SOLUTIONS TO SOME SINGULAR NONLINEAR BOUNDARY VALUE PROBLEMS

Beata Medak - Alexey A. Tret'yakov - Henryk Żoeądek

> This article is devoted to the memory of Jerry Marsden

Abstract

We apply the so-called p-regularity theory to prove the existence of solutions to two nonlinear boundary value problems: an equation of rod bending and some nonlinear Laplace equation.

1. Introduction

The p-regularity theory is an effective apparatus to study many nonlinear mathematical, physical and numerical problems (see [3], [4]). Usually such a problem is given as a nonlinear equation

$$
F(x)=0
$$

where F is a sufficiently smooth map between Banach spaces X and Y. The above equation describes a regular submanifold of X near a regular point x^{*}, i.e. when the operator $F^{\prime}\left(x^{*}\right)$ is surjective.

The p-regularity theory [3]-[5], [7] deals with the irregular cases. The main idea of this construction is to replace the operator $F^{\prime}\left(x^{*}\right)$ (which is not surjective) with another linear operator which is surjective. The latter operator, denoted by $\Psi_{p}\left(x^{*}, h\right)$, is related with the $p^{\text {th }}$ order of the Taylor expansion of F at x^{*}.

[^0]Here the vector h is taken from the tangent cone to the set $\{F(x)=0\}$ at x^{*} and p is taken so large that the operator $\Psi_{p}\left(x^{*}, h\right)$ is really surjective (this is the so-called p-regularity condition). In the next section we recall the main concepts of the p-regularity theory.

In the third section we apply the p-regularity theory to the following boundary value problems:

- the equation of rod bending

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+(1+\varepsilon)\left(u+u^{2}\right)=0, \quad u(0)=u(\pi)=0 \tag{1.1}
\end{equation*}
$$

- the nonlinear Laplace equation

$$
\begin{equation*}
\Delta u+(10+\varepsilon) \phi(u)=0,\left.\quad u\right|_{\partial \Omega}=0 \tag{1.2}
\end{equation*}
$$

where $\Omega=[0, \pi] \times[0, \pi], \varepsilon$ is a small parameter and ϕ is some function of one variable).

These problems are related respectively with the string oscillations and the membrane oscillations (see [2]). Analogous problems were studied by M. Buchner, J. Marsden and S. Schechter [1]; they used methods of the bifurcation theory (the Lyapunov-Schmidt reduction) and results obtained are similar to ours.

2. Elements of the p-regularity theory

We begin with some notations. X and Y will denote fixed Banach spaces. If

$$
B: X \times \ldots \times X=X^{r} \mapsto Y
$$

is a symmetric r-linear continuous operator then we consider its two restrictions:

$$
\begin{equation*}
B \circ \Delta_{r}: X \mapsto Y, \quad B \circ \Gamma_{r}: X \times X \mapsto Y \tag{2.1}
\end{equation*}
$$

where $\Delta_{r}: X \mapsto X^{r}, \Delta_{r}(x)=(x, \ldots, x)$, is the diagonal embedding and $\Gamma_{r}: X \times$ $X \mapsto X^{r}$ is defined as $\Gamma_{1}(h, g)=g$ and $\Gamma_{r}(h, z)=(h, \ldots, h, g)$ for $r \geq 2$. Thus

$$
\begin{equation*}
B \circ \Delta_{r}(h)=B(h, \ldots, h), \quad B \circ \Gamma_{r}(h, g)=B(h, \ldots, h, g) \tag{2.2}
\end{equation*}
$$

The map $B \circ \Delta_{r}$ is homogeneous polynomial of degree r and the map $B \circ \Gamma_{r}$ is homogeneous polynomial of degree $r-1$ with respect to the first argument and is linear with respect to the second argument. Note also that $B \circ \Gamma_{r}$ equals the derivative of $B \circ \Delta_{r}$ (up to a factor).

Let $F: U \mapsto Y$ be a p times Frechet differentiable map from an open subset $U \subset X$. Let $x^{*} \in U$.

Definition 2.1. We say that the map F is regular at x^{*} if $\operatorname{Im} F^{\prime}\left(x^{*}\right)=Y$; otherwise, we say that F is degenerate at $x^{*}\left({ }^{1}\right)$. We say that F is completely degenerate at x^{*} up to order p if $F^{(r)}\left(x^{*}\right)=0$ for $r=1, \ldots, p-1$.

By the classical Lyusternik theorem the solution set

$$
\begin{equation*}
M=M\left(x^{*}\right)=\left\{F(x)=F\left(x^{*}\right)\right\} \tag{2.3}
\end{equation*}
$$

is a submanifold near x^{*} if F is regular at x^{*}. Moreover, the tangent space

$$
\begin{equation*}
T_{x^{*}} M=\operatorname{ker} F^{\prime}\left(x^{*}\right) \tag{2.4}
\end{equation*}
$$

Since the point x^{*} is fixed below the derivatives $F^{(j)}\left(x^{*}\right)$ will be denoted simply by $F^{(j)}$.

Let us pass to the definition of p-regularity. Assume that F is degenerate at x^{*}. Therefore

$$
Y_{1}=\mathrm{cl} \operatorname{Im} F^{\prime} \neq Y
$$

(where cl denotes the closure and the derivative is taken at x^{*}).
We define two series Z_{2}, Z_{3}, \ldots and Y_{2}, Y_{3}, \ldots of subspaces of Y as follows. We put Z_{2} as some closed subspace complementary to Y_{1}. Let $P_{2}: Y \mapsto Z_{2}$ be the projection to Z_{2} along Y_{1}. We then put

$$
Y_{2}=\mathrm{cl} \operatorname{span} \operatorname{Im} P_{2} F^{(2)} \circ \Delta_{2}
$$

Next, we define Z_{3} as a closed complementary to $Y_{1} \oplus Y_{2}$ with a corresponding projection P_{3} onto Z_{3} and $Y_{3}=\mathrm{cl}$ span $\operatorname{Im} P_{3} F^{(3)} \circ \Delta_{3}$. Further subspaces are defined along this scheme: Z_{i} is complementary to $Y_{1} \oplus \ldots \oplus Y_{i-1}$ with corresponding projection P_{i} and $Y_{i}=\mathrm{cl}$ span $\operatorname{Im} P_{i} F^{(i)} \circ \Delta_{i}$.

Assume that this construction ends-up at some moment, thus

$$
\begin{equation*}
Y=Y_{1} \oplus \ldots \oplus Y_{p} \tag{2.5}
\end{equation*}
$$

for some finite p. Denote also $Q_{j}: Y \mapsto Y_{j}$ the projections corresponding to the above decomposition. Then we have the maps

$$
f_{j}: U \mapsto Y_{j}, \quad f_{j}(x)=Q_{j} F(x) .
$$

Definition 2.2. For a fixed $h \in X$ the linear operator

$$
\begin{equation*}
\Psi_{p}(h)=\Psi_{p}\left(x^{*}, h\right): X \mapsto X, \quad \Psi_{p}(h) g=\sum_{j=1}^{p} f_{j}^{(j)} \circ \Gamma_{j}(h, g), \tag{2.6}
\end{equation*}
$$

(see (2.1)) is called the p-factor operator. We say that F is p-regular at x^{*} along vector h if $\operatorname{Im} \Psi_{p}(h)=Y$

[^1]Using the decomposition (2.5) the operator (2.6) can be written as follows

$$
g \mapsto\left(Q_{1} F^{\prime} g, Q_{2} F^{(2)} \circ \Gamma_{2}(h, g), \ldots, Q_{p} F^{(p)} \circ \Gamma_{p}(h, g)\right) .
$$

Below the vector h is chosen from the following generalization of the kernel of $F^{\prime}\left(x^{*}\right)$.

Definition 2.3. The p-kernel of Ψ_{p} is the set

$$
H\left(x^{*}\right)=\left\{h: \Psi_{p}\left(x^{*}, h\right) h=0\right\} .
$$

In other words, it is the intersection

$$
H\left(x^{*}\right)=\bigcap_{j=1}^{p}\left\{f_{j}^{(j)} \circ \Delta_{j}(h)=0\right\}
$$

of p cones corresponding to the zero loci of the homogeneous polynomials $h \mapsto$ $f_{j}^{(j)} \circ \Delta_{j}(h)$. In the completely degenerate case we have

$$
H\left(x^{*}\right)=\left\{F^{(p)} \circ \Delta_{p}(h)=0\right\}
$$

Definition 2.4. We say that F is p-regular at x^{*} if either $H\left(x^{*}\right)=0$ or F is p-regular at x^{*} along every $h \in H\left(x^{*}\right) \backslash 0$.

We can regard the p-regularity as the usual regularity of the map $h \mapsto \Psi_{p}(h) h$ along the punctured p-kernel; thus $\operatorname{ker}^{p} \Psi_{p} \backslash 0$ is a smooth (and homogeneous) submanifold of X.

The following generalization of the Lyusternik theorem holds.
Theorem 2.5 ([4], [5]). If F is p-regular at x^{*} then the tangent cone $C_{x_{*}} M$ to the level set (2.2) equals $H\left(x^{*}\right)$. In particular, the solution set M is either reduced to $\left\{x^{*}\right\}$ or is higher dimensional and each component of $C_{x_{*}} M$ corresponds to a local branch of M of the same dimension.

In the sequel we shall use the following standard results from analysis.
Remark 2.6. A linear bounded operator $A: X \mapsto Y$ is called Fredholm if its kernel $\operatorname{ker} A$ and cokernel $\operatorname{coKer} A=Y / \operatorname{Im} A$ have finite dimension. Recall that in such a case $\operatorname{Im} A$ is closed and equals to the annihilator of $\operatorname{ker} A^{*}$, i.e. $\operatorname{Im} A=\left(\operatorname{ker} A^{*}\right)^{\top}$.

In this paper we consider second order differential operators acting on functions on a domain $\Omega \subset \mathbb{R}^{n}$. There we have the scalar product

$$
\langle u, v\rangle=\int_{\Omega} u(x) v(x) d^{n} x
$$

The operators considered are symmetric, i.e. $\langle A u, v\rangle=\langle u, A v\rangle$ for $u, v \in X$. The standard theory (see [6]) says that in this case we have the decomposition

$$
Y=\operatorname{Im} A \oplus \operatorname{ker} A \quad \text { and } \quad \operatorname{dim} \operatorname{ker} A=\operatorname{dim} \operatorname{coKer} A
$$

Remark 2.7. Let A and B be bounded operators between Banach spaces X and Y. Let $Y=Y_{1} \oplus Y_{2}$ where $Y_{1}=\operatorname{Im} A$. Let also Q_{2} be the projection onto Y_{2} along Y_{1}. Then the operator $A+Q_{2} B$ is surjective if and only if the operator $\left.Q_{2} B\right|_{\text {ker } A}$: ker $A \mapsto Y_{2}$ is surjective.

3. Applications

3.1. The equation of rod bending. The differential equation (1.1) can be written in the form

$$
F(u, \varepsilon):=\frac{d^{2} u}{d x^{2}}+(1+\varepsilon)\left(u+u^{2}\right)=0
$$

where F acts between the Banach spaces

$$
X=C_{0}^{2}([0, \pi]) \times \mathbb{R} \quad \text { and } \quad Y=C([0, \pi])
$$

where $C_{0}^{r}(\Omega)=C^{r}(\Omega) \cap\left\{\left.u\right|_{\partial \Omega}=0\right\}$. Of course, $(u, \varepsilon)=(0,0)$ is a solution to this equation. Our aim is to solve this equation for small and nonzero ε.

The first derivative of F at $(0,0)$ is

$$
\begin{equation*}
F^{\prime}=\left(F_{u}^{\prime}, F_{\varepsilon}^{\prime}\right)=\left(\frac{d^{2}}{d x^{2}}+1,0\right) \tag{3.1}
\end{equation*}
$$

and the second derivative at $(0,0)$ is

$$
F^{\prime \prime}=\left(\begin{array}{cc}
F_{u u}^{\prime \prime} & F_{u \varepsilon}^{\prime \prime} \\
F_{\varepsilon u}^{\prime \prime} & F_{\varepsilon \varepsilon}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)
$$

thus

$$
\begin{equation*}
F^{\prime \prime}(h, g)=2 h_{u}(x) g_{u}(x)+h_{\varepsilon} g_{u}(x)+g_{\varepsilon} h_{u}(x) \tag{3.2}
\end{equation*}
$$

for $h=\left(h_{u}(x), h_{\varepsilon}\right)$ and $g=\left(g_{u}(x), g_{\varepsilon}\right)$ from X (which consists of functions and constants).

We easily find that

$$
\begin{equation*}
\operatorname{ker} F^{\prime}=\mathbb{R} \cdot \sin x \times \mathbb{R} \tag{3.3}
\end{equation*}
$$

The image of F^{\prime} consists of those function $v(x)$ for which the equation

$$
d^{2} u / d x^{2}+u=v
$$

admits a solution $u(x)$ with the Dirichlet boundary condition. The general solution to the latter equation (which we find using the variation of constants method) takes the form

$$
u(x)=C_{1} \cos x+C_{2} \sin x-\cos x \int_{0}^{x} v(s) \sin s d s+\sin x \int_{0}^{x} v(s) \cos s d s
$$

and the boundary condition implies $C_{1}=0$ and the following:

$$
\begin{equation*}
Y_{1}=\operatorname{Im} F^{\prime}=\left\{v:\langle v, \sin x\rangle=\int_{0}^{\pi} v(s) \sin x d x=0\right\} \tag{3.4}
\end{equation*}
$$

Of course, the function $v(x)=\sin x$ does not belong to $\operatorname{Im} F^{\prime}(0,0)=\operatorname{Im} F^{\prime}$ which means that the point $(0,0) \in X$ is irregular for F. We choose

$$
\begin{equation*}
Z_{2}=\mathbb{R} \cdot \sin x \subset Y \tag{3.5}
\end{equation*}
$$

which satisfies $Y=Y_{1} \oplus Z_{2}$ (this agrees with Remark 2.6). The projection operator P_{2} to Z_{2} along Y_{1} can be described as

$$
\begin{equation*}
P_{2} v=\frac{2}{\pi} \sin x \cdot\langle v, \sin x\rangle . \tag{3.6}
\end{equation*}
$$

Note that

$$
F^{\prime \prime} \circ \Delta_{2}\left(h_{u}, h_{\varepsilon}\right)=2 h_{u}^{2}(x)+2 h_{\varepsilon} h_{u}(x)
$$

(see (3.2)), hence the subspace $Y_{2}=\operatorname{span} \operatorname{Im} P_{2} F^{\prime \prime} \circ \Delta_{2}$ equals Z_{2}. So we have the expansion (2.5) with $p=2$, i.e. $Y=Y_{1} \oplus Y_{2}$; we recall the corresponding projectors $Q_{1,2}: Y \mapsto Y_{1,2}$ where $Q_{2}=P_{2}$ is defined above.

Let us pass to the description if the 2 -factor operator and the examination of the 2-regularity condition. For $h=\left(h_{u}(x), h_{\varepsilon}\right)$ and $g=\left(g_{u}(x), g_{\varepsilon}\right)$ we have

$$
\begin{aligned}
\Psi_{2}(h) g & =Q_{1} F^{\prime} g+Q_{2} F^{\prime \prime} \circ \Gamma_{2}(h, g) \\
& =\left\{d^{2} g_{u}(x) / d x^{2}+g_{u}(x)\right\}+P_{2}\left\{2 h_{u}(x) g_{u}(x)+h_{\varepsilon} g_{u}(x)+g_{\varepsilon} h_{u}(x)\right\} .
\end{aligned}
$$

The determination of the 2-kernel of Ψ_{2}, i.e. $\left\{\Psi_{2}(h) h=0\right\}$, runs as follows:

$$
\begin{aligned}
h_{u} & =C \sin x \\
\left\langle\sin x, h_{u}^{2}(x)+h_{\varepsilon} h_{u}(x)\right\rangle & =C^{2} \int_{0}^{\pi} \sin ^{3} x+h_{\varepsilon} C \int_{0}^{\pi} \sin ^{2} x=0
\end{aligned}
$$

Calculation of the above integrals gives two possibilities (which correspond to two 1-dimensional components of $\operatorname{ker}^{2} \Psi_{2}$):

1. $C=0$, i.e. $h_{u}(x) \equiv 0$ and h_{ε} arbitrary;
2. $h_{\varepsilon}=-8 C /(3 \pi)$.

Recall that the 2-regularity means that the linear operator $\Psi_{2}(h)$ is surjective for any $h \in \operatorname{ker}^{2} \Psi_{2}$. In the both cases of the choice of h the operator $\Psi_{2}(h)$ has the form $A+P_{2} B$, where $Y_{1}=\operatorname{Im} A$ is complementary to $Y_{2}=\operatorname{Im} P_{2}$. By Remark 2.7 it is enough to show that $\operatorname{Im}\left(\left.P_{2} B\right|_{\text {ker } A}\right)=Y_{2}$, i.e. that the integral

$$
\left\langle\sin x, 2 h_{u}(x) g_{u}(x)+h_{\varepsilon} g_{u}(x)+g_{\varepsilon} h_{u}(x)\right\rangle
$$

is nonzero for $g_{u}=\sin x$ and typical constant g_{ε}.
In the case 1 the problem reduces to the nonvanishing of the integral

$$
\left\langle\sin x, g_{u}\right\rangle=\int_{0}^{\pi} \sin ^{2} x
$$

But this case is non-interesting, because it corresponds to the obvious 1-dimensional family of solutions to equation (1.1) of the form

$$
u(x) \equiv 0, \quad \varepsilon-\text { arbitrary } .
$$

In the case 2 we reduce the problem to the case

$$
h_{u}=g_{u}=\sin x, \quad h_{\varepsilon}=-8 / 3 \pi, \quad g_{\varepsilon}-\text { arbitrary }
$$

and to non-vanishing of the integral

$$
\begin{equation*}
\left\langle\sin x, 2 \sin ^{2} x+\left(g_{\varepsilon}-\frac{8}{3 \pi}\right) \sin x\right\rangle . \tag{3.7}
\end{equation*}
$$

Of course, for a typical constant g_{ε} the latter expression is nonzero.
Now Theorem 2.5 applied to the second component of the tangent cone to M implies the following.

Theorem 3.1. For sufficiently small $|\varepsilon|$ the rod bending equation (1.1) has a unique nonzero solution $u(x, \varepsilon)$ such that

$$
u(x, \varepsilon)=\frac{3 \pi}{8} \varepsilon \sin x+o(\varepsilon)
$$

3.2. The nonlinear membrane equation. Like in the rod bending case equation (1.2) takes the form:

$$
F(u, \varepsilon):=\Delta u+(10+\varepsilon) \phi(u)=0
$$

where $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}$ is the Laplacian, ε is a small constant and the function ϕ satisfies the following properties:

$$
\begin{equation*}
\phi(0)=0, \quad \phi^{\prime}(0)=1, \quad 10 \phi^{\prime \prime}(0)=a \neq 0 . \tag{3.8}
\end{equation*}
$$

Above the nonlinear operator F acts between the Banach spaces

$$
X=C_{0}^{2}(\Omega) \times \mathbb{R}, \quad \Omega=[0, \pi] \times[0, \pi] \quad \text { and } \quad Y=C(\Omega) .
$$

Of course, $(u, \varepsilon)=(0,0)$ is a solution.
Moreover, we have the following 1-parameter family of solutions:

$$
\begin{equation*}
u(x) \equiv 0, \quad \varepsilon \text { - arbitrary. } \tag{3.9}
\end{equation*}
$$

The first and the second derivatives of F at $(0,0)$ are following:

$$
\begin{gather*}
F^{\prime}=\left(F_{u}^{\prime}, F_{\varepsilon}^{\prime}\right)=(\Delta+10,0), \tag{3.10}\\
F^{\prime \prime}=\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right) . \tag{3.11}
\end{gather*}
$$

We see that $\operatorname{ker} F^{\prime}$ consists of pairs $h=\left(h_{u}(x), h_{\varepsilon}\right)$ such that $h_{\varepsilon} \in \mathbb{R}$ and $h_{u}(x)$ is an eigenfunction of the Laplacian in Ω with the Dirichlet boundary conditions with the eigenvalue $-10=-1-3^{2}$. Therefore

$$
\begin{equation*}
\operatorname{ker} F^{\prime}=\left\{\mathbb{R} \cdot u_{1}(x)+\mathbb{R} \cdot u_{2}(x)\right\} \times \mathbb{R} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{1}=\frac{2}{\pi} \sin x_{1} \cdot \sin \left(3 x_{2}\right), \quad u_{2}=\frac{2}{\pi} \sin x_{2} \cdot \sin \left(3 x_{1}\right) \tag{3.13}
\end{equation*}
$$

are orthonormal with respect to the scalar product

$$
\langle u, v\rangle=\int_{\Omega} u(x) v(x) d^{2} x
$$

The operator $F_{u}^{\prime}=\Delta+10$ is symmetric and Fredholm. From the general theory (see Remark 2.6) it follows that $\operatorname{dim} \operatorname{ker} F_{u}^{\prime}=\operatorname{dim} \operatorname{ker}\left(F_{u}^{\prime}\right)^{*}<\infty$ and that

$$
Y=\operatorname{Im} F_{u}^{\prime} \oplus \operatorname{ker} F_{u}^{\prime}=Y_{1} \oplus Y_{2}
$$

where the latter decomposition is orthogonal with respect to the above scalar product. As usually, we denote by $Q_{1,2}$ the projectors corresponding to the above decomposition. We have

$$
\begin{equation*}
Q_{2} v=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2} \tag{3.14}
\end{equation*}
$$

Of course, the above means that the point $(u, \varepsilon)=(0,0)$ is irregular for F.
Now we pass to application of the 2-regularity theory. By (3.11) we have

$$
F^{\prime \prime}(h, g)=a h_{u}(x) g_{u}(x)+h_{\varepsilon} g_{u}(x)+g_{\varepsilon} h_{u}(x)
$$

where $h=\left(h_{u}(x), h_{\varepsilon}\right)$ and $g=\left(g_{u}(x), g_{\varepsilon}\right)$ are vectors from $X=C_{0}^{2}(\Omega) \times \mathbb{R}$. Therefore we get

$$
\begin{equation*}
\Psi_{2}(h) g=\{\Delta+10\} g_{u}+Q_{2}\left\{a h_{u}(x) g_{u}(x)+h_{\varepsilon} g_{u}(x)+g_{\varepsilon} h_{u}(x)\right\} \tag{3.15}
\end{equation*}
$$

hence $\operatorname{ker}^{2} \Psi_{2}$ consists of

$$
h=\left(h_{u}, h_{\varepsilon}\right)=\left(H_{1} u_{1}(x)+H_{2} u_{2}(x), h_{\varepsilon}\right)
$$

such that

$$
\begin{equation*}
\left\langle u_{j}, a h_{u}^{2}(x)+2 h_{\varepsilon} h_{u}(x)\right\rangle=0, \quad j=1,2 . \tag{3.16}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha=\int_{\Omega} u_{1,2}^{3}=\frac{16}{27} \cdot\left(\frac{2}{\pi}\right)^{3}, \quad \beta=\int_{\Omega} u_{1}^{2} u_{2}=\int_{\Omega} u_{1} u_{2}^{2}=-\frac{48}{175} \cdot\left(\frac{2}{\pi}\right)^{3} \tag{3.17}
\end{equation*}
$$

(as one can calculate). Then system (3.16) takes the form:

$$
\begin{align*}
& a\left(\alpha H_{1}^{2}+2 \beta H_{1} H_{2}+\beta H_{2}^{2}\right)+2 h_{\varepsilon} H_{1}=0, \tag{3.18}\\
& a\left(\beta H_{1}^{2}+2 \beta H_{1} H_{2}+\alpha H_{2}^{2}\right)+2 h_{\varepsilon} H_{2}=0 . \tag{3.19}
\end{align*}
$$

Using the matrices $H=\left(H_{1}, H_{2}\right)^{\top}$ and

$$
\mathcal{M}(H)=a\left(\begin{array}{ll}
\alpha H_{1}+\beta H_{2} & \beta H_{1}+\beta H_{2} \\
\beta H_{1}+\beta H_{2} & \beta H_{1}+\alpha H_{2}
\end{array}\right)
$$

we rewrite it in the following form:

$$
\begin{equation*}
\left(\mathcal{M}(H)+2 h_{\varepsilon}\right) H=0 \tag{3.20}
\end{equation*}
$$

On the other hand, the Y_{2} - part (where $Y_{2} \simeq \mathbb{R}^{2}$) of the 2-factor operator $\Psi_{2}(h)$ takes the form:

$$
\begin{equation*}
\left(G, g_{\varepsilon}\right) \mapsto\left(\mathcal{M}(H)+h_{\varepsilon}\right) G+g_{\varepsilon} H=\left[\mathcal{M}(H)+h_{\varepsilon}, H\right]\left(G, g_{\varepsilon}\right)^{\top} \tag{3.21}
\end{equation*}
$$

where $g=\left(G_{1} u_{1}(x)+G_{2} u_{2}(x), g_{\varepsilon}\right)$ and $G=\left(G_{1}, G_{2}\right)^{\top}$; accordingly with Remark 2.7 g is taken from ker F^{\prime}.

Equation (3.20) has two types of possible solutions:

1. $H=0, h_{\varepsilon} \neq 0$;
2. $\operatorname{det}\left(\mathcal{M}(H)+2 h_{\varepsilon}\right)=0, H \in \operatorname{ker}\left(\mathcal{M}(H)+2 h_{\varepsilon}\right) \backslash 0$.

In the case 1 the operator (3.21) is obviously surjective; but this case corresponds to the tangent cone to the solution (3.9).

In the case 2 we multiply the equations (3.18)-(3.19) by H_{2} and H_{1}, respectively. Then we take the difference which implies the following equation:
$\left(H_{2}-H_{1}\right)\left(\beta H_{1}^{2}+(3 \beta-\alpha) H_{1} H_{2}+\beta H_{2}^{2}\right)=\beta\left(H_{2}-H_{1}\right)\left(H_{1}+\kappa H_{2}\right)\left(H_{1}+H_{2} / \kappa\right)=0$
where

$$
\begin{equation*}
\kappa=\frac{209}{81}+\frac{16}{81} \sqrt{145} \approx 4.9588 \tag{3.22}
\end{equation*}
$$

is the greater root of the equation $\beta \kappa^{2}-(3 \beta-\alpha) \kappa+\beta=0$, i.e. $\kappa+1 / \kappa=418 / 81$. Thus we have three possibilities:

$$
\begin{array}{ll}
H_{2}=H_{1}, & h_{\varepsilon}=-(a / 2)(\alpha+3 \beta) H_{1}, \\
H_{2}=-\kappa H_{1}, & h_{\varepsilon}=-(a / 2)(\alpha-\beta)(\kappa-1) H_{1}, \tag{3.23}\\
H_{1}=-\kappa H_{2}, & h_{\varepsilon}=-(a / 2)(\alpha-\beta)(\kappa-1) H_{2} .
\end{array}
$$

The 2-regularity condition along any of the latter solution means that the linear operators (3.21) is surjective. Of course, this is equivalent to the property that the 2×3 matrix

$$
\begin{equation*}
\left[\mathcal{M}(H)+h_{\varepsilon}, H\right] \tag{3.24}
\end{equation*}
$$

has maximal rank (equal 2) when $\left(H_{1}, H_{2}\right)$ satisfies one of the conditions (3.23). But a sufficient condition for this is that

$$
\begin{equation*}
\operatorname{det}\left(\mathcal{M}(H)+h_{\varepsilon}\right) \neq 0 \tag{3.25}
\end{equation*}
$$

(we recall that $\operatorname{det}\left(\mathcal{M}(H)+2 h_{\varepsilon}\right)=0$ in the case 2). Since $\operatorname{det}(\mathcal{M}+\lambda)=$ $(\lambda+\operatorname{tr} \mathcal{M} / 2)^{2}+\operatorname{det} \mathcal{M}-\operatorname{tr}^{2} \mathcal{M} / 4$ we have $\operatorname{det}\left(\mathcal{M}(H)+2 h_{\varepsilon}\right)-\operatorname{det}\left(\mathcal{M}(H)+h_{\varepsilon}\right)=$ $h_{\varepsilon}\left(3 h_{\varepsilon}+\operatorname{tr} \mathcal{M}\right)$. So, if (3.25) does not hold then it must be

$$
h_{\varepsilon}=-\frac{\operatorname{tr} \mathcal{M}}{3}=-\frac{a}{3}(\alpha+\beta)\left(H_{1}+H_{2}\right) .
$$

It is easy that this contradicts (3.23) for nonzero H.
Like in the previous section we can conclude this section with the following
Theorem 3.2. For sufficiently small $|\varepsilon|$ the membrane equation (1.2) has three nonzero solution $u(x, \varepsilon)$ such that

$$
\begin{aligned}
& u(x, \varepsilon)=\frac{-2 / a}{\alpha+3 \beta} \varepsilon \cdot\left\{u_{1}(x)+u_{2}(x)\right\}+o(\varepsilon) \\
& u(x, \varepsilon)=\frac{-2 / a}{(\alpha-\beta)(\kappa-1)} \varepsilon \cdot\left\{u_{1}(x)-\kappa u_{2}(x)\right\}+o(\varepsilon), \\
& u(x, \varepsilon)=\frac{-2 / a}{(\alpha-\beta)(\kappa-1)} \varepsilon \cdot\left\{u_{2}(x)-\kappa u_{1}(x)\right\}+o(\varepsilon),
\end{aligned}
$$

where $a, \alpha, \beta, \kappa, u_{1,2}(x)$ are given in equations (3.8), (3.16), (3.17) and (3.22).
3.3. Comparison with the bifurcation theory approach. The whole our paper was inspired by the paper [1]. There the authors consider the bifurcation problem for a map of the form

$$
F(u, \lambda)=L u+\left(\lambda-\lambda_{0}\right) u+R(u),
$$

where L is an elliptic selfadjoint operator, with a domain $X \subset Y$ being a suitable Sobolev space, $R: X \mapsto Y$ is a smooth map with $R(0)=0, R^{\prime}(0)=0$ and λ_{0} is an eigenvalue of L of multiplicity $n \geq 1$. They use the Lyapunov-Schmidt procedure to arrive at a system of finite dimensional algebraic equations. In our examples we arrive at a similar system of equations, but in somewhat different way.

Our 2-regularity condition corresponds to the following regularity hypothesis in [1] (denoted by (R)):

Let $C_{i}^{j k}=\left\langle R^{\prime \prime}(0)\left(u_{j}, u_{k}\right), u_{i}\right\rangle$, where $\left\{u_{j}\right\}_{j=1, \ldots, n}$ is an orthogonal basis of $\operatorname{ker}\left(L-\lambda_{0}\right)$. Then for each nonzero $(x, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}$ satisfying

$$
2 \lambda x_{i}+\sum_{j, k} C_{i}^{j k} x_{j} x_{k}=0, \quad i=1, \ldots, n,
$$

the $n \times(n+1)$ matrix $\left[\sum_{j} C_{i}^{j k} x_{k}+\lambda \delta_{i}^{k}, x_{i}\right]$ has maximal rank.
In the above membrane case $C_{i}^{j k}=a\left\langle u_{j} u_{k}, u_{i}\right\rangle=a \alpha$ or $=a \beta, x_{i}$ correspond to H_{i} and λ corresponds to h_{ε}. Moreover, in the case of equation (1.2) the authors of [1] do not get as precise leading terms as in Theorem 3.2.

References

[1] M. Buchner, J. Marsden and S. Schechter, Applications of the blowing-up construction and algebraic geometry to bifurcation problems, J. Differential Equations 48 (1983), 404-433.
[2] O.A. Brezhneva, A.A. Tret'yakov and J.E. Marsden, Higher order implicit function theorems and degenerate nonlinear boundary value problems, Comm. Pure Appl. Anal. 7 (2008), 293-315.
[3] A.F. Izmailov and A.A. Tret'yakov, Factor Analysis of Nonlinear Mappings, Nauka, Moscow, 1994. (in Russian)
[4] , 2-Regular Solutions of Nonlinear Problems. Theory and Numerical Methods, Nauka, Moscow, 1999. (in Russian)
[5] J.E. Marsden and A.A. Tret'yakov, Factor analysis of nonlinear mappings: pregularity theory, Comm. Pure Appl. Anal. 2 (2003), 425-445.
[6] V.A. Trenogin, Functional Analysis, Nauka, Moscow, 1980. (in Russian)
[7] A.A. Tret'yakov, The implicit function theorem in degenerate problems, Russian Math. Surveys 42 (1987), 179-180.

Beata Medak

Department of Mathematics and Physics University of Natural Sciences and Humanities
3 Maja 54
08-110 Siedlce, POLAND
E-mail address: bmedak@uph.edu.pl

Alexey A. Tret'yakov
Department of Mathematics and Physics
University of Natural Sciences and Humanities
3 Maja 54
08-110 Siedlce, POLAND
System Research Institute
Polish Academy of Sciences
Newelska 6
01-447 Warsaw, POLAND

Doronicyn Computer Center
Russian Academy of Sciences
Vavilova 40
Moscow 119991, RUSSIA
E-mail address: tret@uph.edu.pl
Henryk ŻOŁĄdek
Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warsaw, POLAND
E-mail address: zoladek@mimuw.edu.pl

TMNA: Volume 41 - 2013 - No 2

[^0]: 2010 Mathematics Subject Classification. Primary 47J05; Secondary 34B15, 34B16.
 Key words and phrases. p-regularity, bifurcation, nonlinear boundary value problem.
 Supported by the Polish OPUS Grant No 2012/05/ST1/03195, by the Russian Foundation for Basic Research Grant No 1-01-00786-a and by the Leading Research Schools Grant No 4096.2010.1.

[^1]: $\left({ }^{1}\right)$ Usually, e.g. in the finite dimensional case, the notion of critical point x_{*} of F is used. It is such a point that $F^{\prime}\left(x_{*}\right)$ is neither injective nor surjective; rank $F^{\prime}\left(x_{*}\right)<$ $\min (\operatorname{dim} X, \operatorname{dim} Y)$ if $\operatorname{dim} X, \operatorname{dim} Y<\infty$. Definition 2.1 is specific for this paper and is slightly different.

