(1 + |u|p)

with p ∈ (0,∞) to be specified. Consider the initial boundary value problems

(5.5)

ut = ∆u+ f(u), in Ω,
∂u

∂n
= 0, in ∂Ω,

u(0) = u0 ∈ H1(Ω),

with p+ 2 ≤ (n+ 2)/(n− 2) and n ≤ 6 or, for β > 0,

(5.6)

utt + βut = ∆u+ f(u), in Ω,
∂u

∂n
= 0, in ∂Ω,

u(0) = u0 ∈ H1(Ω), ut(0) = v0 ∈ L2(Ω),

with p+ 2 ≤ n/(n− 2) and n ≤ 4.
Then, it is well-known that (5.5) and (5.6) have global attractorsA3 inH1(Ω)

and A4 in H1(Ω)×L2(Ω) respectively (see [3]). If Ẽ = {u ∈ H2(Ω) : ∆u+f(u) =
0 and ∂u/∂n = 0}, it follows from the Łojasiewicz–Simon condition (which we
assume) and from the results in Section 4 that

A3 =
⋃
u∈eE

Wu(u) and A4 =
⋃
u∈eE

Wu
(
u

0

)
.

We remark that we are not assuming that the set of equilibria Ẽ is finite.
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Example 5.4. Let f ∈ C2(R,R) be such that (5.3) and (5.4) with p+ 2 ≤
(n+ 2)/(n− 2), n ≤ 6 hold. Consider the initial boundary value problem

(5.7)

ut = −∆(∆u+ f(u)), in Ω,
∂u

∂n
=
∂∆u
∂n
= 0, in ∂Ω,

u(0) = u0 ∈ H1(Ω).

Then (5.7) has a global attractor A5 in H1(Ω) (see [4]). If E = {u ∈ H4(Ω) :
∆u+ f(u) = 0, ∂u/∂n = 0 and ∂∆u/∂n = 0}, it follows from the Łojasiewicz–
Simon condition (which we assume) and from the results in Section 4 that

A5 =
⋃
u∈E

Wu(u).

We remark that the set of equilibria Ē is always infinite.

Finally, we consider the situation of cascade system (2.1). The following
examples are applications of Theorem 3.4.

Example 5.5. Let φ ∈ C2(Rn,R) and f ∈ C1(R,R) be such that φ(u)→∞
as ‖u‖Rn → ∞, f(s) + x0 · x∗ = 0 ⇒ f ′(s) + x0 · x∗ 6= 0 for all x∗ ∈ {x ∈ Rn :
∇φ(x) = 0} and f satisfies (5.3). Consider the ordinary differential equations:

(5.8)

x′ = −∇φ(x),
s′ = f(s) + x0 · x,

s(0) = s0 ∈ R, x(0) = x0 ∈ Rn,

or, for β > 0,

(5.9)

x′′ + βx′ = −∇φ(x),
s′′ + βs′ = f(s) + x0 · x,

s(0) = s0 ∈ R, x(0) = x0 ∈ Rn, x′(0) = v0 ∈ Rn.

Then, (5.8) and (5.9) have global attractors A6 in Rn×R and A7 in Rn×Rn×R,
respectively. If Ê = {(x∗, s) ∈ Rn × R : ∇φ(x∗) = 0 and f(s) + x0 · x∗ = 0}, it
follows from the Łojasiewicz–Simon condition (which we assume for x′ = −∇φ(x)
or x′′ + βx′ = −∇φ(x)) and from the results in Sections 3 and 4 that

A6 =
⋃
z∈Ê

Wu(z) and A7 =
⋃
z∈Ê

Wu
(
z

0

)
.

In addition, all solutions in A6 (or A7) are forwards asymptotic to equilibria and
A6 (or A7) does not contain homoclinic structures.

The last example corresponds to the limiting problem of reaction-diffusion
problems in a dumbbell domain (see [2]).
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Example 5.6. Let Ω be a bounded smooth domain in Rn and P0, P1 ∈ Ω̄.
Assume that f, g ∈ C2(R,R), f satisfies (5.4) with p+ 2 ≤ (n+ 2)/(n− 2) and
that both f and g satisfy (5.3). Consider the initial boundary value problem:

(5.10)

ut = ∆u+ f(u), in Ω,
∂u

∂n
= 0, in ∂Ω,

u(0) = u0 ∈ C(Ω),
vt = vxx + g(v), in (0, 1),

v(t, 0) = u(t, P0), vx(t, 1) = 0,

v(0, · ) = v0 ∈ H1(0, 1).

Then, the initial boundary value problem (5.10) defines a semigroup {S(t) : t ≥
0} in C(Ω)×H1(0, 1) which has a global attractor A8.
Assume that for all c ∈ [α, ω] with α = inf{ξ : f(ξ) = 0} and ω = sup{ξ :

f(ξ) = 0}, the solutions of

(5.11)
vxx + g(v + c) = 0, in (0, 1),

v(0) = vx(1) = 0,

are hyperbolic (which may be accomplished, for example, if |α| and |ω| are suit-
ably small as in [9]). If the Łojasiewicz–Simon condition holds for the equation
in Ω, it follows from Theorem 3.4 that the solutions in A8 are backwards and
forwards asymptotic to equilibria.

6. Appendix

This appendix is dedicated to the proof of Theorems 4.3 and 4.4 in the case
t → −∞. To do that, we will make use the following two technical lemmas,
which helpful in the proof of convergence to an equilibrium point when the
Łojasiewicz–Simon inequality holds.

Lemma 6.1. Let u: (−∞, 0] → H be differentiable. Assume that there exist
constants a > 0 and γ > 0 such that for some T > 0 and all t ∈ [−T, 0],

(6.1)
∫ t
−∞
‖u′(s)‖2H ds ≤ aeγt.

Then, for −T ≤ τ ≤ t ≤ 0,

‖u(t)− u(τ)‖H ≤ b
√
aeγt/2,

where b = eγ/2/(eγ/2 − 1).
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Proof. Consider −T ≤ τ ≤ t ≤ 0. First assume that t− τ ≤ 1. Then, from
Hölder inequality and (6.1), one has

‖u(t)− u(τ)‖H =
∥∥∥∥∫ t
τ

u′(s) ds
∥∥∥∥
H

≤
√
t− τ
(∫ t
τ

‖u′(s)‖2H ds
)1/2

≤
√
aeγt/2.

Now, if t − τ > 1, let n be the least natural number such that (t − τ)/n ≤ 1.
Then, from above we deduce

‖u(t)− u(τ)‖H ≤
∫ t−n+1
τ

‖u′(s)‖H ds+
n−2∑
k=0

∫ t−k
t−k−1

‖u′(s)‖H ds

≤
√
aeγ/2(t−n+1) +

n−2∑
k=0

√
aeγ(t−k)/2 ≤

√
aeγt/2

[
eγ/2

eγ/2 − 1

]
,

which concludes the proof. �

The next result is analogous to the above lemma for R+ instead of R−. Its
proof can be found in [14, Lemma 2.2].

Lemma 6.2. Let u: [0,∞) → H be differentiable. Assume that there exist
constants a > 0 and γ > 0 such that for some T > 0 and all t ∈ [0, T ],∫ ∞

t

‖u′(s)‖2H ds ≤ ae−γt.

Then, for 0 ≤ t ≤ τ ≤ T ,

‖u(t)− u(τ)‖H ≤ b
√
ae−γt/2,

where b = eγ/2/(eγ/2 − 1).

Proof of Theorem 4.3. We only sketch the proof of the case t → −∞,
since it is similar to the case t→∞ which is proven in [14, Theorem 1.1].
Observe that for any global (strong) solution ξ:R→ V of (4.11), the following

inequality holds for all t ∈ R:
d

dt
(G ◦ ξ)(t) = 〈M(ξ(t)), ξ′(t)〉 = −‖ξ′(t)‖2H = −‖M(ξ(t))‖2H ≤ 0.

Therefore, the function R 3 t 7→ G(ξ(t)) ∈ R is non-increasing. From this and
the fact that ddt (G◦ξ)(t) = −‖ξ

′(t)‖2H , we conclude that G:V → R is a Lyapunov
functional for the nonlinear semigroup in V associated to (4.11). Then, the α-
limit of u0 relative to a global solution u, that is,

αu(u0) :=
{
ϕ ∈ V : ∃ (tn)n∈N, tn → −∞ such that lim

n→∞
‖u(tn)− ϕ‖V = 0

}
,

is a subset of E , which is nonempty from the relatively compactness of γu(u0).
Consider a point ϕ ∈ αu(u0). Then, there exists a sequence (tn)n∈N in R

with tn → −∞ such that lim
n→∞

‖u(tn)− ϕ‖V = 0. Hence, lim
n→∞

G(u(tn)) = G(ϕ)
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and from the monotonicity of R 3 t 7→ G(u(t)) ∈ R it holds that lim
t→−∞

G(u(t)) =

G(ϕ) with G(u(t)) ≤ G(ϕ) for all t ∈ R.
As before we have that

(6.2)
d

dt
[(G ◦ u)(t)−G(ϕ)] = 〈M(u(t)), u′(t)〉 = −‖u′(t)‖2H = −‖M(u(t))‖2H .

So, for a fixed value t < 0, integrating on (−∞, t), we have

(6.3)
∫ t
−∞
‖u′(s)‖2H ds = [G(ϕ)−G(u(t))].

On the other hand, for each natural number j we take nj ∈ N strictly increasing
such that

(6.4) ‖u(tnj )− ϕ‖V <
1
j
and [G(ϕ)−G(u(tnj ))]1/2 <

1
j
.

Choose σ > 0 as in Theorem 4.1 associated to the equilibrium point ϕ and j0
such that 1/j < σ if j ≥ j0. Define for j ≥ j0

t
j
:= inf{τ < tnj : ‖u(t)− ϕ‖V < σ for all t ∈ [τ, tnj ]}.

From the Łojasiewicz–Simon inequality and the continuous injection of H in V ′

we deduce the existence of a constant γ > 0 depending on ϕ such that (6.2)
implies, for t ∈ [tj , tnj ], that

d

dt
[(G ◦ u)(t)−G(ϕ)] ≤ γ[G(u(t))−G(ϕ)].

This yields
d

dt
{e−γt[(G ◦ u)(t)−G(ϕ)]} ≤ 0.

Integrating over (tj , tnj ) we obtain

e−γtnj [G(u(tnj ))−G(ϕ)]− e−γt[G(u(t))−G(ϕ)] ≤ 0,

which, combined with (6.3), implies that

(6.5)
∫ t
−∞
‖u′(s)‖2H ds ≤ eγt{e

−γtnj [G(ϕ)−G(u(tnj ))]},

for all t ∈ (tj , tnj ), j ≥ j0.

Claim. There exists a value j1 ≥ j0 such that tj1 = −∞.

If G(ϕ) = G(u(tnj )) for some j the claim is clearly true. On the other hand,
if G(ϕ) > G(u(tnj )) and tj > −∞, for all j ≥ j0, then, taking into account (6.5),
we may apply Lemma 6.1 with τ = tj , t = tnj and a = e

−γtnj [G(ϕ)−G(u(tnj ))]
and conclude that

‖u(tj)− u(tnj )‖H < beγ/2(tj−tnj )
√
[G(ϕ)−G(u(tnj ))] <

b

j
,

for all j ≥ j0, where b > 0 is a constant depending on γ.
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From (6.4) and the continuous embedding V ↪→ H, it holds that ‖u(tnj ) −
ϕ‖H < C0/j for all j ≥ j0 and some constant C0.
From above we have that, for all j ≥ j0,

‖u(tj)− ϕ‖H ≤ ‖u(tj)− u(tnj )‖H + ‖u(tnj )− ϕ‖H <
b

j
+
C0
j
,

hence lim
j→∞

‖u(tj)− ϕ‖H = 0. This also means, from the relatively compactness

of γu(u0) in V that for a subsequence (relabelled the same) (u(tj))j∈N converges
to ϕ in V . In particular, there exists a value j∗ such that

‖u(tj∗)− ϕ‖V < σ,

which is a contradiction with the definition of tj∗ . Therefore, there must exists
a j1 ≥ j0 such that tj = −∞ for all j ≥ j1 and the claim is proved.
Now, from (6.5),∫ t

−∞
‖u′(s)‖2H ds ≤ eγt{e

−γtnj [G(ϕ)−G(u(tnj ))]} for all t ∈ (−∞, tnj ), j ≥ j1.

Lemma 6.1 implies that, for any j ≥ j1 and t ∈ (−∞, tnj ),

‖u(t)− u(tnj )‖H < beγ(t−tnj )/2
√
[G(ϕ)−G(u(tnj ))] <

b

j
.

Therefore,

‖u(t)− ϕ‖H ≤ ‖u(t)− u(tnj )‖H + ‖u(tnj )− ϕ‖H <
b

j
+
C0
j
.

From this we have that lim
t→−∞

‖u(t) − ϕ‖H = 0. The relatively compactness of
γu(u0) in V implies that lim

t→−∞
‖u(t)− ϕ‖V = 0, completing the proof. �

Proof of Theorem 4.4. As in the previous section, we will pay only
attention to the case t→ −∞, being the case t→∞ analogous.
Define the continuous functional E:V ×H → R by

E(u0, u1) :=
1
2
‖u1‖2H +G(u0).

It is not difficult to check that E is a Lyapunov functional for the semigroup
{S(t) : t ≥ 0}.
From the relatively compactness of the orbit of u : R→ V we have that the

α-limit of u,

α(u) =
{
(z, w) ∈ V ×H : ∃ tn → −∞, lim

n→∞
‖u(tn)− z‖V = 0

and lim
n→∞

‖u′(tn)− w‖H = 0
}
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is nonempty, compact, invariant, and attracts the solution (u, u′) in V × H

when t→ −∞, Moreover, being S( · ) a gradient semigroup, α(u) is contained in
E∗ = {(z∗, w∗) ∈ V ×H : S(t)(z∗, w∗) = (z∗, w∗) for all t ≥ 0}.
As far as equilibrium points of problem (4.13) are also strong solutions, then

any (z∗, w∗) ∈ E∗ must satisfy w∗ = 0 and M(z∗) = 0, i.e. E∗ ⊂ EA × {0}.
Moreover, the equality E∗ = EA × {0} holds since the other inclusion E∗ ⊃
EA × {0} is always true. In particular, this implies that lim

t→−∞
‖u′(t)‖H = 0.

Now we prove that there exists a unique ϕ ∈ EA such that α(u) = {(ϕ, 0)},
which will conclude the proof.
Consider a positive value ε > 0, which will be fixed later on. Define for t ≤ 0

Eε(t) := E(u(t), u′(t)) + ε(M(u(t)), u′(t))V ′ .

Since a strong solution satisfies (4.12) in a classic sense, we can derive and obtain

E′ε(t) = − ‖u′(t)‖2H + ε[(M ′(u(t))u′(t), u′(t))V ′ + (M(u(t)), u′′(t))V ′ ]
≤ − ‖u′(t)‖2H + ε[‖M ′(u(t))u′(t)‖V ′‖u′(t)‖V ′

− ‖M(u(t))‖2V ′ + ‖M(u(t))‖V ′‖u′(t)‖V ′ ].

From the relatively compactness of the orbit of u, the hypothesis

‖M ′(u(t))u′(t)‖V ′ ≤ a‖u′(t)‖V ′ for all t ∈ R

and the continuity of the injection H ↪→ V ′, one can estimate the right hand
side above by

− ‖u′(t)‖2H + ε
[
C‖u′(t)‖2H − ‖M(u(t))‖2V ′ +

1
2
‖M(u(t))‖2V ′ +

C

2
‖u′(t)‖2H

]
=
[
ε

(
C +

C

2

)
− 1
]
‖u′(t)‖2H −

ε

2
‖M(u(t))‖2V ′ ,

for some constant C > 0 depending on u. Therefore, we conclude

(6.6) E′ε(t) ≤
[
ε

(
C +

C

2

)
− 1
]
‖u′(t)‖2H −

ε

2
‖M(u(t))‖2V ′ .

So, fixing ε > 0 small enough, we obtain that for a constant C2 > 0 and all t ≤ 0,
it holds

(6.7)
d

dt
[Eε(t)−G(ϕ)] ≤ −C2[‖u′(t)‖2H + ‖M(u(t))‖2V ′ ].

In particular, Eε: (−∞, 0]→ R is non-increasing. By the relatively compactness
of the orbit of u, Eε is bounded from below, thus it exists the limit lim

t→−∞
Eε(t).

Now, take any point (ϕ, 0) ∈ α(u), so there exists a sequence (tn)n∈N with
tn → −∞ and lim

n→∞
‖u(tn)− ϕ‖V = 0 and, from above, it also holds

lim
n→∞

Eε(tn) = lim
n→∞

[
1
2
‖u′(tn)‖2H +G(u(tn)) + ε(M(u(tn)), u′(tn))V ′

]
= G(ϕ).



374 E.R. Aragao-Costa — A.N. Carvalho — P. Maŕın-Rubio — G. Planas

Actually, we deduce that lim
t→−∞

Eε(t) = G(ϕ) with Eε(t) ≤ G(ϕ) for all t ≤ 0.

On the other hand, from (6.7) there exists some constant C̃ > 0 such that

E′ε(t) ≤ −
1

C̃
‖u′(t)‖2H ,

whence integrating over (−∞, t), for t ∈ (−∞, 0), it turns out

(6.8)
∫ t
−∞
‖u′(s)‖2H ds ≤ C̃[G(ϕ)− Eε(t)].

Now we take a sequence (nj)j∈N as in Theorem 4.3 with

‖u(tnj )− ϕ‖V <
1
j
and [G(ϕ)− Eε(tnj )]1/2 <

1
j
.

Analogously, take σ > 0 associated to the equilibrium point ϕ according to the
statement of Theorem 4.1; fix j0 ∈ N such that 1/j0 < σ and define for j ≥ j0

tj = inf{τ < tnj : ‖u(t)− ϕ‖V < σ for all t ∈ [τ, tnj ]}.

Then, for each j ≥ j0 and t ∈ [tj , tnj ], the Łojasiewicz–Simon inequality gives

(6.9) Eε(t)−G(ϕ) =
1
2
‖u′(t)‖2H + ε(M(u(t)), u′(t))V ′ + [G(u(t))−G(ϕ)]

≥ 1
2
‖u′(t)‖2H + ε(M(u(t)), u′(t))V ′ − c‖M(u(t))‖2V ′ ,

which, jointly with Young inequality with some δ > 0, implies

Eε(t)−G(ϕ) ≥
1
2
‖u′(t)‖2H − c‖M(u(t))‖2V ′ −

ε

2δ
‖M(u(t))‖2V ′ −

εδ

2
‖u′(t)‖2V ′ .

Taking a value δ > 0 big enough, we obtain the existence of some constant
C1 > 0 such that

(6.10) Eε(t)−G(ϕ) ≥ −C1[‖u′(t)‖2H + ‖M(u(t))‖2V ′ ], for all t ∈ [tj , tnj ].

This, combined with (6.7), implies that for t ∈ [tj , tnj ]

d

dt
[Eε(t)−G(ϕ)] ≤ γ[Eε(t)−G(ϕ)],

with γ := C2/C1. Now we just have to argue in the same way as in the proof of
Theorem 4.3, to obtain that for all t ∈ [tj , tnj ]

[G(ϕ)− Eε(t)] ≤ [G(ϕ)− Eε(tnj )]e
γ(t−tnj ).

This, combined with (6.8), implies that for t ∈ [tj , tnj ], it holds that∫ t
−∞
‖u′(s)‖2Hds ≤ C̃

[
G(ϕ)− Eε(tnj )

]
eγ(t−tnj ).

Now we can apply Lemma 6.1 and conclude the proof similarly as done for
Theorem 4.3. �
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