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VIETORIS–BEGLE THEOREMS FOR NONCLOSED MAPS

Jaros law Mederski

Abstract. In the paper we provide generalizations of the classical Vieto-

ris–Begle mapping theorem for not necessarily closed maps with respect to
the Alexander–Spanier cohomology on paracompact space.

1. Introduction

Let X and Y be paracompact spaces. Let H∗ denote the Alexander–Spanier
cohomology functor with coefficients in an arbitrary abelian group. A continuous
surjection f :X → Y is called a Vietoris map, if f is a closed map and f has
acyclic fibers i.e. Hq(f−1(y)) ≈ Hq(pt) for any y ∈ Y and q ∈ Z, where pt stands
for a one point space. The well-known Vietoris–Begle theorem (see [19], [1], [16])
states that if f is a Vietoris map, then

Hq(f):Hq(Y ) → Hq(X)

is a group isomorphism for any q ∈ Z. The result has been investigated and
generalized by many authors. For example, the triviality of cohomology groups
of fibers can be assumed in finite number of dimensions and isomorphisms are
obtained in finite number of dimensions as well (see [7] and references therein).
Moreover it has been considered (co)homotopy variants of the Vietoris–Begle
theorem (see [5], [6], [15]).
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It is known that, in general, we cannot remove the assumption concerning
the closeness or the acyclicity of fibers of the map f (see [17, Example 6.9.16]).

In the paper we introduce the following class of maps V containing Vietoris
maps: for any continuous surjection f :X → Y we write f ∈ V, if for any q ∈ Z

lim
−→
{Hq(f−1(V )) | V 3 y} ≈ Hq(pt),

where the direct system is indexed by the family of all open neighbourhoods V

of y. We show that the class V extends the class of Vietoris maps (see Proposi-
tion 3.2) and we prove that the statement of the Vietoris–Begle theorem is still
valid (see Theorem 4.5). Moreover, we provide examples of maps of the class V
which are not necessarily closed and their fibers do not have to be acyclic (see
Example 3.3).

Motivated by the applications of the Vietoris-Begle theorem in studying ho-
motopical invariants of set-valued maps ([8], [14]) we consider the situation when
there are given two subsets G and C of X, G is closed in X. In general if f |G is
a closed map, the surjective map f |G∩C :G∩C → Y with the acyclic fibers does
not induce isomorphisms on cohomology groups (see Example 4.8). However it
turns out that there is the induced isomorphism on the direct limits of coho-
mology groups of adequate directed systems (see Theorem 4.7). More generally,
we introduce a class of Vietoris maps with respect to (G, C) (written V(G, C),
see Definition 3.1) and prove Vietoris–Begle type theorem for this class of maps.
Furthermore, we show that if the fibers of a map satisfy the homotopy trivia-
lity conditions with respect to the pair (G, C), then the map belongs to the
class V(G, C) (see Proposition 3.4(b)). At the end, the fiberwise version of the
Vietoris–Begle theorem is proposed (Theorem 4.10).

2. Preliminaries

From now on by a space we mean a paracompact space and by a map we mean
a continuous transformation of spaces. A map f :X → Y is closed provided that
for any closed subset A of X, f(A) is a closed subset of Y . Given spaces X, Y , by
a set-valued map ϕ from X into Y (written ϕ:X ( Y ) we mean a map assigning
to any x ∈ X a nonempty (not necessarily closed) subset ϕ(x) of Y and, by the
graph of ϕ, the set Gr (ϕ) := {(x, y) ∈ X × Y | y ∈ ϕ(x)}. We say that a set-
valued map ϕ is upper semicontinuous (resp. lower semicontinuous) if for any
open (resp. closed) subset U ⊂ Y , the preimage ϕ+1(U) := {x ∈ X : ϕ(x) ⊂ U}
is open (resp. closed). It is easy to see that a surjection f :X → Y is closed if and
only if ϕ:Y ( X given by ϕ(y) := f−1(y) for y ∈ Y , is upper semicontinuous.

Let H = {Hq | q ∈ Z} be a contravariant functor on the category of (para-
compact) spaces to the category of graded abelian groups. Let X be a space.
For any subsets A and B of X such that A ⊂ B, by Hq(iBA):Hq(B) → Hq(A) we
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denote the homomorphism of groups induces by the inclusion map iBA :A ↪→ B,
where q ∈ Z. We introduce the notation: for any h ∈ Hq(B)

h|A := Hq(iBA)(h) ∈ Hq(A).

Let A be a subset of X. Then the family A of all open neighbourhoods of A

is directed by the relation of (inverse) inclusion i.e. U ≤ V , if V ⊂ U for any
U, V ∈ A. Then for any q ∈ Z the direct limit of a direct system {Hq(U),Hq(iVU )}
is denoted by lim

−→
{Hq(U) | U ∈ A} or lim

−→
{Hq(U) | U ⊃ A}. Moreover there is

a homomorphism of groups

(2.1) i: lim
−→
{Hq(U) | U ⊃ A} → Hq(A),

defined by the formula: i([h]) := h|A for any h ∈ Hq(U). We say that a subset
A ⊂ X is taut in X with respect to H, if i is an isomorphism for any q ∈ Z.

Let H∗ = H∗(·;G) = {Hq | q ∈ Z} (resp. H∗
∆ = H∗

∆(·;G) = {Hq
∆ | q ∈ Z})

denote Alexander–Spanier (resp. singular) cohomology functor with coefficient
in an abelian group G. In view of ([11, Theorem 8.4]) every closed subset A

of a space X is taut in X with respect to H∗. Moreover every subset A of
a metrizable space X is taut in X with respect to H∗.

3. Vietoris maps with respect to a pair of sets

Let G and C be subsets of a space X, G is closed in X. Let f : X → Y be
a map and A be a subset of a space Y . We introduce the notation: for any open
subset W ⊂ X we write W ∈ W(A;G), if there are open neighbourhoods V of
A and U of f−1(V ) ∩G such that

U ∩ f−1(V ) ⊂ W.

Note that if W ∈ W(A;G), then W is an open neighbourhood of f−1(A) ∩ G.
Moreover, if f |G:G → Y is a closed map, then

(3.1) W(A;G) = {W | W is an open neighbourhood of f−1(A) ∩G}.

Indeed, let W be an open neighbourhood of f−1(A)∩G in X. If f |G is a closed
map, then a set-valued map Y 3 y 7( f−1(y) ∩G ⊂ G is upper semicontinuous.
Hence there is an open neighbourhood V of A such that f−1(V ) ∩ G ⊂ W .
Therefore W ∩ f−1(V ) ⊂ W and W ∈ W(A;G).

Now we introduce the following class of maps.

Definition 3.1. A map f :X → Y is called a Vietoris map with respect to
(G, C) (written f ∈ V(G, C)), if f(G ∩ C) = Y and for any y ∈ Y , q ∈ Z

(3.2) lim
−→
{Hq(W ∩ C) | W ∈ W({y};G)} ≈ Hq(pt).

is an isomorphism. In case if G = C = X we write V := V(X, X).
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The following result provides examples and characterizes the class V.

Proposition 3.2. (a) f ∈ V if and only if f is a surjection and for any
y ∈ Y , q ∈ Z

lim
−→
{Hq(f−1(V )) | V 3 y} ≈ Hq(pt),

where V belongs to the family of all open neighbourhoods of y.
(b) If f is a closed surjection, then f ∈ V if and only if f has acyclic fibers.
(c) If X, Y are metric spaces, (X, f) is a fiberwise absolute neighbourhood

retract over Y , then f ∈ V (1).

Proof. (a) In order to prove (a) it is sufficient to observe that the family
{f−1(V ) | V is an open neighbourhood y} is cofinal with W({y};X).

(b) Let f be a closed surjection. Then for any open neighbourhood U of
the fiber f−1(y) there is an open neighbourhood V of y such that f−1(V ) ⊂ U .
Hence the family {f−1(V ) | V is an neighbourhood y} is cofinal with the family
{U | U is an neighbourhood f−1(y)}. In view of tautness of f−1(y) in X with
respect to H∗ we obtain isomorphisms

lim
−→
{Hq(f−1(V )) | V 3 y} ≈ lim

−→
{Hq(U) | U ⊃ f−1(y)} ≈ Hq(f−1(y)).

Hence by (a) we obtain that f ∈ V if and only if Hq(f−1(y)) ≈ Hq(pt).
(c) Since (X, f) is an absolute neighbourhood retract over Y , then there

are a normed space E and maps i:X → E × Y and r:E × Y → X over Y

such that r ◦ i = idX . Observe that for any open neighbourhood V ⊂ Y ,
r(E × V ) = f−1(V ) and Hq(r|E×V ):Hq(f−1(V )) → Hq(E × V ) is a monomor-
phism since Hq(i|f−1(V ),E×V ) ◦Hq(r|E×V ) = idHq(f−1(V )) for any q ∈ Z. Hence
a homomorphism

r∗: lim
−→
{Hq(f−1(V )) | V 3 y} → lim

−→
{Hq(E × V ) | V 3 y}

defined by a formula: r∗([h]) := [Hq(r|E×V )(h)] for any h ∈ Hq(f−1(V )), is
also a monomorphism, since r∗ = lim

−→
{Hq(r|E×V ) | V 3 y}. Observe that

Hq(π|E×V ):Hq(V ) → Hq(E × V ) is an isomorphism for any open V ⊂ Y , and
then we obtain the following isomorphism

π∗: lim
−→
{Hq(V ) | V 3 y} → lim

−→
{Hq(E × V ) | V 3 y}

given by π∗([h]) := lim
−→
{Hq(π|E×V ) | V 3 y}([h]) = [Hq(π|E×V )(h)] for any

h ∈ Hq(V ). Thus

π∗−1 ◦ r∗ : lim
−→
{Hq(f−1(V )) | V 3 y} → lim

−→
{Hq(V ) | V 3 y}

(1) Fiberwise absolute neighbourhood retracts were studied e.g. by Dold in [4], see also [12].
Recall that (X, f) is a fiberwise absolute neighbourhood retract over Y if there is a normed

space E and maps i: X → E × Y and r: E × Y → X over Y , i.e. πY ◦ i = f and f ◦ r = πY ,
such that r ◦ i = idX , where πY : E × Y → Y is the usual projection onto Y .
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is a monomorphism. In view of tautness of {y} in Y with respect to H∗ we
obtain

lim
−→
{Hq(f−1(V )) | V 3 y} ≈ Hq(pt). �

Vietoris maps appears e.g. in theory of set-valued maps ([8]). If ϕ:X ( Y is
an upper-semicontinuous set-valued map with acyclic values, then the projection
πX : Gr (ϕ) → X is a Vietoris map. In view of Proposition 3.2(b) we obtain that
πX ∈ V. The class V essentially extends the class of Vietoris maps. In view
of [12], if ϕ:X ( Y is a lower semicontinuous map with closed and convex
values in the Banach space Y , then (Gr (ϕ), πX) is a fiberwise absolute retract
over X with the projection πX : Gr (ϕ) → X, and in view of Proposition 3.2(c) πX

is a Vietoris map with respect to (Gr (ϕ),Gr (ϕ)). Thus πX ∈ V and πX is not
necessarily a closed map. More examples of fiberwise absolute (neighbourhood)
retracts can be found in [12].

As we have seen above, maps of the class V does not have to be closed.
Moreover, the acyclicity of fibers is not inevitable as well.

Example 3.3. Let X := ([0, 1/2)×{0})∪({1/2}×{0, 1})∪((1/2, 1]× [0, 1]),
Y := [0, 1] and f :X → Y defined by the formula f(x1, x2) := x1 for (x1, x2) ∈ X.
Notice that for any y ∈ Y , n ≥ 1, the preimage f−1(B(y, 1/n)) is contractible.
Therefore f ∈ V. However f is not a closed map since f(A) := (1/2, 1] is not
closed in Y for a closed A := (1/2, 1] × [1/3, 2/3] in X. Moreover the fiber
f−1(1/2) = {0, 1} is not acyclic.

Now we consider a more general situation.

Proposition 3.4. Let f |G:G → Y be closed map such that f(G∩C) = Y .

(a) f ∈ V(G, C) if and only if for any y ∈ Y , q ∈ Z

lim
−→
{Hq(W ∩ C) | W ⊃ G ∩ f−1(y)} ≈ Hq(pt),

where W belongs to the family of all open neighbourhoods of G∩f−1(y).
(b) Let C be homologically locally connected. Assume that for any n ≥ 0,

any open neighbourhood U of G ∩ f−1(y) contains an open neighbour-
hood V of G∩f−1(y) such that the inclusion V ∩C ↪→ U∩C is homotopy
n-trivial (2).

Then f ∈ V(G, C).

Proof. (a) Since f |G is closed, then in view of (3.1) we get

W({y};G) = {W | W is an open neighbourhood of G ∩ f−1(y)}

(2) If A ⊂ B, then A ↪→ B is homotopy n-trivial provided that for any 0 ≤ k ≤ n, every

continuous map f0: Sk → A admits a continuous extension f : Dk+1 → B, i.e. f(x) = f0(x) for
any x ∈ Sk, where Sk and Dk+1 stands for a unit sphere and a closed ball in Rk+1.
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for any y ∈ Y , which completes the proof of (a).
(b) Let y ∈ Y and n ∈ N. It is sufficient to show that for any q ≤ n

(3.2) lim
−→
{Hq(W ∩ C) | W ⊃ G ∩ f−1(y)} ≈ Hq(pt).

In view of the homotopy 0-triviality we obtain that for any open neighbourhood
W of G ∩ f−1(y) there is an open neighbourhood W ′ ⊂ W of G ∩ f−1(y) such
that, W ′ ∩C is connected. Hence (3.2) is proven for q = 0. Suppose that q > 0.
Let W be an open neighbourhood of A. Then there are sets A ⊂ W ′ := W0 ⊂
. . . ⊂ Wn+1 ⊂ W such that the inclusion Wq ∩ C ↪→ Wq+1 ∩ C is homotopy
n-trivial for 1 ≤ q ≤ n. Then the homomorphism

αq := H∆
q (iW∩C

W ′∩C) : H∆
q (W ′ ∩ C) → H∆

q (W ∩ C)

induced by the inclusion iW∩C
W ′∩C on singular homology with integer coefficients is

trivial for 1 ≤ q ≤ n (comp. proof of Theorem 4.1 in [9]). Similarly, we find an
open subset W ′′ such that A ⊂ W ′′ ⊂ W ′ and the homomorphism

βq := H∆
q (iW

′∩C
W ′′∩C) : H∆

q (W ′′ ∩ C) → H∆
q (W ′ ∩ C)

is trivial for 1 ≤ q ≤ n. In view of the universal coefficient theorem the following
diagram:

0 // Ext(H∆
q−1(W

′′ ∩ C), G) // Hq
∆(W ′′ ∩ C;G) // Hom(H∆

q (W ′′ ∩ C), G) // 0

0 // Ext(H∆
q−1(W

′ ∩ C), G)

Ext(βq−1)

OO

i // Hq
∆(W ′ ∩ C;G)

Hq
∆(iW ′∩C

W ′′∩C
)

OO

j
// Hom(H∆

q (W ′ ∩ C), G)

Hom(βq)

OO

// 0

0 // Ext(H∆
q−1(W ∩ C), G)

Ext(αq−1)

OO

// Hq
∆(W ∩ C;G)

Hq
∆(iW∩C

W ′∩C
)

OO

// Hom(H∆
q (W ∩ C), G)

Hom(αq)

OO

// 0

is commutative with exact rows. Since Hom(αq) is trivial, then

Im(Hq
∆(iW∩C

W ′∩C)) ⊂ Ker(j) = Im(i).

Moreover, the homomorphism Ext(βq−1) is trivial and

Im(i) ⊂ Ker(Hq
∆(iW

′∩C
W ′′∩C)).

Therefore the homomorphism Hq
∆(iW∩C

W ′′∩C) is trivial as well. Taking into account
the homologically locally connectivity of spaces W ′′ ∩ C and W ∩ C, we ob-
tain natural isomorphisms of groups Hq

∆(W ′′ ∩ C), Hq(W ′′ ∩ C), and of groups
Hq

∆(W ∩ C), Hq(W ∩ C). Hence Hq(iW∩C
W ′′∩C) is trivial. By the arbitrariness of

the open neighbourhood W of G ∩ f−1(y) we obtain that

lim
−→
{Hq(W ∩ C) | W ⊃ G ∩ f−1(y)}

is trivial for 1 ≤ q ≤ n, which completes the proof of (b). �
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4. Vietoris–Begle type theorems

Let G and C be subsets of a space X such that G is closed in X. Let
f :X → Y be a map such that f(G∩C) = Y . For any A ⊂ Y we define a group

H̃q
f (A) := lim

−→
{Hq(W ∩ C) | W ∈ W(A;G)}.

It is clear that f ∈ V(G, C) if and only if H̃q
f ({y}) ≈ Hq(pt).

Note that the inclusion iAB :B ↪→ A induces the homomorphism

H̃q
f (iAB): H̃q

f (A) → H̃q
f (B)

defined as follows:
H̃q

f (iAB)([h]) := [h] ∈ H̃q
f (B)

for h ∈ Hq(W ∩ C), W ∈ W(A;G).
If Y = X, f = idX , then W ∈ W(A;X) if and only if W is an open

neighbourhood of A. In this case we omit the subindex f , i.e.

H̃q(A) := H̃q
idX

(A) = lim
−→
{Hq(W ) | W ⊃ A}.

Let Z be a space, A ⊂ Y , A′ ⊂ Z and W ∈ W(A;G). We say that a map
g:W ∩ C → Z is conforming to the pair (A,A′), if the following condition is
satisfied

for any open neighbourhood U ′ of A′ there is W ′ ∈ W(A;G)(4.1)

such that W ′ ⊂ W and g(W ′ ∩ C) ⊂ U ′.

If g:W ∩ C → Z is conforming to a pair (A,A′), then we define a group homo-
morphism:

H̃q(gA,A′): H̃q(A′) → H̃q
f (A),

by the formula: H̃q(gA,A′)([h]) := [Hq(g|W ′∩C,U ′)(h)] for h ∈ Hq(U ′), where
A′ ⊂ U ′ ⊂ Z, and W ′ is chosen according to condition (4.1), and Hq(g|W ′∩C,U ′)
is the homomorphism induced by the map g|W ′∩C,U ′ :W ′ ∩ C → U ′.

Lemma 4.1. H̃q(gA,A′) is a well-defined group homomorphism and does not
depend on choice of neighbourhoods U ′, W ′.

Proof. Proof is a direct consequence of the above definition. �

Note that the map g := f |C : C = X ∩ C → Y is conforming to the pair
(A,A) for any subset A ⊂ Y . Indeed, if U ′ is an open neighbourhood of A, then
we obtain W ′ := f−1(U ′) ∈ W(A;G) such that g(W ′ ∩ C) ⊂ U ′. Hence for any
q ∈ Z and A ⊂ Y we get the following homomorphism

f̃A := H̃q(gA,A) : H̃q(A) → H̃q
f (A).

Now we formulate the main result of the paper.



198 J. Mederski

Theorem 4.2. Let G and C be subsets of a space X such that G is closed
in X, f :X → Y be a map such that f(G ∩ C) = Y . Then f ∈ V(G, C) if and
only if for any locally closed subset A of Y and, for any q ∈ Z,

f̃A : H̃q(A) → H̃q
f (A)

is an isomorphism.

For the need of the proof of Theorem 4.2, we introduce an auxiliary notation:
for any topological space X by Top(X) we denote the category of all closed
subspaces of X with morphisms being inclusions iBA :A ↪→ B, where A ⊂ B,
A,B ∈ Top(X) (3). Moreover, for any closed subsets A of Y and K of X, we
write K ∈ Wd(A;G), provided that there are closed neighbourhoods N (4) of A

and M of f−1(N) ∩G such that M ∩ f−1(N) ⊂ int(K).

Lemma 4.3. Let A and B be closed subsets of a space Y .
(a) Then the families Wd(A;G) and W(A;G) are cofinal with Wd(A;G) ∪

W(A;G).
(b) If KA ∈ Wd(A;G), KB ∈ Wd(B;G), KA∩B ∈ Wd(A∩B;G) and KA∪B ∈

Wd(A ∪ B;G), then there are sets K ′
A ∈ Wd(A;G) and K ′

B ∈ Wd(B;G) such
that

K ′
A ⊂ KA, K ′

A ⊂ KA, K ′
A ∩K ′

B ⊂ KA∩B , K ′
A ∪K ′

B ⊂ KA∪B ,

K ′
A ∪K ′

B = intK′
A∪K′

B
(K ′

A) ∪ intK′
A∪K′

B
(K ′

B).

(c) If A is a discrete family of closed subsets of Y (5), A0 :=
⋃

A∈A
A and

KA ∈ Wd(A;G) where A ∈ A, K0 ∈ Wd(A0;G), then there is a discrete family
{K ′

A | A ∈ A} such that for any A ∈ A, K ′
A ∈ Wd(A;G), K ′

A ⊂ KA, and⋃
A∈A

K ′
A ⊂ K0.

Proof. Note that if K ∈ Wd(A;G), then int(K) ∈ W(A;G). Let W ∈
W(A;G). Then there are open neighbourhoods V of A and U of f−1(V ) ∩ G

such that U ∩ f−1(V ) ⊂ W . In view of the normality of the spaces X and Y

we obtain closed subsets N of A and M of f−1(N) ∩ G such that N ⊂ V and
M ⊂ U . Let K be a closed neighbourhood of M ∩ f−1(N) such that K ⊂ W .
Thus K ∈ Wd(A;G), which completes the proof of (a).

Statements (b) and (c) follows from the normality of X and the paracom-
pactness of Y , analogously as in the proof of [18, Theorem 3.1]). �

(3) Top(X) denotes the family of all closed subsets of X, too.

(4) N is a closed neighbourhood of A if N is closed and A ⊂ int(N).
(5) A family A of closed subsets of X is discrete, if A consists of sets pairwise disjoint such

that the sum of members of any subfamily of A is closed, or equivalently, for any x ∈ X there
is an open neighbourhood W of x such that the family {A ∈ A | A ∩W 6= ∅} is finite.
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Proof of Theorem 4.2. If f̃A: H̃q(A) → H̃q
f (A) is an isomorphism for any

A = {y}, y ∈ Y , then H̃q
f ({y}) ≈ H̃q({y}) ≈ Hq({y}), since {y} is taut in Y

with respect H∗. Therefore f ∈ V(G, C).
Now suppose that f ∈ V(G, C). In view of Lemma 4.3(a), for any A ∈

Top(Y ), q ∈ Z we obtain that

H̃q
f (A) ≈ lim

−→
{Hq(K ∩ C) | K ∈ Wd(A;G) ∪W(A;G)}

≈ lim
−→
{Hq(K ∩ C) | K ∈ Wd(A;G)}.

Therefore we may identify

(4.2) H̃q
f (A) = lim

−→
{Hq(K ∩ C) | K ∈ Wd(A;G)}.

Similarly, taking into account the normality of Y we identify

(4.3) H̃q(A) = lim
−→
{Hq(N) | A ⊂ int(N), N ∈ Top(Y )}.

We prove that H̃, H̃f are additive cohomology theories on space Y in the sense
of Lawson [10]. We provide argumentations for H̃f . Note that if A,B ∈ Top(Y )
such that B ⊂ A, the inclusion map iAB :B ↪→ A induces the group homomor-
phism H̃q

f (iAB): H̃q
f (A) → H̃q

f (B) defined by the formula

H̃q
f (iAB)([h]) := [h] ∈ H̃q

f (B)

for h ∈ Hq(K ∩ C), K ∈ Wd(A;G) ⊂ Wd(B;G). Thus it is easy to check
that H̃f := {H̃q

f} is a contravariant functor on category Top(Y ) to the cate-
gory of graded abelian groups. Let A and B be closed subsets of Y . In view
of Lemma 4.3(b) the family of sets of the form (K ′

A,K ′
B ,K ′

A ∩K ′
B ,K ′

A ∪K ′
B) is

cofinal with the family Wd(A;G)×Wd(B;G)×Wd(A ∩B;G)×Wd(A ∪B;G),
where the directed relation is the relation of (inverse) inclusion of sets. More-
over, the following sets CA := K ′

A ∩ C, CB := K ′
B ∩ C are closed in C and

CA ∪ CB = intCA∪CB
CA ∪ intCA∪CB

CB . Hence we obtain the Mayer–Vietoris
exact sequence

· · · ∆−→ Hq(CA ∪ CB) J−→ Hq(CA)⊕Hq(CB) I−→

−→ Hq(CA ∩ CB) ∆−→ Hq+1(CA ∪ CB) −→ · · ·

Passing to the direct limit we get the following exact sequence

· · ·
e∆f−→ H̃q

f (A∪B)
eJf−→ H̃q

f (A)⊕H̃q
f (B)

eIf−→ H̃q
f (A∩B)

e∆f−→ H̃q+1
f (A∪B) −→ · · ·

where ∆̃f , J̃f , Ĩf are appropriate homomorphisms. Therefore H̃f is a cohomo-
logy theory on Y (see [10]).
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Let A be a discrete family of closed subsets of Y , A0 :=
⋃

A∈A
A. Then by

Lemma 4.3(c) we get a family K of sets of the form
(
(K ′

A | A ∈ A),
⋃

A∈A
K ′

A

)
cofinal with

( ∏
A∈A

Wd(A;G)
)
× Wd(A0;G). Moreover, the family {K ′

A ∩ C |

A ∈ A} is discrete family of subsets of the topological space C. In view of the
additivity of cohomology theory H∗ on C and by the commutativity of the direct
limit with the Cartesian product we obtain:

H̃q
f (A0) = lim

−→
{Hq(K ∩ C) | K ∈ Wd(A0;G)}

≈ lim
−→

{
Hq(K ∩ C) | ((KA | A ∈ A),K) ∈

( ∏
A∈A

Wd(A;G)
)
×Wd(A0;G)

}
≈ lim

−→

{
Hq

(( ⋃
A∈A

K ′
A

)
∩ C

) ∣∣∣∣ (
(K ′

A | A ∈ A),
⋃

A∈A
K ′

A

)
∈ K

}
≈ lim

−→

{ ∏
A∈A

Hq(K ′
A ∩ C)

∣∣∣∣ (
(K ′

A | A ∈ A),
⋃

A∈A
K ′

A

)
∈ K

}
≈

∏
A∈A

lim
−→

{
Hq(K ′

A ∩ C)
∣∣∣∣ (

(K ′
A | A ∈ A),

⋃
A∈A

K ′
A

)
∈ K

}
≈

∏
A∈A

lim
−→
{Hq(KA ∩ C) | KA ∈ Wd(A;G)} =

∏
A∈A

H̃q
f (A).

Therefore H̃f is additive.
Now we show that any closed subset A of Y is taut in Y with respect to H̃f .

Let A ∈ Top(Y ). We show that the homomorphism

i: lim
−→
{H̃q

f (L) | A ⊂ int(L), L ∈ Top(X)} → H̃q
f (A)

defined as follows: i([h]) := H̃q
f (iLA)(h) = h|A for h ∈ H̃q

f (L), is a isomorphism
for any q ∈ Z. Let h ∈ H̃q

f (A). Then there is g ∈ Hq(K ∩ C) such that h = [g]
and K ∈ Wd(A;G). Thus there are closed neighbourhoods N of A and M of
f−1(N) ∩G such that M ∩ f−1(N) ⊂ int(K). Let L be a closed neighbourhood
of A such that L ⊂ int(N). Then N is a closed neighbourhood of L and K ∈
Wd(L;G). Hence [g] ∈ H̃q

f (L), which proves that i is an epimorphism.

Let h ∈ H̃q
f (L) and i([h]) = 0, where L is a closed neighbourhood of A

in Y . Then there is g ∈ Hq(K ∩ C) such that h = [g], where K ∈ Wd(L;G)
and N , M are closed neighbourhoods of L, f−1(N) ∩ G, respectively. It is
clear that i([h]) = [g] = 0 ∈ H̃q

f (A). Hence there is K ′ ∈ Wd(A;G) such that
K ′ ⊂ K and g|K′∩C = 0. We find a closed neighbourhood L′ ⊂ L of A such
that K ′ ∈ Wd(L′;G). Hence [g] = 0 ∈ H̃q

f (L′) and [h] = 0 ∈ lim
−→
{H̃q

f (L) | A ⊂
int(L), L ∈ Top(X)}, which completes the proof of the tautness of A.



Vietoris–Begle Theorems for Nonclosed Maps 201

Similarly as above, we obtain that H̃ together with the homomorphism ∆̃
defined analogously, is additive and any closed subset of Y is taut in Y with
respect to H̃.

Now we show that there is an isomorphism τ : (H̃, ∆̃) → (H̃f , ∆̃f ) of coho-
mology theories. Let A ∈ Top(Y ), then τ q

A: H̃q(A) → H̃q
f (A) defined by the

formula:
τ q
A([h]) := [Hq(f |(f−1(N)∩C,N))(h)]

for any q ∈ Z, h ∈ Hq(N), where N is a closed neighbourhood of A. Then τ q
A is

a group homomorphism for any q ∈ Z.
Let A,B ∈ Top(Y ), A ⊂ B. Then for any q ∈ Z, h ∈ Hq(N), where N is

a closed neighbourhood of B, we get

H̃q
f (iBA) ◦ τ q

B([h]) = [Hq(f |(f−1(N)∩C,N))(h)] = τ q
A ◦ H̃q(iBA)([h]),

which means that τ is a natural transformation of functors H̃ and H̃f . If A∪B =
intA∪B(A) ∪ intA∪B(B), then we easily show that

∆̃f ◦ τ q
A∩B = τ q+1

A∪B ◦ ∆̃.

Then τ : (H̃, ∆̃) → (H̃f , ∆̃f ) is a homomorphism of cohomology theories.
In view of (3.2) we get for any y ∈ Y and q ∈ Z

H̃q
f ({y}) ≈ Hq(pt).

Moreover, taking into account the tautness of {y} in Y with respect H∗ we
obtain group isomorphisms:

H̃q({y}) ≈ Hq(pt) ≈ H̃q
f ({y})

for any y ∈ Y and q ∈ Z. Hence

τ q
{y}: H̃

q({y}) → H̃q
f ({y})

is an isomorphism for any y ∈ Y and q ∈ Z. In view of 10, Theorem 3.2

τ q
A: H̃q(A) → H̃q

f (A)

is an isomorphism for any q ∈ Z and A ∈ Top(Y ). Taking into account the iden-
tifications (4.2) and (4.3) observe that f̃A: H̃q(A) → H̃q

f (A) is an isomorphism.
Now let A be locally closed subset in A and f ∈ V(G, C). Then A is closed in

some open neighbourhood W ⊂ Y of itself. Let XW := f−1(W ), GW := G∩XW ,
CW := C∩XW , YW := W , fW := f |(XW ,YW ):XW → YW . Then we may consider
the cohomology theories H̃ and H̃fW

defined on YW . Then fW ∈ V(GW , CW )
and f̃A: H̃q(A) → H̃q

fW
(A) = H̃q

f (A) is an isomorphism for any q ∈ Z, which
completes the proof of the theorem. �
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Remark 4.4. (a) Note that Theorem 4.2 is also valid if we consider singular
cohomology theory H∗

∆ instead of Alexander–Spanier cohomology theory H∗

theory provided that Y is homologically locally connected (e.g. Y is an absolute
neighbourhood retract). Indeed in the proof of Theorem 4.2 we used only the
pointwise tautness of H∗ in Y , i.e. any singleton {y} is taut in Y and by ([17])
singular cohomology theory is pointwise taut in a homologically locally connected
space.

(b) For any subsets A, B of Y , B ⊂ A and for any q ∈ Z we can define the
homomorphism induced by f in the relative case

f̃(A,B) := H̃q(f |(A,B),(A,B)): H̃q(A,B) → H̃q
f (A,B)

similarly as above. Moreover, in view of Theorem 4.2 and by the standard
application of long exact sequences of pairs of spaces and the five lemma, we
obtain that if f ∈ V(G, C), A, B are locally closed, then f̃(A,B) is an isomorphism.

Now we are ready to prove the following generalization of the Vietoris–Begle
Theorem (see Proposition 3.2(b)).

Theorem 4.5. If f ∈ V, then Hq(f):Hq(Y ) → Hq(X) is an isomorphism
for any q ∈ Z.

Proof. If f ∈ V, then assuming that G = C = X, in view of Theorem 4.2

f̃Y : H̃q(Y ) → H̃q
f (Y )

is an isomorphism for any q ∈ Z. In order to complete the proof it is sufficient to
note that we may identify H̃q(Y ) = Hq(Y ), H̃q

f (Y ) = Hq(X) and f̃Y = Hq(f).�

Remark 4.6. (a) Let f :X → Y be a surjection. Then the above theorem
can be expressed more general: f ∈ V if and only if Hq(f |f−1(V )) : Hq(V ) →
Hq(f−1(V )) is an isomorphism for any open subset V ⊂ Y and q ∈ Z. Indeed,
if f ∈ V, then f |f−1(V ) ∈ V for any open V ⊂ Y . Then in view of Theorem 4.5,
Hq(f):Hq(V ) → Hq(f−1(V )) is an isomorphism for any q ∈ Z. In the other
hand, let V be an open neighbourhood of y ∈ Y . Then Hq(f |f−1(V )):Hq(V ) →
Hq(f−1(V )) is an isomorphism and hence

lim
−→
{Hq(V ) | V 3 y} ≈ lim

−→
{Hq(f−1(V )) | V 3 y},

is an isomorphism for any y ∈ Y . In view of the tautness of {y} in Y with
respect to H∗ we obtain that f ∈ V.

(b) In general, if f ∈ V and A is a closed subset of Y , then

Hq(f |f−1(A)):Hq(A) → Hq(f−1(A))

does not have to be an isomorphism.



Vietoris–Begle Theorems for Nonclosed Maps 203

Recall Example 3.3 and note that Hq(f |f−1(A)) is not an isomorphism pro-
vided that A = [0, 1/2].

(c) In view of Remark 4.4, the statement of Theorem 4.5 is still valid if we
consider singular cohomology H∗

∆ instead of H∗ provided that Y is homologically
locally connected.

Theorem 4.7. Let f ∈ V(G, C) such that f |G is a closed map. Then, for
any q ∈ Z,

f̃ :Hq(Y ) → lim
−→
{Hq(W ∩ C) | W is an open neighbourhood of G}

is an isomorphism defined by the formula:

f̃(h) := [Hq(f)(h)|C ] for any h ∈ Hq(Y ).

Proof. The map f |G is closed, then in view of (3.1) we obtain that

W(Y ;G) = {W | W is an open neighbourhood of G}.

Hence, identifying H̃q(Y ) = Hq(Y ) and by Theorem 4.2 we obtain that

f̃ = f̃Y : H̃q(Y ) → H̃q
f (Y ) = lim

−→
{Hq(W ∩ C) | W ⊃ G}

is an isomorphism. �

Note that if f ∈ V(G, C) such that f |G is a closed map, then in general

Hq(f |G∩C):Hq(Y ) → Hq(G ∩ C)

is not an isomorphism for q ∈ Z (see the following example).

Example 4.8. Let X := [0, 1]× [0,+∞), C := [0, 1/2)× [0,+∞)∪ [1/2, 1]×
[1,+∞), G := [0, 1/2)×{0}∪ [1/2, 1]× [0, 1], f :X → Y := [0, 1] be defined by the
formula: f(x, y) = x for (x, y) ∈ X. Then G∩C = [0, 1/2)×{0}∪ [1/2, 1)×{1},
f is surjective, f |G is closed and f ∈ V(G, C) (see Proposition 3.4(a)). In view
of Theorem 4.7, f̃ is an isomorphism. However Hq(f |G∩C):Hq(Y ) → Hq(G∩C)
is not an isomorphism for any q ≥ 0.

Remark 4.9. We may consider the following class of maps: f ∈ Vn(G, C),
if f(G ∩ C) = Y and for any y ∈ Y , q = 0, . . . , n

lim
−→
{Hq(W ∩ C) | W ∈ W({y};G)} ≈ Hq(pt)

is an isomorphism. Then using the similar arguments of the paper it is possible
to prove the following generalization of Theorem 4.2: f ∈ Vn(G, C) if and only
if for any locally closed subset A of Y

f̃A: H̃q(A) → H̃q
f (A)

is an isomorphism for q = 0, . . . , n and monomorphism for q = n + 1.
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Now we present a version of the Vietoris-Begle theorem for not necessarily
closed maps over a space B.

Theorem 4.10. Let X, Y , B be spaces. Assume that that p:X → B, q:Y →
B are closed surjections and f :X → Y is a map over B (i.e. q(f(x)) = p(x) for
any x ∈ X) such that

Hk(f |p−1(b),q−1(b)):Hk(q−1(b)) → Hk(p−1(b))

is an isomorphism for any k ∈ Z and b ∈ B. Then

Hk(f):Hk(Y ) → Hk(X)

is an isomorphism for any k ∈ Z.

Proof. Similarly as in proof of Theorem 4.2, for any A ∈ Top(B), k ∈ Z

H̃k
p (A) = lim

−→
{Hk(p−1(N)) | A ⊂ int(N), N ∈ Top(B)},

H̃k
q (A) = lim

−→
{Hk(q−1(N)) | A ⊂ int(N), N ∈ Top(B)},

and it can be shown that H̃p, H̃q are additive cohomology theories on space
B and any closed subset of B is taut with respect to H̃p, H̃q. Note that f

induces the homomorphism of cohomology theories τ : (H̃q,∆) → (H̃p,∆) for
any A ∈ Top(B), k ∈ Z

τk
A([h]) := [Hk(f |p−1(N),q−1(N))(h)],

where h ∈ Hk(q−1(N)), A ⊂ int(N), N ∈ Top(B). Moreover, τk
{b} is an isomor-

phism for any b ∈ B and k ∈ Z. Hence in view of [10, Theorem 3.2] we easily
get the isomorphism

Hk(f) = τk
B :Hk(Y ) = H̃k

q (B) → Hk(X) = H̃k
p (B)

for any k ∈ Z. �

Note that the composition of closed surjections is a closed surjection. Hence
Theorem 4.10 is a generalization of the following Biaynicki–Birula result (see [2],
[16], [7]): If f :X → Y and g:Y → Z are closed surjections and

Hk(f |f−1(g−1(z))):Hk(g−1(z)) → Hk(f−1(g−1(z)))

is an isomorphism for any z ∈ Z and k ∈ Z, then Hk(f):Hk(Y ) → Hk(X) is
an isomorphism for any k ∈ Z.
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