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ABSTRACT. We study a Dirichlet problem for an elliptic equation of res-
onant type involving a general nonlocal term. Using a result of Ricceri,
we prove that the solution set for such equation has a positive topolog-
ical dimension, and contains a nondegenerate connected component. In
particular, the solution set has the cardinality of the continuum.

1. Introduction

Nonlocal problems, of both elliptic and parabolic type, are characterized by
the presence of a term A(u) depending on all values of the unknown function u
(nonlocal term). These problems can be studied with a variety of methods, lead-
ing to different results. We mention the works of Allegretto and Barabanova [1],
Chang and Chipot [4], Chipot [5], Chipot, Valente and Vergara Caffarelli [6] and
Gomes and Sanchez [9]. The existence of one solution for nonlocal problems is
proved in [1] via a priori estimates and degree theory and in [4] via fixed points
methods. Multiplicity results, under special assumptions on the nonlocal term,
are obtained in [6] and in [9] via variational methods. In [5], among other results,
the author proves that the solution set of a non-local elliptic Dirichlet problem
may have the cardinality of the continuum (see Section 4 below for more details).
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In the present paper we deal with the following boundary value problem for
an elliptic partial differential equation involving a general nonlocal term:

{ —Au—Mu=A(u)f(x) inQ,

1.1
(L) u=20 on 0f).

Here Q ¢ RY (N > 1) is a bounded, smooth domain, A\; > 0 is the first posi-
tive eigenvalue of the operator —A in §2 with homogeneous Dirichlet boundary
conditions, with corresponding eigenfunction ¢ € C} (). Moreover,

A(u) a(/QG(x,u,Vu) dm),

where a € C(R) is a bounded function and G: Q x R x RY — R is a Carathéodory
function satisfying

(1.2) sup |G(-,s,8)] € L (Q) forall M > 0.
ls|,l¢|<M

Finally f € C%%(Q) (0 < a < 1) satisfies the orthogonality condition:

(1.3) /Q o1(2)f (@) do = 0.

We denote by S the set of (classical) solutions of problem (1.1), that is:
S ={ueCr*N) :uis a solution of (1)}.

Our main result establishes a lower bound for the dimension of S:

THEOREM 1.1. Let Q, A, f be as above. Then:
(a) dim(S) > 1;
(b) S contains a nondegenerate connected component.

By dim(S) we denote the covering dimension of S (for the definition and
basic properties of dim, see Section 2 below). As a consequence, we will prove
that the cardinality of S is ¢ (see Corollary 3.1). So, our result can be regarded
as a strong multiplicity theorem for problem (1.1), which is of resonant type due
to the presence of Ap.

Our approach is based on a result of Ricceri [13] (see also Ricceri [12] and
Saint Raymond [14]) which assures that, if L is a non-injective, bounded linear
operator from a Banach space X onto a Banach space Y, and N is a completely
continuous mapping from X into Y with bounded range, then the solution set
of the equation

L(u) = N(u)
has a positive covering dimension. We will deal with problem (1.1) within this
framework, proving (a). Moreover, (b) will follow from technical results in di-

mension theory.
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The same method was already applied to other problems by Ricceri [12],
Anello [3] and Dzedzej and Gel’'man [8]. In [12], lower bounds are established
for the dimension of the solution set of an elliptic equation involving a nonlocal
term. In [3] and [8], differential inclusions are investigated.

The paper is organized as follows. In Section 2 we recall some preliminary
notions and results. In Section 3 we prove Theorem 1.1 and a useful corollary.
Finally, in Section 4 we present some examples and discuss possible developments
of our results.

2. Mathematical background

First, we introduce some basic features of dimension theory (we will only
recall what is needed for our purposes, referring the interested reader to the book
of Engelking [7]). In what follows, S will be a metric space and N = {0,1,...}.

We start with the definition of covering dimension:

DEFINITION 2.1 ([7, p. 385]). The covering dimension of S, denoted dim(.S)
€ NU {oo}, is defined as follows:

(a) dim(S) < n, n € N, if for all finite open cover A of S, there exists
a finite open refinement B of A such that B;1 N ... N By = 0 for all
By, ... B,42 € B pairwise distinct;

(b) dim(S) =n, n € Nif dim(S) < n holds and dim(S) < n — 1 does not;

(¢) dim(S) = oo if dim(S) < n does not hold for any n € N.

We will use some properties of the covering dimension. We recall that the
covering dimension is a topological invariant, that is, if S and T’ are metric spaces
and ¢: S — T is a homeomorphism, then dim(S) = dim(7"). Moreover, in the
case of Euclidean spaces, the covering dimension equals the usual one, that is,

(2.1) dim(R") =n for alln € N.

There is a strict relation between the covering dimension of spaces and their
topological properties and cardinality. For instance, it is easily seen from Defi-
nition 2.1 that, if dim(S) > 0, then S has at least a cluster point, in particular
the cardinality of S, denoted |S|, is infinite. The question of ’how big’ is || is
more delicate, as the following examples show: set S; = Q and Sy = R\ Q, then

dim(S;) = dim(S2) = 0,

despite the fact that Sy is countable while |S3| = ¢.
Under special assumptions, the covering dimension of a metric space gives

some information about disconnectedness issues:
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LEMMA 2.2 ([7, p. 388]). If T is a locally compact metric space, then the
following are equivalent:
(a) dim(T) = 0;
(b) T is hereditarily disconnected (i.e. the connected components of T are
singletons).

We conclude this section by recalling the result of Ricceri [13] which will be
our main tool (see also [12] for an alternative version and some applications):

THEOREM 2.3 ([13], statement and proof of Theorem 1). If X and Y are
Banach spaces, L: X — Y is a surjective, bounded linear operator, N: X — Y is
a completely continuous operator such that N(X) is bounded, then there erists
a compact set T C X such that:

(a) TC{ue X :L(u) = N(u)};
(b) dim(T") > dim(ker(L)).

3. Main results

In this section we prove our main result, Theorem 1.1, and establish a con-
sequence.

PROOF OF THEOREM 1.1. We will apply Theorem 2.3. We set X = C5*(Q)
and Z = C%*(Q) (0 < a < 1). X and Z, endowed with the usual norms, are
Banach spaces.

From spectral theory (see Ambrosetti and Malchiodi [2, p. 8]) we know that
the Laplacian operator —A, considered as a linear operator between X and Z,
admits an increasing sequence of positive eigenvalues 0 < A\; < Ay < ... and that
the first eigenvalue \; is isolated and simple. We denote @1 € C}(2) (¢1(z) >0
for all z € Q) the positive eigenfunction corresponding to A;. For all h € Z, the
linear problem

(3.1)

—Au—Mu=nh(z) inQ,
u =0 on 0f2

has a solution if and only if h satisfies the orthogonality condition:

/ p1(x)h(z)dx = 0.
Q

Moreover, if this is the case, the solution set of (3.1) is a closed, linear, one-
dimensional submanifold of X. We define L: X — Z by

L(u) = -Au—X\u forallue X.

Then, L is a bounded linear operator and we have

ker(L) = {up1: p € R} and L(X)= {h €Z: /Qcpl(x)h(x) dx = 0}.
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Since ker(L) is homeomorphic to R, by (2.1) we get
(3.2) dim(ker(L)) = 1.

We set Y = L(X) (note that Y is a Banach space) and rephrase L: X — Y, so
that L is surjective. We define N: X — Y by putting

N(u)=A(u)f forallue X.

The mapping N is well defined, as for all u € X we have by (1.2)
/ G(z,u,Vu)dr € R
Q

and A(u)f € Y by (1.3). We prove now that N is continuous. Assume that
u, — w in X, in particular u, — u and Vu, — Vu uniformly in Q. By (1.2)
and the dominated convergence theorem we have

/G(m,un,Vun)dxH/G(w,u,Vu)da:
Q Q

and so N(u,) — N(u) in Y (recall that a is continuous). Since a is bounded,
we have also that N has a bounded range, namely

N(X) Ca(R)f.

Thus, the set N(X) is relatively compact. In particular, N is completely con-
tinuous. Moreover, we observe that, for all w € X, u is a solution of (1.1) if and
only if

L(u)=N(u) inY.
Now we apply Theorem 2.3: there exists a compact subset 7" of X such that
T C S and

(3.3) dim(T) > 1 (see (3.2)).
From (3.3) we have
dim(S) > dim(T) > 1 (see [7, p. 387]),

so (a) is achieved.

Now we prove (b). Since T'is a compact metric space, by Lemma 2.2 and (3.3)
it contains a nondegenerate connected set, which is obviously a nondegenerate
connected subset of S. g

We point out an interesting consequence of Theorem 1.1:
COROLLARY 3.1. Let Q, A, f be as above. Then, |S|=c.

PRrROOF. From (b) of Theorem 1.1 we know that S contains a nondegenerate
connected subset. So, by classical results, |S| > ¢. On the other hand, an easy
cardinality argument shows that |C3*(Q)| = ¢, so we get |S| = c. O
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4. Examples and further discussion

In this final section we wish to present some examples, compare our results
with the ones found in the current literature and discuss possible further devel-
opments.

We rapidly resume the main ideas of the paper of Chipot [5]. The Author
studies the problem:

4.1
1) u=20 on 012,

{ —Au =a(@)f(x) inQ,

where f € W™12(Q), a € C(R) is such that A < a(t) <A (0 <A < A) and
b
QN

denotes the mean value of u. A one-to-one correspondence is established between

u =

/ u(z)dz (]Q|n is the Lebesgue N-dimensional measure of )
Q

the solutions of (4.1) in the space H}(€) and the solutions of the equation
t
4-2 —_— = %)
(42) =7

where ¢ is the unique solution of the Dirichlet problem

—Au = f(z) inQ,
u=20 on 0N.

In particular, whenever the solution set of (4.2) has cardinality ¢, so does also the
solution set of (4.1). The arguments of [5] are fully based on the homogeneity of
the functional u — @ and on the injectivity of the Laplace operator.

Our setting, of course, is different: we use a non-injective operator (u +—
—Au — Aju) and a very general nonlocal term. Nevertheless, some comparison
can be made:

EXAMPLE 4.1. We consider the domain By = {x € R? : |z| < 1}. We recall
that, in this case, we have
. Jo(Jo,1|x
M= rle) = el
where jo 1 denotes the first zero of the Bessel function Jy (see Henrot [10, p. 11]).
We choose f € C%%(B) satisfying (1.3). We set
a(t) = %m forall t € R

and

G(x,s,8) = 2 for all (r,5,€) € By x R x R?,
so that "

/ G(z,u,Vu)de =u for all u € Cg*(B)).

B
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Then, by our results, the problem

flx) .
—Au— Mu = B
U =g = in By,
u=0 on 0B,

admits a set of solutions in Cg**(B}) with positive dimension (in particular, with
cardinality c). Note that a goes to 0 as |t| — oo, which places our nonlocal term
out of the class considered in [5]. Note, also, that equation (4.2) in this case
admits only a finite number of solutions.

We also present an example related to a two-point problem:

EXAMPLE 4.2. We know that the first eigenvalue of the two-point problem

{ —u” =l in [0, 7],
u(0) = u(mw) =0,

is A; = 1, corresponding to the eigenfunction ¢;(x) = sin(x). Set
f(z) = cos(z) for all z € [0, ],
so that (1.3) holds. Moreover, set
G(x,s,&) =|¢* for all (z,5,€) € [0,7] x R xR

and let a € C(R) be a bounded function. Then, we have a nonlinear nonlocal

A(u) = a(/oﬂ(u’)Q dx).

By our results, the nonlocal problem

{ —u" —u = A(u) cos(z) in [0,7],

term, namely

u(0) = u(mw) =0,

admits a set of solutions in C5*([0,7]) (for an arbitrary o € ]0,1[) containing
a nondegenerate connected subset and having cardinality c¢. A similar problem
was studied by Ricceri [12, Proposition 4]. Besides, nonlocal terms of the same
type have been considered by Chipot, Valente and Vergara Caffarelli [6].

REMARK 4.3. Our Theorem 1.1 is not strictly related to the Laplace opera-
tor: we could replace, in problem (1.1), the term —Awu — A;u with any Lu, where
L is a bounded linear differential operator such that dim(ker(£)) > 0, provided
f belongs to the range of £. Of course, the latter assumption (which in our
case is equivalent to the orthogonality condition (1.3)) is not, in general, easy to
satisfy. For instance, Nirenberg and Walker [11] deal with an operator £ such
that dim(ker(£)) = oo, but we do not know how the range of such £ can be
characterized.
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