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ON EXISTENCE OF GLOBAL IN TIME SOLUTIONS
TO THERMOELASTICITY

WITH A QUADRATIC NONLINEARITY
FOR SMALL DATA

Leszek Bartczak

Abstract. In this paper we study a simplified model of thermoviscoplas-

ticity. We prove local in time existence and uniqueness of solution. More-
over, for sufficiently small data, global in time existence is proved.

1. Introduction

In this paper we consider the problem of thermoelasticity with a nonlinear
term in the equation of heat conduction. The considered body occupies initially
a bounded domain Ω ⊂ R3 with smooth boundary. Let (t, x) ∈ (0, T )×Ω, where
x represents the material point while t denotes time.

(1.1)
−divxD(ε(u(t, x))) = −∇xθ(t, x) + f(t, x),

∂tθ(t, x)−∆θ(t, x) = −divx∂tu(t, x) + |D(ε(u(t, x)))|2.

The first equation results from the balance of momentum in the quasistatic
case. The second equation follows from the balance of energy and describes the
heat conduction in the considered body. The function u: Ω × R+ → R3 is the
displacement, ε(u) := 1

2 (∇xu + ∇T
x u) represents the linear strain tensor. We

can observe that ε(u) ∈ S3, where S3 is the set of 3 × 3 symmetric matrices
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with real entries. We assume that the operator D:S3 → S3 is linear, symmetric
and positive definite. The temperature of the body is described by the function
θ: Ω× R+ → R. The vector-valued function f : Ω× R+ → R3 represents volume
forces.

We complete the problem (1.1) with Dirichlet boundary condition:

u(t, x)|∂Ω = uD(t, x),

θ(t, x)|∂Ω = θD(t, x).

and impose the initial data:

θ(0, x) = θ0(x).

Furthermore we have to add the compatibility condition in the following form

θ0(x)|∂Ω = θD(0, x).

Our aim is to find a solution (u, θ) and prove its uniqueness. First we show the
existence of a local in time solution to (1.1) using Banach fixed point theorem.
Then we prove that for some sort of the given data we can solve our problem for
any t ∈ R+.

Our motivation to investigate such a system of equations comes from the
study of mathematical models of thermoviscoplasticity. Mathematical analysis
of models in thermoviscoplasticity is not sufficiently developed. The question of
existence, uniqueness and the behaviour in time of the solutions is still open in
general, only some special cases are resolved. Recently author in [2] has proved
the existence and uniqueness of the solution to a problem of termoviscoplasticity
in the case of quasistatic model with Bodner–Partom constitutive equation on
plastic part of the strain tensor. Nevertheless in the most of models in thermo-
viscoplasticity the crucial therm – the stress times the time derivative of a plastic
part of the strain is only integrable over Ω. Problem (1.1) is a simplification of
this case.

Remark 1.1. Let us denote

E(ϕ) :=
1
2

∫
Ω

D(ε(ϕ))ε(ϕ) dx for ϕ ∈ H1(Ω).

One easily observes that there exist positive constants c1, c2 ∈ R+ such that

(1.2) c1E(ϕ) ≤ ‖∇xϕ‖2
L2(Ω) ≤ c2(E(ϕ) + ‖ϕ|∂Ω‖2

H1/2(∂Ω))

(this immediately follows from Korn’s inequality and properties of the opera-
tor D). In particular E( · ) is equivalent to the standard norm in the space H1

0 (Ω).
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2. Reduction of the boundary condition

In this section our aim is to transform the problem (1.1) into a homogeneous
one. As in [2] we solve the following two linear problems. The first of the
considered problems has the form

(2.1)

∂tθ̃(t, x) = ∆θ̃(t, x),

θ̃(t, x)|∂Ω = θD(t, x),

θ̃(0, x) = θ̃0(x),

where θ̃0 is some function compatible with the boundary data θD. This means
that the following condition is satisfied:

(2.2) θ̃0(x)− θ0(x) ∈ H1
0 (Ω).

The second problem is to solve the linear elasticity system with the temperature
from (2.1)

(2.3)
−divxD(ε(ũ(t, x))) = −∇xθ̃(t, x) + f(t, x),

ũ(t, x)|∂Ω = uD(t, x).

Lemma 2.1. (a) Assume that

θD ∈ L2(0, T ;H3/2(∂Ω)) ∩H3/4(0, T ;L2(∂Ω)) ∩ L∞(0, T ;H1/2(∂Ω)).

Moreover, let the initial data θ̃0 belong to the space H1(Ω) and satisfy the compa-
tibility condition (2.2). Then the problem (2.1) has a unique solution θ̃ satisfying
θ̃ ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) with ∂tθ̃ ∈ L2(0, T ;L2(Ω)) and

‖θ̃‖L2(0,T ;H2(Ω)) + ‖θ̃‖L∞(0,T ;H1(Ω)) + ‖∂tθ̃‖L2(0,T ;L2(Ω))

≤C(T )(‖θ̃0‖H1(Ω) + ‖θD‖L2(0,T ;H3/2(∂Ω))

+ ‖θD‖H3/4(0,T ;L2(∂Ω)) + ‖θD‖L∞(0,T ;H1/2(∂Ω))).

(b) Let f ∈ H1(0, T ;L2(Ω)), uD ∈ L∞(0, T ;H3/2(∂Ω))∩H1(0, T ;H1/2(∂Ω)).
Then the problem (2.3) has a unique solution ũ belonging to L∞(0, T ;H2(Ω)) ∩
H1(0, T ;H1(Ω)) and we have the estimates:

‖ũ‖L∞(0,T ;H2(Ω)) ≤C(‖θ̃‖L∞(0,T ;H1(Ω))

+ ‖f‖L∞(0,T ;L2(Ω)) + ‖uD‖L∞(0,T ;H3/2(∂Ω))),

‖∂tũ‖L2(0,T ;H1(Ω)) ≤C(‖∂tθ̃‖L2(0,T ;L2(Ω))

+ ‖∂tf‖L2(0,T ;L2(Ω)) + ‖∂tuD‖L2(0,T ;H1/2(∂Ω))).

Remark 2.2. The first part of the above assertion follows immediately from
the theory of parabolic equations (cf. [4]). The second part results from the
theory of linear elasticity (cf. [6]).
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Next we define (û, θ̂) := (u−ũ, θ−θ̃) to obtain the problem with homogeneous
boundary values.

(2.4)

−divxD(ε(û(t, x))) = −∇xθ̂(t, x),

∂tθ̂(t, x)−∆θ̂(t, x) = − divx∂tû(t, x)

+ |D(ε(û(t, x) + ũ(t, x)))|2 + divx∂tũ(t, x),

û(t, x)|∂Ω =0,

θ̂(t, x)|∂Ω =0,

θ̂(0, x) = θ0(x)− θ̃0(x) [=: θ?
0 ].

In the problem above and in further investigations we will treat ũ and θ̃ as known
functions.

3. Existence of a local in time solution to (2.4) and (1.1)

In this section we prove the existence of a local in time solution to problem
(2.4). To obtain this result we use the Banach fixed point theorem. First let
us take θ? ∈ L∞(0, T ;H1

0 (Ω)) such that ‖θ?‖L∞(0,T ;H1
0 (Ω)) ≤ M , where M > 1

will be indicated later. Additionally, we set B(M) := {ξ ∈ L∞(0, T ;H1
0 (Ω)) |

‖ξ‖L∞(0,T ;H1
0 (Ω)) ≤ M}. Then we solve the following problem:

(3.1)
−divxD(ε(v(t, x))) = −∇xθ?(t, x),

v(t, x)|∂Ω = 0.

Lemma 3.1 (Existence of a solution to (3.1)). For any θ? ∈ B(M) there
exists a unique solution v ∈ L∞(0, T ;H2(Ω)) ∩ L∞(0, T ;H1

0 (Ω)) to the prob-
lem (3.1). Moreover, the following estimates are satisfied:

(3.2)
‖v‖L∞(0,T ;H1

0 (Ω)) ≤C‖θ?‖L∞(0,T ;L2(Ω)),

‖v‖L∞(0,T ;H2(Ω)) ≤C‖∇xθ?‖L∞(0,T ;L2(Ω)).

Remark 3.2. The lemma above is a standard result from the theory of linear
elasticity (see [6]).

Next let us consider the second problem (with v solving (3.1)):

(3.3)

−divxD(ε(u(t, x))) = −∇xθ(t, x),

∂tθ(t, x)−∆θ(t, x) = − divx∂tu(t, x)

+ |D(ε(v(t, x) + ũ(t, x)))|2 − divx∂tũ(t, x),

u(t, x)|∂Ω =0,

θ(t, x)|∂Ω =0,

θ(0, x) = θ?
0(x).
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Lemma 3.3 (Existence of a solution to (3.3)). There exists a unique solution
(u, θ) for the problem (3.3) belonging to H1(0, T ;H1

0 (Ω)) and L∞(0, T ;H1
0 (Ω))∩

H1(0, T ;L2(Ω)), respectively. Moreover, the following estimates hold:

(3.4) sup
0≤t≤T

‖∇xu(t)‖2
L2(Ω) + sup

0≤t≤T
‖θ(t)‖2

L2(Ω) + ‖∇xθ‖2
L2(0,T ;L2(Ω))

≤ C(‖v + ũ‖4
L4(0,T ;H2(Ω)) + ‖divx∂tũ‖2

L2(0,T ;L2(Ω)) + ‖θ?
0‖2

L2(Ω)),

(3.5) ‖∇x∂tu‖2
L2(0,T ;L2(Ω)) + ‖∂tθ‖2

L2(0,T ;L2(Ω)) + sup
0≤t≤T

‖∇xθ(t)‖2
L2(Ω)

≤ C(‖v + ũ‖4
L4(0,T ;H2(Ω)) + ‖divx∂tũ‖2

L2(0,T ;L2(Ω)) + ‖∇xθ?
0‖2

L2(Ω)).

Remark 3.4. Lemma 3.3 follows from the more general fact, which is proven
in Theorem 5.1 in the appendix and from the following estimate

‖ |D(ε(v(t) + ũ(t)))|2 ‖L2(Ω) = ‖D(ε(v(t) + ũ(t)))‖2
L4(Ω) ≤ C‖v(t) + ũ(t)‖2

H2(Ω).

The estimate above follows immediately from the Sobolev embedding theorem
and properties of the operator D.

Remark 3.5. Note that constants on right hand sides of inequalities (3.2),
(3.4) and (3.5) depend only on the geometry of the domain Ω and coefficients
of the operator D but they are independent of the length of the time interval
(0, T ).

Remark 3.6. The operator P:B(M)→L∞(0, T ;H1
0 (Ω)) such that P: θ? 7→θ

is well defined. Indeed to get θ from θ? we solve problems (3.1) and (3.3).

We are going to use the Banach fixed point theorem for the operator P so
we need to prove that P maps B(M) into B(M) and that P is a contraction on
small time interval.

Proposition 3.7. For any given data θ?
0 we can choose such a constant

M ≥ 0 and such a short time interval (0, T ) that the operator P:B(M) → B(M)
i.e. ‖θ‖L∞(0,T ;H1

0 (Ω)) ≤ M .

Proof. To prove the proposition it is enough to observe that:

‖v‖L4(0,T ;H2(Ω)) ≤
4
√

T ‖v‖L∞(0,T ;H2(Ω)).

Then immediately from Lemma 3.3 and Lemma 3.1 we can estimate as follows:

sup
0≤t≤T

‖θ(t)‖2
H1

0 (Ω) ≤C(T‖v‖4
L∞(0,T ;H2(Ω)) + ‖ũ‖4

L4(0,T ;H2(Ω))

+ ‖divx∂tũ‖2
L2(0,T ;H2(Ω)) + ‖∇xθ?

0‖2
L2(Ω))

≤C(TM4 + ‖ũ‖4
L4(0,T ;H2(Ω))

+ ‖divx∂tũ‖2
L2(0,T ;H2(Ω)) + ‖∇xθ?

0‖2
L2(Ω)) < M2,
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where

M2 > C(‖ũ‖4
L4(0,T ;H2(Ω)) + ‖divx∂tũ‖2

L2(0,T ;H2(Ω)) + ‖∇xθ?
0‖2

L2(Ω))

and

T <
M2 − C(‖ũ‖2

L2(0,T ;H2(Ω)) + ‖divx∂tũ‖2
L2(0,T ;H2(Ω)) + ‖∇xθ?

0‖2
L2(Ω))

CM4
. �

Now we are going to show that P is a contraction on B(M) for a sufficiently
short time interval. To prove it we take θ?

1 , θ?
2 ∈ B(M) and solve the problem

(3.1). Next for solutions v1, v2 we solve the problem (3.3). Let (θ1, u1), (θ2, u2)
be the corresponding solutions. We denote by θ

?
:= θ?

1 − θ?
2 , v := v1 − v2,

(θ, u) := (θ1, u1)− (θ2, u2). Functions (θ, u) satisfy

(3.6)

−divxD(ε(u(t, x))) = −∇xθ(t, x),

∂tθ(t, x)−∆θ(t, x) = − divx∂tu(t, x)|D(ε(v1(t, x)) + ũ(t, x))|2

− |D(ε(v2(t, x) + ũ(t, x)))|2,
u(t, x)|∂Ω =0,

θ(t, x)∂Ω =0,

θ(0, x) = 0.

Proposition 3.8 (Estimates for differences). For almost all t ≤ T , where
T was fixed in Proposition 3.7 functions θ, u satisfy the following estimates:

sup
0≤τ≤t

‖∇xu(τ)‖2
L2(Ω) + sup

0≤τ≤t
‖θ(τ)‖2

L2(Ω) +
∫ t

0

‖∇xθ(τ)‖2
L2Ω)

≤ Ct(M2 + 2‖ũ‖2
L∞(0,T ;H2(Ω))) sup

0≤τ≤t
‖θ?

(τ)‖2
H1

0 (Ω),

2
∫ t

0

‖∇x∂tu‖2
L2(Ω) +

∫ t

0

‖∂tθ‖2
L2(Ω) + sup

0≤τ≤t
‖∇xθ(τ)‖2

L2(Ω)

≤ C̃t(M2 + 2‖ũ‖2
L∞(0,T ;H2(Ω))) sup

0≤τ≤t
‖θ?

(τ)‖2
H1

0 (Ω).

Proof. Using ∂tu and θ as test functions in the first and the second equa-
tions of (3.6) respectively we obtain

∂tE(u(t)) +
1
2
∂t‖θ(t)‖2

L2(Ω) + ‖∇xθ(t)‖2
L2(Ω)

=
∫

Ω

(|D(ε(v1(t))) +D(ε(ũ(t)))|2 − |D(ε(v2(t))) +D(ε(ũ(t)))|2)θ(t) dx.

Using the Hölder inequality gives us that

∂tE(u(t)) +
1
2
∂t‖θ(t)‖2

L2(Ω) + ‖∇xθ(t)‖2
L2(Ω)

≤ ‖D(ε(v1(t)− v2(t)))‖L4(Ω)‖D(ε(v1(t) + v2(t) + 2ũ(t)))‖L4(Ω)‖θ(t)‖L2(Ω).
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From properties of the operator D, Korn’s inequality and the Sobolev embedding
theorem we get

∂tE(u(t)) +
1
2
∂t‖θ(t)‖2

L2(Ω) + ‖∇xθ(t)‖2
L2(Ω)

≤ ‖v1(t)− v2(t))‖H2(Ω)‖v1(t) + v2(t) + 2ũ(t))‖H2(Ω)‖θ(t)‖L2(Ω).

Applying Poincaré and Young inequalities, the property (1.2) and integrating
over time we obtain

‖∇xu(t)‖2
L2(Ω) + ‖θ(t)‖2

L2(Ω) +
∫ t

0

‖∇xθ(τ)‖2
L2(Ω) dτ

≤ C

∫ t

0

‖v(τ)‖2
H2(Ω)(‖v1(τ)‖2

H2(Ω) + ‖v2(τ)‖2
H2(Ω) + 4‖ũ(τ)‖2

H2(Ω)) dτ.

From linearity of the problem (3.1) using Lemma 3.1 we can estimate

‖∇xu(t)‖2
L2(Ω) + ‖θ(t)‖2

L2(Ω) +
∫ t

0

‖∇xθ(τ)‖2
L2(Ω) dτ

≤ C

∫ t

0

‖θ?
(τ)‖2

H1(Ω)(‖θ
?
1(τ)‖2

H1(Ω) + ‖θ?
2(τ)‖2

H1(Ω) + 4‖ũ(τ)‖2
H2(Ω)) dτ.

Thus from the fact that θ?
1 , θ?

2 ∈ B(M) it follows

sup
0≤τ≤t

‖∇xu(τ)‖2
L2(Ω) + sup

0≤τ≤t
‖θ(τ)‖2

L2(Ω) +
∫ t

0

‖∇xθ(τ)‖2
L2(Ω) dτ

≤ Ct sup
0≤τ≤t

‖θ?
(τ)‖2

H1(Ω)

(
2M2 + 4 sup

0≤τ≤T
‖ũ(τ)‖2

H2(Ω)

)
and this inequality ends the proof of the first part of the assertion.

To prove the second inequality we differentiate the first equation of (3.6) with
respect to time and use as a test function ∂tu while the second equation of (3.6)
is tested by ∂tθ. Finally we obtain

2E(∂tu(t)) + ‖∂tθ(t)‖2
L2(Ω) +

1
2
∂t‖∇xθ(t)‖2

L2(Ω)

=
∫

Ω

(|D(ε(v1(t))) +D(ε(ũ(t)))|2 − |D(ε(v2(t))) +D(ε(ũ(t)))|2)∂tθ(t) dx.

Similar argumentation as in the first part of the proof leads us to the desired
inequality. �

Corollary 3.9. For all sufficiently small T ? ≤ T the operator P is a con-
traction. Indeed, from Proposition 3.8 we obtain that there exists a positive
constant C(T ) such that for all 0 ≤ t ≤ T

sup
0≤τ≤t

‖θ(τ)‖2
H1

0 (Ω) ≤ tC(T ) sup
0≤τ≤t

‖θ?
(τ)‖2

H1
0 (Ω).
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Thus we can choose such T ? ≤ T that it holds

‖θ‖L∞(0,T ?;H1
0 (Ω)) ≤ α‖θ?

(τ)‖L∞(0,T ?;H1
0 (Ω)),

where 0 < α < 1.

Theorem 3.10. Under the assumptions of Lemma 2.1 there exists a local in
time unique solution

û ∈ H1(0, T ?;H1
0 (Ω)), θ̂ ∈ H1(0, T ?;L2(Ω)) ∩ L∞(0, T ?;H1

0 (Ω))

to the problem (2.4).

Proof. By the Banach fixed point theorem we obtain that the operator
P:B(M) → B(M) has a unique fixed point θ̂ ∈ B(M). From lemma 3.1 we
obtain that there exists a function û ∈ H1(0, T ?;H1

0 (Ω)) which is the unique
solution to (3.1). Moreover, it follows from Lemma 3.3 that the pair (û, θ̂) is the
unique solution to (3.3), thus (û, θ̂) is the unique solution to (2.4). Additionally
from Lemma 3.3 it follows that ∂tθ̂ ∈ L2(0, T ?;L2(Ω)). �

Remark 3.11 (Strengthened regularity for (2.4)). The solution of the prob-
lem (2.4) belongs to the following spaces:

û ∈ L∞(0, T ?;H2(Ω)), θ̂ ∈ L2(0, T ?;H2(Ω)).

Indeed û(t) for almost all t ∈ (0, T ?) satisfies an elliptic equation with right hand
side −∇xθ̂(t) ∈ L2(Ω), while θ̂ satisfies a parabolic equation with right hand side(
−divx∂tû + |D(ε(û))|2 + divx∂tũ

)
∈ L2(0, T ?;L2(Ω)).

At the end of this section we formulate the local in time existence theorem
for problem (1.1), which is a direct consequence of Lemma 2.1 and Theorem 3.10.

Theorem 3.12. Under assumptions of Lemma 2.1 there exists a local in
time unique solution (u, θ) for the problem (1.1) such that u ∈ L∞(0, T ?;H2(Ω))
while ∂tu ∈ L2(0, T ?;H1(Ω)) and θ ∈ L2(0, T ?;H2(Ω))∩L∞(0, T ?;H1(Ω)) while
∂tθ ∈ L2(0, T ?;L2(Ω)).

4. Existence of a global in time solution for sufficiently small data

Our aim in this section is to choose the given data (boundary data, the initial
condition and the vector of volume forces) in such a way to obtain a global in
time solution to the problem (1.1). First let us make an observation.

Lemma 4.1. The trace in normal direction of (D(ε(∂tu(t, · )))− I · ∂tθ(t, · ))
is a functional from H−1/2(∂Ω) for almost all t ∈ (0, T ?) and the following
inequality holds:

‖(D(ε(∂tu(t))− I∂tθ(t))−→n ( · )‖H−1/2(∂Ω)

≤ C(‖∂tf(t)‖L2(Ω) + ‖D(ε(∂tu(t))‖L2(Ω) + ‖∂tθ(t)‖L2(Ω))
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where I denotes the 3 × 3 identity matrix and −→n (x) the unit outward normal
to ∂Ω.

Proof. We use the fact (cf. [5]) that a function φ · −→n belongs to the space
H−1/2(∂Ω) provided φ ∈ L2(Ω) and the weak divergence divxφ ∈ L2(Ω). Then
it holds that

‖φ · −→n ‖H−1/2(∂Ω) ≤ C(‖φ‖L2(Ω) + ‖divxφ‖L2(Ω)).

Thus using a weak formulation of the first equation of (1.1) differentiated with
respect to time and estimates from the previous section we easily obtain

‖(D(ε(∂tu(t))− I ∂tθ(t))−→n ‖H−1/2(∂Ω)

≤ C(‖divx(D(ε(∂tu(t))− I∂tθ(t))‖L2(Ω) + ‖D(ε(∂tu(t))− I∂tθ(t)‖L2(Ω))

≤ C(‖∂tf(t)‖L2(Ω) + ‖D(ε(∂tu(t))‖L2(Ω) + ‖∂tθ(t)‖L2(Ω)). �

To prove global in time existence of the solution to the problem (1.1) we need
additionally some assumptions on the regularity and size of the data which we
will specify at the end of the proof of Theorem 4.2 (inequalities (4.8)–(4.12)).

(A1) Let the norm ‖θ0‖2
H1(Ω) be small enough.

(A2) Let the function f ∈ L1(R+;L2(Ω)) ∩H1(R+;L2(Ω)) ∩ L6(R+;L2(Ω))
and let the norms:

‖f |t=0‖L2(Ω), ‖f‖L1(R+;L2(Ω)), ‖f‖H1(R+;L2(Ω)), ‖f‖L6(R+;L2(Ω))

be small enough.
(A3) Let the boundary condition

uD ∈ L1(R+;H1/2(∂Ω)) ∩H1(R+;H1/2(∂Ω))

∩ L4(R+;H3/2(∂Ω)) ∩ L6(R+;H3/2(∂Ω))

and let the norms:

‖uD|t=0‖H1/2(∂Ω), ‖uD‖L1(R+;H1/2(∂Ω)), ‖uD‖H1(R+;H1/2(∂Ω)),

‖uD‖L4(R+;H3/2(∂Ω)), ‖uD‖L6(R+;H3/2(∂Ω))

be small enough.
(A4) Let the boundary condition

θD ∈ H1(R+;H1/2(∂Ω)) ∩W 1,∞(R+;H1/2(∂Ω))

and let the norms

‖θD‖H1(R+;H1/2(∂Ω)), ‖θD‖W 1,∞(R+;H1/2(∂Ω))

be small enough.
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Theorem 4.2. If the given data satisfy the assumptions (A1)–(A4), then
there exists a global in time solution (u, θ) to (1.1).

Proof. In the proof we will use a convention that different constants will
be denoted by the same letter C. We will at the same time deal with energetic
estimates of two types. The first one comes out of testing (1.1)1 (the first equa-
tion of (1.1)) by ∂tu while (1.1)2 (the second equation of (1.1)) by θ. Integrating
by parts we get the following:

∂tE(u(t)) +
1
2
∂t‖θ(t)‖2

L2(Ω) + ‖∇xθ(t)‖2
L2(Ω)(4.1)

=
∫

∂Ω

(D(ε(u(t))− I θ(t))−→n ∂tuD(t) dS +
∫

Ω

f(t)∂tu(t) dx

+
∫

∂Ω

θD(t)
∂θ

∂−→n
(t) dS +

∫
Ω

|D(ε(u(t))|2θ(t) dx.

To obtain the second estimate we test (1.1)1 differentiated with respect to time
by ∂tu while (1.1)2 by ∂tθ and, as in the first estimate, we integrate by parts.

(4.2) 2E(∂tu(t)) + ‖∂tθ(t)‖2
L2(Ω) +

1
2
∂t‖∇xθ(t)‖2

L2(Ω)

=
∫

∂Ω

(D(ε(∂tu(t))− I∂tθ(t))−→n ∂tuD(t)dS +
∫

Ω

∂tf(t)∂tu(t) dx

+
∫

∂Ω

∂tθD(t)
∂θ

∂−→n
(t) dS +

∫
Ω

|D(ε(u(t))|2∂tθ(t) dx.

We now add the estimates above and in order to close the resulting inequality
we need to deal with the following terms: the first one is the integral with the
volume force and its time derivative. We use Hölder inequality, then Poincaré
inequality, property (1.2) and finally Young’s inequality to obtain∫

Ω

(f(t) + ∂tf(t))∂tu(t) dx

≤ 1
2
E(∂tu(t)) + C(‖∂tuD(t)‖2

H1/2(∂Ω) + ‖f(t)‖2
L2(Ω) + ‖∂tf(t)‖2

L2(Ω)).

Next we estimate the following boundary integral:∫
∂Ω

(D(ε(u(t))− I θ(t))−→n ∂tuD(t) dS

≤‖(D(ε(u(t))− I θ(t))−→n ‖H−1/2(∂Ω)‖∂tuD(t)‖H1/2(∂Ω)

≤C(‖divx(D(ε(u(t)))− I θ(t))‖L2(Ω)

+ ‖D(ε(u(t))− I θ(t)‖L2(Ω))‖∂tuD(t)‖H1/2(∂Ω)

≤C(‖f(t)‖L2(Ω) + ‖D(ε(u(t))‖L2(Ω) + ‖θ(t)‖L2(Ω))‖∂tuD(t)‖H1/2(∂Ω)

≤C(‖f(t)‖L2(Ω) + ‖uD(t)‖H1/2(∂Ω)

+ ‖θD(t)‖H1/2(∂Ω) + ‖∇xθ(t)‖L2(Ω))‖∂tuD(t)‖H1/2(∂Ω)



On Thermoelasticity with a Quadratic Nonlinearity 77

≤ 1
4
‖∇xθ(t)‖2

L2(Ω) + C‖∂tuD(t)‖2
H1/2(∂Ω)

+ C(‖f(t)‖L2(Ω)+ ‖uD(t)‖H1/2(∂Ω) + ‖θD(t)‖H1/2(∂Ω))‖∂tuD(t)‖H1/2(∂Ω)

≤ 1
4
‖∇xθ(t)‖2

L2(Ω) + C(‖f(t)‖2
L2(Ω)

+ ‖uD(t)‖2
H1/2(∂Ω) + ‖∂tuD(t)‖2

H1/2(∂Ω) + ‖θD(t)‖2
H1/2(∂Ω)).

We have used the fact which was stated in the proof of Lemma 4.1 and the
equation (1.1)1. Then we apply the elliptic estimates on u(t) and Poincaré
inequality. Further we estimate the next boundary integral using Lemma 4.1,
definition of the energy E , properties of the operator D and once again Young’s
inequality.∫

∂Ω

(D(ε(∂tu(t))− I ∂tθ(t))−→n ∂tuD(t) dS

≤‖(D(ε(∂tu(t))− I ∂tθ(t))−→n ‖H−1/2(∂Ω)‖∂tuD(t)‖H1/2(∂Ω)

≤C(‖∂tf(t)‖L2(Ω) + ‖D(ε(∂tu(t))‖L2(Ω) + ‖∂tθ(t)‖L2(Ω))‖∂tuD(t)‖H1/2(∂Ω)

≤ 1
2
E(∂tu(t)) +

1
5
‖∂tθ(t)‖2

L2(Ω)

+ C ‖∂tuD(t)‖2
H1/2(∂Ω) + C‖∂tf(t)‖L2(Ω)‖∂tuD(t)‖H1/2(∂Ω)

≤ 1
2
E(∂tu(t)) +

1
5
‖∂tθ(t)‖2

L2(Ω) + C(‖∂tuD(t)‖2
H1/2(∂Ω) + ‖∂tf(t)‖2

L2(Ω)).

The estimate below is obtained with the help of the Sobolev embedding theorem
and ellipticity of the equation (1.1)1.

(4.3) ‖D(ε(u(t))‖L4(Ω) ≤ C‖u(t)‖H2(Ω)

≤ C(‖∇xθ(t)‖L2(Ω) + ‖f(t)‖L2(Ω) + ‖uD(t)‖H3/2(∂Ω)).

Now we are going to estimate the boundary integral with θ. We use once more
the estimate for traces in the normal direction in the space H−1/2(∂Ω). Moreover
we use the parabolicity of the equation (1.1)2 and the inequality (4.3):∫

∂Ω

(∂tθD(t) + θD(t))
∂θ

∂−→n
(t) dS

≤
∥∥∥∥ ∂θ

∂−→n
(t)

∥∥∥∥
H−1/2(∂Ω)

‖∂tθD(t) + θD(t)‖H1/2(∂Ω)

≤C(‖∇x∂tu‖L2(Ω) + ‖D(ε(u(t))‖2
L4(Ω)

+ ‖∂tθ(t)‖L2(Ω) + ‖θD(t)‖H1/2(∂Ω))‖∂tθD(t) + θD(t)‖H1/2(∂Ω)

≤C(‖∇x∂tu‖L2(Ω) + ‖∇xθ(t)‖L2(Ω) + ‖∂tθ(t)‖2
L2(Ω) + ‖f(t)‖2

L2(Ω)

+ ‖uD(t)‖2
H3/2(∂Ω) + ‖θD(t)‖H1/2(∂Ω))‖∂tθD(t) + θD(t)‖H1/2(∂Ω)

≤ 1
2
E(∂tu(t)) +

1
5
‖∂tθ(t)‖2

L2(Ω)
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+ C sup
0≤τ≤t

‖∂tθD(τ) + θD(τ)‖H1/2(∂Ω)‖∇xθ(t)‖2
L2(Ω)

+ C(‖f(t)‖4
L2(Ω) + ‖uD(t)‖4

H3/2(∂Ω)

+ ‖∂tuD(t)‖2
H1/2(∂Ω) + ‖θD(t)‖2

H1/2(∂Ω) + ‖∂tθD(t)‖2
H1/2(∂Ω)).

The next two estimates are the key to obtain global in time existence. To ob-
tain the first one we apply Hölder inequality, estimates (4.3), Poincaré inequality
and Young’s inequality.∫

Ω

|D(ε(u(t)))|2θ(t) dx ≤ ‖D(ε(u(t)))‖2
L4(Ω)‖θ(t)‖L2(Ω)

≤C(‖∇xθ(t)‖2
L2(Ω) + ‖f(t)‖2

L2(Ω) + ‖uD(t)‖2
H3/2(∂Ω))‖θ(t)‖L2(Ω)

≤C‖∇xθ(t)‖2
L2(Ω) sup

0≤τ≤t
‖θ(τ)‖L2(Ω)

+
1
4
‖∇xθ(t)‖2

L2(Ω) + C(‖f(t)‖4
L2(Ω) + ‖uD(t)‖4

H3/2(∂Ω))

+ C(‖f(t)‖2
L2(Ω) + ‖uD(t)‖2

H3/2(∂Ω))‖θD(t)‖
H

1
2 (∂Ω)

≤C‖∇xθ(t)‖2
L2(Ω) sup

0≤τ≤t
‖θ(τ)‖L2(Ω) +

1
4
‖∇xθ(t)‖2

L2(Ω)

+ C(‖f(t)‖4
L2(Ω) + ‖uD(t)‖4

H3/2(∂Ω) + ‖θD(t)‖2
H1/2(∂Ω)).

To obtain the following inequality we start similarly as in the previous estimates
and with the help of the Gagliardo–Nirenberg–Sobolev inequality we can estimate
as follows:∫

Ω

|D(ε(u(t))|2∂tθ(t) dx ≤ ‖D(ε(u(t))‖2
L4(Ω)‖∂tθ(t)‖L2(Ω)

≤ C‖∇xu(t)‖2
L4(Ω)‖∂tθ(t)‖L2(Ω)

≤ C‖∇xu(t)‖3/2
H1(Ω)‖∇xu(t)‖1/2

L2(Ω)‖∂tθ(t)‖L2(Ω).

Now, using ellipticity of (1.1)1, we obtain that

‖∇xu(t)‖3/2
H1(Ω) ≤C(‖∇xθ(t)‖3/2

L2(Ω) + ‖f(t)‖3/2
L2(Ω) + ‖uD(t)‖3/2

H3/2(∂Ω)
),

‖∇xu(t)‖
1
2
L2(Ω) ≤C(‖θ(t)‖1/2

L2(Ω) + ‖f(t)‖1/2
L2(Ω) + ‖uD(t)‖1/2

H1/2(∂Ω)
).

Using the last two inequalities we have∫
Ω

|D(ε(u(t))|2∂tθ(t) dx ≤ C{‖∂tθ(t)‖L2(Ω)‖∇xθ(t)‖3/2
L2(Ω)‖θ(t)‖

1/2
L2(Ω)

+ ‖∂tθ(t)‖L2(Ω)‖∇xθ(t)‖3/2
L2(Ω)(‖f(t)‖1/2

L2(Ω) + ‖uD(t)‖1/2

H1/2(∂Ω)
)

+ ‖∂tθ(t)‖L2(Ω)‖θ(t)‖
1/2
L2(Ω)(‖f(t)‖3/2

L2(Ω)

+ ‖uD(t)‖3/2

H3/2(∂Ω)
) + ‖∂tθ(t)‖L2(Ω)(‖f(t)‖1/2

L2(Ω) + ‖uD(t)‖1/2

H1/2(∂Ω)
)

· (‖f(t)‖3/2
L2(Ω) + ‖uD(t)‖3/2

H3/2(∂Ω)
)}.
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Application of Young’s and Poncaré inequalities leads to the final estimate for
crucial nonlinear term∫

Ω

|D(ε(u(t))|2∂tθ(t) dx ≤ C

2
‖∂tθ(t)‖2

L2(Ω) sup
0≤τ≤t

‖∇xθ(τ)‖L2(Ω)

+
C

2
‖∇xθ(t)‖2

L2(Ω) sup
0≤τ≤t

‖θ(τ)‖L2(Ω) +
C

2
‖∂tθ(t)‖2

L2(Ω) sup
0≤τ≤t

‖∇xθ(τ)‖3
L2(Ω)

+ C(‖f(t)‖L2(Ω) + ‖uD(t)‖H1/2(∂Ω)) +
1
5
‖∂tθ(t)‖2

L2(Ω) +
1
4
‖∇xθ(t)‖2

L2(Ω)

+ C(‖f(t)‖6
L2(Ω) + ‖uD(t)‖6

H3/2(∂Ω) + ‖θD(t)‖2
H1/2(∂Ω)) +

1
5
‖∂tθ(t)‖2

L2(Ω)

+ C(‖f(t)‖L2(Ω) + ‖uD(t)‖H1/2(∂Ω))(‖f(t)‖3
L2(Ω) + ‖uD(t)‖3

H3/2(∂Ω))

≤‖∂tθ(t)‖2
L2(Ω)

(
C

2
sup

0≤τ≤t
‖∇xθ(τ)‖L2(Ω) +

C

2
sup

0≤τ≤t
‖∇xθ(τ)‖3

L2(Ω) +
2
5

)
+ ‖∇xθ(t)‖2

L2(Ω)

(
C

2
sup

0≤τ≤t
‖θ(τ)‖L2(Ω) +

1
4

)
+ C(‖f(t)‖6

L2(Ω)

+ ‖uD(t)‖6
H3/2(∂Ω) + ‖θD(t)‖2

H1/2(∂Ω) + ‖f(t)‖2
L2(Ω) + ‖uD(t)‖2

H1/2(∂Ω)).

We can observe that constants C in the inequalities above depend only on the
geometry of Ω and the coefficients of the operator D.

Finally, we collect above inequalities to estimate the sum of (4.1) and (4.2).

∂tE(u(t)) +
1
2
∂t‖θ(t)‖2

L2(Ω) +
1
2
∂t‖∇xθ(t)‖2

L2(Ω) +
1
2
E(∂tu(t))(4.4)

+ ‖∇xθ(t)‖2
L2(Ω)

(
1
4
− C1 sup

0≤τ≤t
‖∂tθD(τ) + θD(τ)‖H1/2(∂Ω)

− C2 sup
0≤τ≤t

‖θ(τ)‖2
L2(Ω)

)
+ ‖∂tθ(t)‖2

L2(Ω)

(
1
5
− C3

(
sup

0≤τ≤t
‖∇xθ(τ)‖L2(Ω)

+ sup
0≤τ≤t

‖∇xθ(τ)‖3
L2(Ω)

))
≤C(‖f(t)‖L2(Ω) + ‖f(t)‖2

L2(Ω) + ‖f(t)‖4
L2(Ω) + ‖f(t)‖6

L2(Ω)

+ ‖∂tf(t)‖2
L2(Ω) + ‖uD(t)‖H1/2(∂Ω) + ‖uD(t)‖2

H1/2(∂Ω)

+ ‖uD(t)‖4
H3/2(∂Ω) + ‖uD(t)‖6

H3/2(∂Ω) + ‖∂tuD(t)‖2
H1/2(∂Ω)

+ ‖θD(t)‖2
H1/2(∂Ω) + ‖∂tθD(t)‖2

H1/2(∂Ω)).

Additionally, (1.1)1 and (1.2) provide us with the estimate

(4.5) E(u(0)) ≤ C(‖∇xθ0‖2
L2(Ω) + ‖f |t=0‖2

L2(Ω) + ‖uD|t=0‖2
H1/2(∂Ω)).
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Moreover, from interpolation inequality and Young’s inequality it follows that

‖f‖4
L4(R+;L2(Ω)) ≤C‖f‖L2(R+;L2(Ω))‖f‖3

L6(R+;L2(Ω))(4.6)

≤C(‖f‖2
L2(R+;L2(Ω)) + ‖f‖6

L6(R+;L2(Ω))).

Integration of (4.4) over time and application of (4.5) and (4.6) gives us

(4.7) E(u(t)) +
1
2
‖θ(t)‖2

H1(Ω)

+
1
2

∫ t

0

E(∂tu(τ)) dτ +
∫ t

0

‖θ(τ)‖2
L2(Ω) dτ

·
(

1
4
− C1‖θD‖W 1,∞(R+;H1/2(∂Ω)) − C2 sup

0≤τ≤t
‖θ(τ)‖2

L2(Ω)

)
+

∫ t

0

‖∂tθ(τ)‖2
L2(Ω) dτ

·
(

1
4
− C3

(
sup

0≤τ≤t
‖∇xθ(τ)‖L2(Ω) + sup

0≤τ≤t
‖∇xθ(τ)‖3

L2(Ω)

))
≤C(‖θ0‖2

H1(Ω) + ‖f |t=0‖2
L2(Ω) + ‖uD|t=0‖2

H1/2(∂Ω)

+ ‖f‖L1(R+;L2(Ω)) + ‖f‖2
H1(R+;L2(Ω))

+ ‖f‖6
L6(R+;L2(Ω)) + ‖uD‖L1(R+;H1/2(∂Ω))

+ ‖uD‖2
H1(R+;H1/2(∂Ω)) + ‖uD‖4

L4(R+;H3/2(∂Ω))

+ ‖uD‖6
L6(R+;H3/2(∂Ω)) + ‖θD‖2

H1(R+;H1/2(∂Ω)))

for all t ∈ [0, T ?), where C1, C2, C3, C > 0 are constants dependent only on the
geometry of Ω and the coefficients of the operator D. First we can see that the
function θD should satisfy

(4.8) ‖θD‖W 1,∞(R+;H1/2(∂Ω)) ≤ δ <
1

4C1

for some δ ≥ 0. If the initial data θ0 fulfils

‖θ0‖2
L2(Ω) <

1− 4C1δ

C2
,(4.9)

‖∇xθ0‖L2(Ω) + ‖∇xθ0‖3
L2(Ω) <

1
4C3

,(4.10)

then there exists such a small t that
1
4
− C1‖θD‖W 1,∞(R+;H1/2(∂Ω)) − C2 sup

0≤τ≤t
‖θ(τ)‖2

L2(Ω) > 0,

1
5
− C3

(
sup

0≤τ≤t
‖∇xθ(τ)‖L2(Ω) + sup

0≤τ≤t
‖∇xθ(τ)‖3

L2(Ω)

)
> 0

and left hand side of (4.7) is greater than zero. Next we note that the right hand
side of (4.7) does not depend on the time variable t thus it controls supremum
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over t of the left hand side. Additionally, we denote by RHS right hand side of
(4.7) and if it holds that

RHS <

(
1− 4C1δ

C2

)
,(4.11)

RHS < min
{(

1
8C3

)2

,

(
1

8C3

)2/3}
,(4.12)

then there does not occur finite a time blow up of the H1(Ω) norm of the solution
to (1.1). �

5. Appendix. Auxiliary problem

As it was previously mentioned in this section we solve the auxiliary linear
problem from thermoelasticity.

(5.1)

−divxD(ε(u(t, x))) = −∇xθ(t, x),

∂tθ(t, x)−∆θ(t, x) = −divx∂tu(t, x) + h(t, x)

u(t, x)|∂Ω = 0,

θ(t, x)∂Ω = 0,

θ(0, x) = θ?
0(x).

Theorem 5.1. Let h ∈ L2((0, T )×Ω) and θ? ∈ H1
0 (Ω). Then there exists

a unique solution (u, θ) of the problem (5.1) belonging to H1(0, T ;H1
0 (Ω)) and

L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;L2(Ω)), respectively. Moreover, the following esti-

mates hold:

sup
0≤t≤T

‖∇xu(t)‖2
L2(Ω) + sup

0≤t≤T
‖θ(t)‖2

L2(Ω) + ‖∇xθ‖2
L2(0,T ;L2(Ω))

≤ C(‖h‖2
L2(0,T ;L2(Ω)) + ‖θ?

0‖2
L2(Ω)),

‖∇x∂tu‖2
L2(0,T ;L2(Ω)) + ‖∂tθ‖2

L2(0,T ;L2(Ω)) + sup
0≤t≤T

‖∇xθ(t)‖2
L2(Ω)

≤ C(‖h‖2
L2(0,T ;L2(Ω)) + ‖∇xθ?

0‖2
L2(Ω)).

To prove the theorem above we use the Galerkin approximation. As usual
let {vk}∞k=1 be an orthogonal basis in H1

0 (Ω, R3) and an orthonormal basis in
L2(Ω, R3). Let {wk}∞k=1 be an orthogonal basis in H1

0 (Ω, R) and an orthonormal
basis in L2(Ω, R). For all natural numbers m we look for um: [0, T ] → H1

0 (Ω, R3)
and θm: [0, T ] → H1

0 (Ω, R) in the form

um(t) =
m∑

k=1

ck
m(t)vk, θm(t) =

m∑
k=1

dk
m(t)wk
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such that, for all k = 1, . . . ,m,

(5.2)
∫

Ω

D(ε(um(t)))ε(vk) dx = −
∫

Ω

∇xθm(t)vk dx,

(5.3)
∫

Ω

∂tθm(t)wkdx +
∫

Ω

∇xθm(t)∇xwk dx

=
∫

Ω

∂tum(t)∇xwk dx +
∫

Ω

h(t)wk dx,

(5.4) dm
k (0) =

∫
Ω

θ?
0wk dx.

Fakt 5.2. For each natural m there exist absolutely continuous functions
ck
m and dk

m such that the functions um and θm defined above satisfy (5.2)–(5.4).

Remark 5.3. One observes that from identities above we can compute ck
m(0)

also. Moreover for every m it holds that

‖∇xum(0)‖2
L2(Ω) =

∥∥∥∥ m∑
k=1

ck
m(0)∇xvk

∥∥∥∥2

L2(Ω)

≤ ‖θm(0)‖2
L2(Ω) =

∥∥∥∥ m∑
k=1

dk
m(0)wk

∥∥∥∥2

L2(Ω)

≤ ‖θ?
0‖2

L2(Ω)

and, analogously,

‖∇xθm(0)‖2
L2(Ω) ≤ ‖∇xθ?

0‖2
L2(Ω).

Lemma 5.4 (Energetic estimates). The sequences {um}∞m=1 and {θm}∞m=1

are uniformly bounded in spaces L∞(0, T ;H1
0 (Ω, R3))∩H1(0, T ;H1

0 (Ω, R3)) and
L∞(0, T ;H1

0 (Ω, R))∩H1(0, T ;L2(Ω, R)), respectively. Additionally the following
estimates hold:

(5.5) ‖um‖2
L∞(0,T ;H1

0 (Ω)) + ‖θm‖2
L∞(0,T ;L2(Ω)) + ‖∇xθm‖2

L2(0,T ;L2(Ω))

≤ C(‖h‖2
L2(0,T ;L2(Ω)) + ‖θ?

0‖2
L2(Ω) + ‖um(0)‖2

H1
0 (Ω)),

(5.6) ‖∂tum‖2
L2(0,T ;H1

0 (Ω)) + ‖∂tθm‖2
L2(0,T ;L2(Ω)) + ‖∇xθm‖2

L∞(0,T ;L2(Ω))

≤ C(‖h‖2
L2(0,T ;L2(Ω)) + ‖∇xθ?

0‖2
L2(Ω)).

Proof. Multiplying (5.2) by ∂tc
k
m and (5.3) by dk

m and summing over k =
1, . . . , m gives∫

Ω

D(ε(um(t)))ε(∂tum(t)) dx = −
∫

Ω

∇xθm(t)∂tum(t) dx,
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Ω

∂tθm(t)θm(t) dx +
∫

Ω

∇xθm(t)∇xθm(t) dx

=
∫

Ω

∂tum(t)∇xθm(t) dx +
∫

Ω

hθm(t) dx.

We add the identities above and use Remark 1.1 to obtain

(5.7) 2∂tE(um(t)) + ∂t‖θm(t)‖2
L2 + 2‖∇xθm(t)‖2

L2 = 2
∫

Ω

hθm(t) dx.

Thus integration over time and Young’s inequality applied to the right hand side
of (5.7) give us

sup
0≤τ≤t

E(um(τ)) + sup
0≤τ≤t

‖θm(τ)‖2
L2(Ω) +

∫ t

0

‖∇xθm(τ)‖2
L2(Ω) dτ

≤ C

( ∫ t

0

‖h(t)‖2
L2(Ω)dτ + ‖θ?

0‖2
L2(Ω) + E(um(0))

)
.

Using inequality (1.2) from Remark 1.1 and Poincaré inequality gives

sup
0≤τ≤t

‖um(τ)‖2
H1

0 (Ω) + sup
0≤τ≤t

‖θm(τ)‖2
L2(Ω) +

∫ t

0

‖∇xθm(τ)‖2
L2(Ω) dτ

≤ C

( ∫ t

0

‖h(t)‖2
L2(Ω) dτ + ‖θ?

0‖2
L2(Ω) + ‖um(0)‖2

H1
0 (Ω)

)
,

which proves (5.5). To obtain (5.6) we first differentiate (5.2) and multiply by
∂tc

k
m and we multiply (5.3) by ∂td

k
m. As done previously, we sum both identities

over k = 1, . . . , m and similarly as in the first part of this proof we obtain

E(∂tum(t)) + 2‖∂tθm(t)‖2
L2(Ω) + ∂t‖∇xθm(t)‖2

L2(Ω) = 2
∫

Ω

h∂tθm(t) dx.

This immediately results in∫ t

0

‖∂tum(τ)‖2
H1

0 (Ω) dτ +
∫ t

0

‖∂tθm(τ)‖2
L2(Ω)dτ + sup

0≤τ≤t
‖∇xθm(τ)‖2

L2(Ω),

≤ C

( ∫ t

0

‖h(τ)‖2
L2(Ω)dτ + ‖∇xθ?

0‖2
L2(Ω)

)
.

The inequality above ends the proof. �

With the assertion from lemma above we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We repeat the argumentation of the proof of
theorem 2.9 in [3] and theorem 2 in [2]. First we approximate the problem
(5.1) by (5.2)–(5.4). Lemma 5.4 gives us the required estimates to obtain weak
convergence (weak-∗ convergence in the case of L∞ space) of our approxima-
tion, which means that there exist subsequences {umj}∞j=1 ⊂ {um}∞m=1 and
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{θmj
}∞j=1 ⊂ {θm}∞m=1 such that

umj ⇀ u in H1(0, T ;H1
0 (Ω, R3)),

θmj ⇀ θ in L∞(0, T ;H1
0 (Ω, R)) ∩H1(0, T ;L2(Ω, R)).

By the Rellich–Kondrachov theorem, the imbedding H1((0, T )×Ω) ⊂ L2((0, T )×
Ω) is compact and so the subsequences {umj}∞j=1 and {θmj}∞j=1 are precompact
in L2((0, T )×Ω) and it is possible to choose their subsequences which are strongly
convergent in L2((0, T )×Ω) to the same limit (u, θ). Obviously functions (u, θ)
solve (5.1) in the weak sense and satisfy required estimates.

It still remains to show uniqueness of the solution to (5.1). In order to
do this we investigate the difference (u, θ) := (u1, θ1) − (u2, θ2) where (u1, θ1)
and (u2, θ2) are two different solutions to (5.1). Then similar calculations as in
Lemma 5.4 lead us to

‖u‖2
L∞(0,T ;H1

0 (Ω)) + ‖θ‖2
L∞(0,T ;L2(Ω)) + ‖∇xθ‖2

L2(0,T ;L2(Ω)) ≤ 0,

‖∂tu‖2
L2(0,T ;H1

0 (Ω)) + ‖∂tθ‖2
L2(0,T ;L2(Ω)) + ‖∇xθ‖2

L∞(0,T ;L2(Ω)) ≤ 0,

which completes the proof of the theorem. �
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