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VIABILITY FOR UPPER SEMICONTINUOUS
DIFFERENTIAL INCLUSIONS WITHOUT CONVEXITY

Myelkebir Aitalioubrahim

Abstract. The aim of this paper is to prove the existence result of viable
solutions for the differential inclusion

ẋ(t) ∈ F (x(t)), x(t) ∈ K on [0, T ],

where F is an upper semicontinuous set-valued map with compact values.

1. Introduction

The aim of this paper is to prove the existence of solutions for the following
nonconvex differential inclusions:

(1.1)


ẋ(t) ∈ F (x(t)) a.e. on [0, T ],

x(0) = x0 ∈ K,

x(t) ∈ K,

where F is an upper semicontinuous set-valued map with compact values and K

is a subset of a real separable Hilbert space H.
Existence result of local solution, in finite dimensional space, for noncon-

vex differential inclusions with upper semicontinuous right hand-side, was first
established by Bressan, Cellina and Colombo (see [8]). The authors assumed
that the values of the set-valued map is contained in the subdifferential (in the

2010 Mathematics Subject Classification. 34A60, 49J52.
Key words and phrases. Regularity, upper semicontinuous, Clarke subdifferential.

77



78 M. Aitalioubrahim

sense of analysis convex) of convex lower semicontinuous function. Ancona and
Colombo (see [2]), under the same hypotheses, extend this result to the perturbed
problem

ẋ(t) ∈ f(t, x(t)) + F (x(t))

where f( · , · ) is a Carathéodory function.
In this context, Yarou (see [19]) extend the perturbed problem in [2] to

infinite dimensional space. However, the values of F always contained in the
Clarke subdifferential and under very strong assumptions on F and f . In this
framework, consult [5]–[7], [11], [15], [17] for other related results concerning the
extension of the main result in [8].

Recently, Aitalioubrahim and Sajid have proved (see [1]) an exact viability
version of the work of Ancona and Colombo assuming the following hypotheses:
F is upper semicontinuous, the set {f(s, · ); s ∈ R} is equicontinuous, where for
each x ∈ K, x 7→ f(s, x) is measurable, F (x) ∩ T f

K(t, x) 6= ∅ and F (x) ⊂ ∂cV (x)
for all (t, x) ∈ R×K, where V is uniformly regular function and

T f
K(t, x) =

{
v ∈ H, lim inf

h7→0+

1
h

dK

(
x + hv +

∫ t+h

t

f(s, x) ds

)
= 0

}
.

Moreover, in all the above works, the values of the set-valued map is contained
in the subdifferential (in the sense of analysis convex or in the sense of Clarke),
and the convexity or the uniformly regularity assumption of V were widely used
in the proof.

On the other hand, Kannai and Tallos [16] and Cernea [10] proved the
existence of solutions to the following differential inclusion ẋ(t) ∈ F (t, x(t)),
x(t) ∈ K, where K is a convex subset and F is measurable with respect to the
first argument and upper semicontinuous with respect to the second argument.
The proof in [10], [16] bases on Scorza–Dragoni type results for upper semi-
continuous maps and the results are obtained under the following assumption
F (t, x) ∩ TK(x) ∩ ∂cV (x) 6= ∅, where V is lower regular in [16] and is convex
in [10]. TK(x) is the Bouligand tangent cone of K at x.

This paper is devoted to establish a viable solutions of the problem of Bres-
san, Cellina and Colombo, but with weaker hypotheses, namely, F is upper
semicontinuous such that

(1.2) F (x) ∩ ∂cV (x) ∩ T f
K(x) 6= ∅ for all x ∈ K,

where ∂cV denotes the Clarke subdifferential of a regular function V . More
specifically, we should point out that the class of regular functions is so large, it
contains the class of convex functions and the class of uniformly regular functions
(see [19]), and that the condition (1.2) is weaker than the all such conditions sup-
posed in the above works. These signify that our result generalizes the previous
works and all of the results in the literature concerning this topic of problems.
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2. Notations, definitions and the main result

Let H be a real separable Hilbert space with the norm ‖ · ‖ and the scalar
product 〈 · , · 〉. For x ∈ H and r > 0, let B(x, r) be the open ball centered at x

with radius r and B(x, r) be its closure. Put B = B(0, 1).
We shortly review some notions used in this paper (see [12], [13], [18] as

general references).
Let V :H → R be a lower semicontinuous function and x be any point where

V is finite. The generalized Rockafellar directional derivative V ↑(x, · ) is

V ↑(x, v) := lim sup
x′→x

V (x′)→V (x)

t→0+

inf
v′→v

V (x′ + tv′)− V (x′)
t

.

The upper generalized Clarke directional derivative V o(x, · ) is

V o(x, v) := lim sup
h→0+

y→x

V (y + hv)− V (y)
h

.

Analogously the lower generalized Clarke directional derivative Vo(x, · ) is

Vo(x, v) := lim inf
h→0+

y→x

V (y + hv)− V (y)
h

.

If V is Lipschitz around x, then V ↑(x, v) coincides with V o(x, v) for all v ∈ H.
We also recall that the Clarke subdifferential of V at x is defined by

∂cV (x) := {y ∈ H : 〈y, v〉 ≤ V ↑(x, v), for all v ∈ H}.

In the following proposition we summarize some useful properties of Clarke ge-
neralized directional derivatives.

Proposition 2.1 ([12], [13]). Let V :H → R be locally Lipschitz. Then the
following conditions holds:

(a) ∂cV (x) = {p ∈ H : V o(x, v) ≥ 〈p, v〉, for all v ∈ H} = {p ∈ H :
Vo(x, v) ≤ 〈p, v〉, for all v ∈ H},

(b) V o(x, v) = max{〈p, v〉, p ∈ ∂cV (x)} and Vo(x, v) = min{〈p, v〉, p ∈
∂cV (x)} = −V o(x,−v).

Let us recall the definition of the concept of the regularity (in the sense
of Clarke).

Definition 2.2 ([12]). Let V :H → R be a locally Lipschitz function. We
say that V is regular at x if for all v ∈ H, the usual directional derivative
V ′(x, v) exists and V ′(x, v) = V o(x, v). We say that V is regular over a set S if
it is regular at any point in S.
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If S is a bounded set of H, then the Kuratowski’s measure of noncompactness
of S, β(S), is defined by

β(S) = inf{d > 0 : S can be covered by a finite number of sets

with diameter less than d}.

In the following lemma we recall some useful properties for the measure of non-
compactness β. For instance see Proposition 9.1 in [14].

Lemma 2.3. Let X be an infinite dimensional real Banach space and D1,
D2 be two bounded subsets of X.

(a) β(D1) = 0 if and only if D1 is relatively compact.
(b) β(λD1) = |λ|β(D1); λ ∈ R.
(c) If D1 ⊆ D2 then β(D1) ≤ β(D2).
(d) β(D1 + D2) ≤ β(D1) + β(D2).
(e) If x0 ∈ X and r is a positive real number then β(B(x0, r)) = 2r.

Now let us introduce the following hypotheses which we shall use throughout
this paper.

Hypothesis (H). V :H → R is a locally Lipschitz function, and regular over
a locally compact subset K in H, and F :K → 2H is an upper semicontinuous
set-valued map with compact values satisfying:

F (x) ∩ TK(x) ∩ ∂cV (x) 6= ∅ for all x ∈ K.

We are now ready to state the main result of this paper.

Theorem 2.4. If assumptions (H) are satisfied, then there exist T > 0 and
an absolutely continuous function x( · ): [0, T ] → H such that x( · ) is a solution
of (1.1).

Remark 2.5. It is interesting to note that there is no relation between Theo-
rem 2.4 in this paper and Theorem 2 in [16] (which is an extension of Theorem 3.1
in [10]). Furthermore, in [16], the convexity of K is widely used in the proof,
then in spite of the weaker hypothesis on V , the result in [16] is not an extension
of Theorem 2.4. On the other hand, the principal hypothesis in [16], if F is not
depending of times, becomes F (x) ∩ TK(x) ∩ ∂cV (x) 6= ∅ with K is convex and
V is lower regular but in Theorem 2.4 K is nonconvex and V is regular.

3. Preliminary results

First, let us introduce the following notations which we shall use throughout
this paper. Let x0 ∈ K and choose r > 0 such that K0 = K ∩ (x0 + (r/2)B)
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is compact and V is Lipschitz continuous on x0 + rB with Lipschitz constant
λ > 0. Then ∂cV (x) ⊂ λB for every x ∈ K0. Consider T > 0 such that

(3.1)
∫ T

0

(λ + 1) dτ ≤ r

2
.

For ε > 0, set

(3.2) µ(ε) := sup
{

ρ ∈ ]0, ε] :
∣∣∣∣ ∫ t2

t1

(λ + 1)2 dτ

∣∣∣∣ < ε, if |t1 − t2| ≤ ρ

}
.

In the sequel, we will use the following important lemma. It will play a crucial
role in the proof of the main result.

Lemma 3.1. If assumptions (H) are satisfied, then for all 0 < ε < inf(T, 1),
there exists η > 0 (η < ε) such that for all x ∈ K0, there exists hx ∈ [η, µ(ε)],
yx ∈ K0, u ∈ (F (x) + εB/T ) ∩ (∂cV (yx) + εB/T ) and bx ∈ B such that:

(a) ‖x− yx‖ ≤ εhx,
(b) (x + hxu) ∈ K,
(c) V (x + hxu)− V (x) ≥ 〈hxu, u− εbx/T 〉 − αεhx where α = 4λ + 1.

Proof. Let x ∈ K0 be fixed and let 0 < ε < inf(T, 1). Since F is u.s.c.
on x, there exist δx > 0 such that F (y) ⊂ F (x) + (ε2/2T )B, for all y ∈ B(x, δx).
Now, let y ∈ K0 and select v ∈ F (y) ∩ TK(y) ∩ ∂cV (y). There exists 0 < ρ < 1
such that, for all 0 < h < ρ,

V (y + hv)− V (y) ≥ hV ′(y, v)− εh.

By the regularity of V , we rewrite this last inequality as

(3.3) V (y + hv)− V (y) ≥ h〈v, w〉 − εh for all w ∈ ∂cV (y).

Moreover, since v ∈ F (y) ∩ TK(y), there exists hy ∈ ]0, inf{ρ, µ(ε)}] satisfying

dK(y + hyv) < hy
ε2

4T
.

Next, consider the subset

N(y) =
{

z ∈ B(x0, r) : dK(z + hyv) < hy
ε2

4T

}
.

The function z 7→ dK(z + hyv) is continuous and consequently N(y) is open.
Moreover, since y belongs to N(y), there exists a ball B(y, ηy) of radius ηy <

inf{εhy, δx} contained in N(y), therefore, the compact subset K0 can be covered
by q such balls B(yi, ηyi

). For simplicity, we set hi := hyi
and ηi := ηyi

for all
i = 1, . . . , q. Put η = min{hi : 1 ≤ i ≤ q} and let i ∈ {1, . . . , q} such that
x ∈ B(yi, ηi), hence x ∈ N(yi). Then

dK(x + hivi) < hi
ε2

4T
,
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where vi ∈ F (yi) ∩ ∂cV (yi). Thus there exists xi ∈ K such that

1
hi
‖xi − (x + hivi)‖ ≤

1
hi

dK(x + hivi) +
ε2

4T
.

Obviously, we have ∥∥∥∥xi − x

hi
− vi

∥∥∥∥ <
ε2

2T

and if we set u = (xi − x)/hi we get

xi = (x + hiu) ∈ K, u ∈ F (yi) +
ε

2T
B and u ∈ ∂cV (yi) +

ε

T
B.

By construction one has ‖x − yi‖ < ηi < δx, then F (yi) ⊂ F (x) + (ε/2T )B,
which implies that u ∈ F (x)+(ε/T )B. So the first part of Lemma 3.1 is proved.

Now, choose bi ∈ B such that (u− (ε/T )bi) ∈ ∂cV (yi). Taking into account
inequation (3.3), we have

(3.4) V (yi + hivi)− V (yi) ≥ hi

〈
vi, u−

ε

T
bi

〉
− εhi.

To complete the proof of Lemma 3.1, we need the following claim:

Claim 3.2. We have:

(C1) V (x + hiu)− V (yi + hivi) ≥ −2λεhi;
(C2) V (x)− V (yi) ≥ −λεhi;
(C3) 〈vi, u− (ε/T )bi〉 ≥ −λε + 〈u, u− (ε/T )bi〉.

Proof. From the inequalities

‖x + hiu− x0‖ ≤
r

2
+

∫ T

0

(λ + 1) dτ ≤ r

and
‖yi + hivi − x0‖ ≤

r

2
+ Tλ ≤ r,

we get (x + hiu) ∈ B(x0, r) and (yi + hivi) ∈ B(x0, r). Since V is λ-Lipschitz
over B(x0, r), we conclude that

|V (x + hiu)− V (yi + hivi)| ≤λ(‖x− yi‖+ hi‖u− vi‖)

≤λ

(
ηi + hi

ε2

2T

)
≤ λ(εhi + εhi) ≤ 2λεhi.

So (C1) is checked.
(C2) follows from |V (x)− V (yi)| ≤ λ‖x− yi‖ ≤ ληi ≤ λεhi.
In order to prove (C3) we observe that〈

vi, u−
ε

T
bi

〉
=

〈
vi − u, u− ε

T
bi

〉
+

〈
u, u− ε

T
bi

〉
.
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Since ∣∣∣∣〈vi − u, u− ε

T
bi

〉∣∣∣∣ ≤ ‖vi − u‖
∥∥∥∥u− ε

T
bi

∥∥∥∥ ≤ ε2

2T
λ ≤ λε

we have 〈
vi − u, u− ε

T
bi

〉
≥ −λε.

Consequently, we have〈
vi, u−

ε

T
bi

〉
≥ −λε +

〈
u, u− ε

T
bi

〉
.

Thus (C3) is verified. �

Next, using Claim 3.2 and relation (3.4) we obtain

V (x + hiu) − V (x)

=V (x + hiu)− V (yi + hivi) + V (yi + hivi)− V (yi) + V (yi)− V (x)

≥ − 2λεhi + hi

〈
vi, u−

ε

T
bi

〉
− εhi − λεhi

≥ − 3λεhi − λεhi + hi

〈
u, u− ε

T
bi

〉
− εhi

≥hi

〈
u, u− ε

T
bi

〉
− εhi(4λ + 1) ≥

〈
hiu, u− ε

T
bi

〉
− αεhi.

The proof of lemma is complete. �

In order to construct a sequence of approximate solutions, we need the fol-
lowing proposition.

Proposition 3.3. If assumptions (H) are satisfied, then for all 0 < ε <

inf(T, 1), there exist η > 0, (η < ε), s(ε) ∈ N∗, (hp)p ⊂ [η, µ(ε)], (xp)p ⊂ H,
(yp)p ⊂ K0 and ((up)p, (bp)p) ⊂ H ×B such that, for all p = 0, . . . , s,

(a) xp+1 = xp + hpup;
(b) xp ∈ K0 and ‖xp − yp‖ ≤ ε;

(c) up ∈
(

F (xp) +
ε

T
B

)
∩

(
∂cV (yp) +

ε

T
B

)
;

(d) V (xp+1)− V (xp) ≥
〈

hp, up −
ε

T
bp

〉
− εαhp;

(e)
s−1∑
i=0

hi < T ≤
s∑

i=0

hi.

Proof. Let 0 < ε < inf(T, 1). In view of Lemma 3.1, there exist η > 0,
h0 ∈ [η, µ(ε)], y0 ∈ K0, u0 ∈ (F (x0)+(ε/T )B)∩ (∂cV (y0)+(ε/T )B) and b0 ∈ B

such that ‖x0 − y0‖ ≤ ε, x1 = (x0 + h0u0) ∈ K, and

V (x0 + h0u0)− V (x0) ≥
〈

h0u0, u0 −
ε

T
b0

〉
− εαh0.
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Then taking account of (H) and (3.1), we have

‖x1 − x0‖ = ‖h0u0‖ ≤
∫ h0

0

(λ + 1) dτ ≤ r

2

from which we deduce that x1 ∈ K0. Hence the assertions (a)–(d) are fulfilled
for p = 0. Let now p ≥ 1. Assume that (a)–(d) are satisfied for any p = 1, . . . , q.

If
q−1∑
i=0

hi < T ≤
q∑

i=0

hi, then we stop this process of iterations and we get (a)–(d)

satisfied with s = q. In the other case:
q∑

i=0

hi < T , we can apply on
( q−1∑

i=0

hi, xq

)
the same technics applied on (0, x0), at the beginning of this proof, and we get
(a)–(d) satisfied for p = q+1. It remains to prove that xq+1 ∈ K0. By induction,
we have

xq+1 = x0 +
q∑

i=0

hiui.

Thus by (H), (3.1) and because
q∑

i=0

hi < T , we get

‖xq+1 − x0‖ =
q∑

i=0

hi‖ui‖ ≤
∫ T

0

(λ + 1) ds ≤ r

2
,

hence xq+1 ∈ K0. Thus the conditions (a)–(d) are satisfied for q + 1. On the
other hand, since hi ≥ η > 0, there exists an integer s such that

s−1∑
i=0

hi < T ≤
s∑

i=0

hi.

Therefore, there is an integer s ≥ 1 for which the assertions (a)–(e) are fulfilled.�

4. Proof of the main result 2.4

In view of Proposition 3.3, for any integer k > sup{1/T, 1}, we can de-
fine inductively sequences (hk

q )q ⊂ [ηk, µ(1/k)], (xk
q )q ⊂ K0, (yk

q )q ⊂ K0 and
((uk

q )q, (bk
q )q) ⊂ H ×B such that for all q = 0, . . . , sk,

(a) xk
q+1 = xk

q + hk
quk

q ;
(b) ‖xk

q − yk
q ‖ ≤ 1/k;

(c) uk
q ∈

(
F (xk

q ) +
1

kT
B

)
∩

(
∂cV (yk

q ) +
1

kT
B

)
;

(d) V (xk
q+1)− V (xk

q ) ≥
〈

hk
quk

q , uk
q −

1
kT

bk
q

〉
−

αhk
q

k
;

(e)
sk−1∑
i=0

hk
i < T ≤

sk∑
i=0

hk
i .
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Consider the sequence (τ q
k )k defined as the following:{

τ0
k = 0, τ sk+1

k = T ;

τ q
k = hk

0 + . . . + hk
q−1 if 1 ≤ q ≤ sk,

and define on [0, T ] the sequence of functions (xk( · ))k by

xk(t) = xk
q−1 + (t− τ q−1

k )uk
q−1, for all t ∈ [τ q−1

k , τ q
k ].

So, it is easily seen that ẋk(t) = uk
q−1 for almost every t ∈ [τ q−1

k , τ q
k ]. Taking

into account (H), for almost every t ∈ [0, T ], we get

(4.1) ‖ẋk(t)‖ ≤ λ + 1.

Hence the sequence (xk( · ))k is equicontinuous. In order to apply Ascoli–Arzela
theorem, we are going to show that for every t ∈ [0, T ], the set S(t) = {xk(t) :
k ≥ k0}, where k0 > sup{1/T, 1}, is relatively compact in H. So, for every
k ≥ k0 let θk: [0, T ] → [0, T ] defined by

θk(0) = 0, θk(t) = τ q−1
k , for all t ∈ [τ q−1

k , τ q
k [.

By construction, for all t ∈ [0, T ], xk(θk(t)) ∈ K0. Thus for all t ∈ [0, T ],
the set {xk(θk(t)) : k ≥ k0} is relatively compact in H, hence by Lemma 2.3,
β({xk(θk(t)) : k ≥ k0}) = 0. Next, for all t ∈ [0, T ],

β(S(t)) = β({xk(t) : k ≥ k0}) = β({xk(t)− xk(θk(t)) + xk(θk(t)) : k ≥ k0}).

Then by Lemma 2.3 and relation (4.1), we obtain:

β(S(t)) ≤β({xk(t)− xk(θk(t)) : k ≥ k0}) + β({xk(θk(t)) : k ≥ k0})

≤β({xk(t)− xk(θk(t)) : k ≥ k0}) = β

({ ∫ t

θk(t)

ẋk(s) ds : k ≥ k0

})
≤β

(
B

(
0,

∫ t

θk(t)

(λ + 1) ds

))
= 2

∫ t

θk(t)

(λ + 1) ds.

Since
∫ t

θk(t)
(λ + 1) ds converges to 0 as k →∞, we get β(S(t)) = 0. Hence S(t)

is relatively compact in H. Therefore, by Arzelà–Ascoli’s theorem (see [3]), we
can select a subsequence, again denoted by (xk( · ))k which converges uniformly
to an absolutely continuous function x( · ) on [0, T ], moreover ẋk( · ) converges
weakly to ẋ( · ) in L2([0, T ],H). Now, let t ∈ [0, T ], there exists q ∈ {1, . . . , sk+1}
such that t ∈ [τ q−1

k , τ q
k ] and lim

k→+∞
τ q−1
k = t. By the fact that xk(τ q−1

k ) converges

to x(t) as k → ∞, xk(τ q−1
k ) ∈ K0 and K0 is closed, we conclude that x(t) ∈

K0 ⊂ K.
The function x( · ) has the following property:
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Proposition 4.1. For almost every t ∈ [0, T ], we have ẋ(t) ∈ ∂cV (x(t)).

Proof. The weak convergence of ẋk( · ) to ẋ( · ) in L2([0, T ],H) and the
Mazur’s Lemma entail ẋ(t) ∈

⋂
k

co{ẋm(t) : m ≥ k}, for almost every t ∈ [0, T ].

Fix any t ∈ [0, T ] such that t 6= τ q
k for all integer k > sup{1/T, 1} and all

q ∈ {0, . . . , sk + 1}. Now, for all integer k > sup{1/T, 1}, there exists q ∈
{1, . . . , sk + 1} such that t ∈ ]τ q−1

k , τ q
k [. Since lim

k→+∞
τ q
k − τ q−1

k = 0, we have

lim
k→+∞

τ q−1
k = t. Then, for all y ∈ H, 〈y, ẋ(t)〉 ≤ inf

m
sup
k≥m

〈y, ẋk(t)〉 which together

with ẋk(t) ∈ ∂cV (yk
q−1) + (1/kT )B gives, for all m,

〈y, ẋ(t)〉 ≤ sup
k≥m

σ

(
y, ∂cV (yk

q−1) +
1

kT
B

)
,

from which we deduce that

〈y, ẋ(t)〉 ≤ lim sup
k→+∞

σ

(
y, ∂cV (yk

q−1) +
1

kT
B

)
.

On the other hand, by construction, one has

‖x(t)− yk
q−1‖ ≤ ‖x(t)− xk

q−1‖+ ‖xk
q−1 − yk

q−1‖ ≤ ‖x(t)− xk(τ q−1
k )‖+

1
k

.

Since xk( · ) converges to x( · ), the second member of the above inequality con-
verges to 0, hence yk

q−1 converges to x(t).
Next, by Proposition 6.4.9 in [4], the function x 7→ σ(y, ∂cV (x)) is u.s.c. and

hence we get 〈y, ẋ(t)〉 ≤ σ(y, ∂cV (x(t))). So, the convexity and the closedness of
the set ∂cV (x(t)) ensure ẋ(t) ∈ ∂cV (x(t)). �

Now, we use the regularity of the function V to prove the following proposi-
tion:

Proposition 4.2. The set {〈p, ẋ(t)〉, p ∈ ∂cV (x(t))} is reduced to the sin-
gleton

{
d
dtV (x(t))

}
for almost every t ∈ [0, T ].

Proof. Since x( · ) is absolutely continuous function and V is locally Lip-
schitz continuous. The function Vox( · ) is absolutely continuous and then for
almost all t there exists d

dtV (x(t)). Let t ∈ [0, T ] be such that there exists both
ẋ(t) and d

dtV (x(t)). There is δ > 0 such that, for every |h| < δ,

x(t + h) ∈ B(x0, r), (x(t) + hẋ(t)) ∈ B(x0, r)

and
x(t + h)− x(t)− hẋ(t) = r(h) where lim

h→0
‖r(h)‖/h = 0.

Since V is Lipschitz continuous on B(x0, r) with Lipschitz constant λ > 0, we
have

|V (x(t + h))− V (x(t) + hẋ(t))| ≤ λ‖r(h)‖,
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whenever |h| < δ. Consequently, the function h → V (x(t) + hẋ(t)) is differen-
tiable at h = 0, and its derivative is the same as the derivative of h → V (x(t+h))
at h = 0. Hence

(4.2)
d

dt
V (x(t)) = lim

h→0

V (x(t) + hẋ(t))− V (x(t))
h

.

Since V is regular over K and x(t) ∈ K, we obtain

(4.3) V o(x(t), ẋ(t)) = lim
h→0

V (x(t) + hẋ(t))− V (x(t))
h

.

In addition, one has

V o(x(t),−ẋ(t)) = lim
h→0

V (x(t) + h(−ẋ(t)))− V (x(t))
h

= − lim
h→0

V (x(t) + hẋ(t))− V (x(t))
h

.

By Proposition 2.1, V o(x(t),−ẋ(t)) = −Vo(x(t), ẋ(t)), then

(4.4) Vo(x(t), ẋ(t)) = lim
h→0

V (x(t) + hẋ(t))− V (x(t))
h

.

By (4.2)–(4.4), we deduce that

V o(x(t), ẋ(t)) =
d

dt
V (x(t)) = Vo(x(t), ẋ(t)).

This means, by Proposition 2.1, that for almost all t the set {〈p, ẋ(t)〉, p ∈
∂cV (x(t))} reduces to the singleton

{
d
dtV (x(t))

}
. �

Proposition 4.3. The application x( · ) is a solution of the problem (1.1).

Proof. First, by using Propositions 4.1 and 4.2, we obtain

d

dt
V (x(t)) = 〈ẋ(t), ẋ(t)〉, a.e. on [0, T ].

Therefore, by integrating on [0, T ], we get

(4.5) V (x(T ))− V (x0) =
∫ T

0

‖ẋ(s)‖2 ds.
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On the other hand, by construction, for all q = 1, . . . , sk, we have

V (xk(τ q
k )) − V (xk(τ q−1

k ))

≥
〈

hk
q−1u

k
q−1, u

k
q−1 −

1
kT

bk
q−1

〉
−

αhk
q−1

k

≥
〈

xk(τ q
k )− xk(τ q−1

k ), ẋk(t)− 1
kT

bk
q−1

〉
−

αhk
q−1

k

≥
〈 ∫ τq

k

τq−1
k

ẋk(s) ds, ẋk(t)
〉
−

〈 ∫ τq
k

τq−1
k

ẋk(s) ds,
1

kT
bk
q−1

〉
−

αhk
q−1

k

≥
∫ τq

k

τq−1
k

〈ẋk(s), ẋk(s)〉 ds−
∫ τq

k

τq−1
k

〈
ẋk(s),

1
kT

bk
q−1

〉
ds−

αhk
q−1

k

≥
∫ τq

k

τq−1
k

‖ẋk(s)‖2 ds−
∫ τq

k

τq−1
k

〈
ẋk(s),

1
kT

bk
q−1

〉
ds−

αhk
q−1

k
.

By adding, one has

V (xk(τ sk

k ))− V (x0)

≥
∫ τ

sk
k

0

‖ẋk(s)‖2 ds−
sk∑

q=1

∫ τq
k

τq−1
k

〈
ẋk(s),

1
kT

bk
q−1

〉
ds− α

k

sk∑
q=1

hk
q−1.

Then∫ T

τ
sk
k

‖ẋk(s)‖2 ds + V (xk(T ))− V (x0) + V (xk(τ sk

k ))− V (xk(T ))

≥
∫ T

0

‖ẋk(s)‖2 ds−
sk∑

q=1

∫ τq
k

τq−1
k

〈
ẋk(s),

1
kT

bk
q−1

〉
ds− αT

k
.

By (4.1) and since T − τ sk

k ≤ µ(1/k), we get∫ T

τ
sk
k

‖ẋk(s)‖2 ds ≤
∫ T

τ
sk
k

(1 + λ)2 ds ≤ 1
k

,

and, by the fact that V is Lipschitz on B(x0, r), we obtain

|V (xk(τ sk

k ))− V (xk(T ))| ≤λ‖xk(τ sk

k )− xk(T )‖ ≤ λ

∫ T

τ
sk
k

‖ẋk(s)‖ ds

≤λ

∫ T

τ
sk
k

(1 + λ) ds ≤ λ

∫ T

τ
sk
k

(1 + λ)2 ds ≤ λ

k
.

So, the above relation becomes

(4.6) V (xk(T ))− V (x0)

≥
∫ T

0

‖ẋk(s)‖2 ds−
sk∑

q=1

∫ τq
k

τq−1
k

〈
ẋk(s),

1
kT

bk
q−1

〉
ds− αT

k
− 1

k
− λ

k
.
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On the other hand, we have∣∣∣∣ sk∑
q=1

∫ τq
k

τq−1
k

〈
ẋk(s),

1
kT

bk
q−1

〉
ds

∣∣∣∣ ≤ 1
kT

∫ T

0

‖ẋk(s)‖ ds ≤ 1
kT

∫ T

0

(λ + 1) ds.

The last term converges to 0, then

lim
k→+∞

sk∑
q=1

∫ τq
k

τq−1
k

〈
ẋk(s),

1
kT

bk
q−1

〉
ds = 0.

Now, by passing to the limit for k →∞ in (4.6) and using the continuity of the
function V on the ball B(x0, r), we obtain

V (x(T ))− V (x0) ≥ lim sup
k→+∞

∫ T

0

‖ẋk(s)‖2 ds.

Moreover, by (4.5), we have ‖ẋ‖2
2 ≥ lim sup

k→+∞
‖ẋk‖2

2 and by the weak l.s.c. of

the norm ensures ‖ẋ‖2
2 ≤ lim inf

k→+∞
‖ẋk‖2

2. Hence we get ‖ẋ‖2
2 = lim

k→+∞
‖ẋk‖2

2.

Finally, there exists a subsequence of (ẋk( · ))k (still denoted (ẋk( · ))k) converges
pointwisely to ẋ( · ). Now, let t ∈ [0, T ] \ {τ0

k ; . . . ; τ sk+1
k }, there exists q ∈

{1, . . . , sk + 1} such that t ∈ ]τ q−1
k , τ q

k [ and lim
k→+∞

τ q−1
k = t. Since (ẋk(t)) ∈

F (xk
q−1) + (1/kT )B, we have

dgrF (xk(t), ẋk(t)) ≤ ‖xk(t)− xk(τ q−1
k )‖+

1
kT

,

hence
lim

k→+∞
dgrF (xk(t), ẋk(t)) = 0,

from which we conclude that dgrF ((x(t), ẋ(t)) = 0 and so, as F has a closed
graph, we obtain ẋ(t) ∈ F (x(t)) for almost every t ∈ [0, T ]. The proof is com-
plete. �
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