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EXTENSIONS OF THEOREMS OF RATTRAY AND MAKEEV

Pavle V.M. Blagojević — Roman Karasev

Abstract. We consider extensions of the Rattray theorem and two Ma-

keev’s theorems, showing that they hold for several maps, measures, or
functions simultaneously, when we consider orthonormal k-frames in Rn

instead of orthonormal bases (full frames).

We also present new results on simultaneous partition of several mea-
sures into parts by k mutually orthogonal hyperplanes.

In the case k = 2 we relate the Rattray and Makeev type results with

the well known embedding problem for projective spaces.

1. Introduction

In this paper we consider extensions of the following results of Rattray and
Makeev:

(a) any odd continuous map Sn−1 → Sn−1 maps some orthonormal basis
to an orthonormal basis, the Rattray theorem [20];
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(b) for any absolutely continuous probabilistic measure µ in Rn there exist n
mutually orthogonal hyperplanes H1, . . . , Hn such that any two of them
partition µ into 4 equal parts, the Makeev theorem [17, Theorem 4].

These results share a common family of possible solutions, the manifold of
all orthonormal basis O(n) in Rn. Moreover, they can be seen as a consequence
of a single result, Theorem 1.1, proved implicitly already in [20].

A continuous function f :Sn−1 × Sn−1 → R will be called

(a) odd, if for any x, y ∈ Sn−1

f(−x, y) = −f(x, y), f(x,−y) = −f(x, y);

(b) symmetric, if for any x, y ∈ Sn−1

f(x, y) = f(y, x).

Theorem 1.1. Suppose f :Sn−1×Sn−1 → R is an odd and symmetric func-
tion. Then there exists an orthonormal basis (e1, . . . , en) ∈ O(n) such that for
any i < j

f(ei, ej) = 0.

Proof. Consider a particular case when f(x, y) is a generic symmetric bi-
linear form. It follows from the diagonalization theorem in linear algebra that
the required orthonormal basis e1, . . . , en exists and is unique modulo the ac-
tion of the group Wn = (Z2)n o Σn ⊂ O(n). Here the group Wn acts on basis
(e1, . . . , en) ∈ O(n) by

εi · (e1, . . . , en) = (e′1, . . . , e
′
n) where e′j =

{
−ej for j = i,

ej for j 6= i,

for the generators ε1, . . . , εn of the component (Z2)n and by

π · (e1, . . . , en) = (eπ(1), . . . , eπ(n))

for the permutation π∈Σn from the symmetric group component of Wn.
Let us show that:

(a) the differential of the corresponding system of equations evaluated at
the solution e1, . . . , en is nonzero, and

(b) the solution set represents a nonzero element of the 0-homology
H0(O(n)/Wn; F2).

Suppose the base vector ei has coordinates bij , and

f(x, y) =
∑
i

λixiyi

in the coordinate representation. Since f is a generic symmetric bilinear form we
can assume that λ1, . . . , λn are distinct real numbers. The solution is bij = δij ,
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and its first order deformation is bij = δij + sij , where sij is a skew symmetric
n× n matrix. Consider

f(ek, el) =
∑
i

λibikbil.

The linear part, with respect to sij , is

df(ek, el) =
∑
i

λiδiksil +
∑
i

λisikδil = λkskl + λlslk = (λk − λl)skl.

Since all values λk−λl are nonzero, that the differentials df(ek, el) give together
a bijective map from the space of skew symmetric matrices to the space of all
symmetric expressions of the form tkl for k 6= l.

Since any f can be Wn-deformed (by a convex combination) to this particu-
lar case, it follows that for a generic f the solution set represents the generator
of H0(O(n)/Wn; F2) (and is nonempty). Therefore, the solution set must be
nonempty for all other f by compactness considerations. �

In this paper we consider the following generalized problems of Rattray and
Makeev type.

1.1. Generalized Rattray problem. Determine the set

Rorth
odd ⊂ N3 [Rorth

odd,sym ⊂ N3]

of all triples (n,m, k) with the property that for any collection f1, . . . , fm of m
odd [and symmetric] functions Sn−1 × Sn−1 → R there exists an orthonormal
k-frame (e1, . . . , ek) ∈ V kn such that for any 1 ≤ l ≤ m and 1 ≤ i < j ≤ k

fl(ei, ej) = 0.

Here V kn stands for the Stiefel manifold of all orthonormal k-frames in Rn.
This problem has a natural variation when the requirement for the vec-

tors e1, . . . , ek to be orthonormal is dropped. Determine the set Rodd ⊂ N3

[Rodd,sym ⊂ N3] off all triples (n,m, k) with the property that for any collection
f1, . . . , fm of m odd [and symmetric] functions Sn−1 × Sn−1 → R there exist k
unit vectors e1, . . . , ek such that for any 1 ≤ l ≤ m and 1 ≤ i < j ≤ k

fl(ei, ej) = 0.

An elementary observation is that Rorth
odd ⊂ Rodd [Rorth

odd,sym ⊂ Rodd,sym] and

(n,m, k) ∈ Rodd =⇒ (n,m− 1, k) ∈ Rorth
odd[

(n,m, k) ∈ Rodd,sym =⇒ (n,m− 1, k) ∈ Rorth
odd,sym

]
by puting the inner product on Rn for fm.
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1.2. Generalized Makeev problem. Let H = {x ∈ Rn | 〈x, v〉 = α} be
an affine hyperplane in Rn. Here v is a vector in Rn and α ∈ R some constant.
The affine hyperplane H determines two open halfspaces

H− = {x ∈ Rn | 〈x, v〉 < α} and H+ = {x ∈ Rn | 〈x, v〉 > α}.

Let H = {H1, . . . , Hk} be an arrangement of affine hyperplanes in Rd. An or-
thant of the arrangement H is an intersection of halfspaces O = Hα1

1 ∩ . . .∩Hαk

k ,
for some αj ∈ Z2. For convenience we assume that Z2 = ({+1,−1}, · ) with
obvious abbreviation H+1 ≡ H+ and H−1 ≡ H−. There are 2k orthants deter-
mined by H. The orthants are not necessary non-empty. They can be indexed
by elements of the group (Z2)k in a natural way.

Let µ be an absolutely continuous probabilistic measure on Rn. The ar-
rangement H equiparts the measure µ if for each orthant O determined by the
arrangement µ(O) = (1/2k)µ(Rn).

Generalized Makeev problem is to determine the set M ⊂ N4 [Morth ⊂ N4]
of all quadruples (n,m, k, l), where 1 ≤ l ≤ k, with the property that for every
collection of m absolutely continuous probabilistic measures µ1, . . . , µm on Rn

there exist k [mutually orthogonal] hyperplanes H1, . . . , Hk such that any l of
them equipart all the measures.

It is obvious that Morth ⊂ M. Moreover, by taking µm to be the uniform
probability measure on the unit ball in Rn we can derive that

(n,m, k, l) ∈M ⇒ (n,m− 1, k, l) ∈Morth.

The generalized Makeev problem for l = k is known as the generalized Grünbaum
mass partition problem as introduced by Grünbaum in [12, 4, Remarks (v)] and
further studied by Ramos in [19] and Mani-Levitska, S. Vrećica, R. Živaljević
in [16].

2. Statement of main results

Let A = F2[t1, . . . , tk] denote the polynomial algebra with variables t1, . . . , tk
of degree 1. Then

w1 = t1 + . . .+ tk, . . . , wk = t1 . . . tk

are elementary symmetric polynomials in A with the respect to permutation of
variables. Set for l ≥ 1,

wl =
∑

i1,... ,ik≥0
i1+...+kik=l

(
i1 + . . .+ ik
i1 . . . . . . ik

)
wi11 . . . wikk ,

where
(
i1+...+ik
i1 ...... ik

)
stands for (i1+...+ik)!

(i1)! ... (ik)! modulo 2.
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2.1. Rattray type results. These results give sufficient conditions for
a triple (n,m, k) to be in R∗

∗ and can be formulated in the following way.

Theorem 2.1. Let (n,m, k) ∈ N3. Then

(a)
∏

1≤i<j≤k
(ti + tj)2m /∈ 〈tn1 , . . . , tnk 〉 =⇒ (n,m, k) ∈ Rodd,

(b)
∏

1≤i<j≤k
(ti + tj)m /∈ 〈tn1 , . . . , tnk 〉 =⇒ (n,m, k) ∈ Rodd,sym,

(c)
∏

1≤i<j≤k
(ti + tj)2m /∈ 〈wn−k+1, . . . , wn〉 =⇒ (n,m, k) ∈ Rorth

odd ,

(d)
∏

1≤i<j≤k
(ti + tj)m /∈ 〈wn−k+1, . . . , wn〉 =⇒ (n,m, k) ∈ Rorth

odd,sym.

Remark 2.2. The degree of the polynomial∏
1≤i<j≤k

(ti + tj) = det
(
tj−1
i

)k
i,j=1

is at most k(k − 1)/2 and degree of each variable is at most k − 1. Therefore,

(k − 1)m < n =⇒
∏

1≤i<j≤k

(ti + tj)m /∈ 〈tn1 , . . . , tnk 〉(2.1)

=⇒ (n,m, k) ∈ Rodd,sym.

Similarly, 2(k − 1)m < n implies (n,m, k) ∈ Rodd.

Remark 2.3. Direct application of the criterion (d) of the theorem, for
example, implies that (3, 2, 2), (4, 1, 2), (4, 2, 2), (5,m, 2) for 1 ≤ m ≤ 6 and
(5, 1, 3) are elements of Rorth

odd,sym. The most striking example is that (5, 6, 2) ∈
Rorth

odd,sym since the triple does not fulfill even the inequality bound from the
previous remark for being element of Rodd,sym. The fact (5, 6, 2) ∈ Rorth

odd,sym is
the consequence of

(t1 + t2)6 = t61 + t41t
2
2 + t21t

4
2 + t62 /∈ 〈w4, w5〉

where

w4 = w4
1 + w2

1w2 + w2
2 = t41 + t31t2 + t21t

2
2 + t1t

3
2 + t42,

w5 = w5
1 + w1w

2
2 = t51 + t41t2 + t31t

2
2 + t21t

3
2 + t52,

and w1 = t1 + t2, w2 = t1t2.

Let us present some immediate consequences of Theorem 2.1 that generalize
results from [18].
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Corollary 2.4. Let (n, k,m) ∈ Rorth
odd,sym.

(a) For every collection φ1, . . . , φm of m odd maps Sn−1 → Sn−1 there
exists an orthonormal k-frame (e1, . . . , ek) ∈ V kn such that for any 1 ≤
l ≤ m the set (φl(e1), . . . , φl(ek)) is an orthonormal frame too.

(b) For every collection g1, . . . , gm of m continuous even functions Rn → R
there exists an orthonormal k-frame (e1, . . . , ek) ∈ V kn such that for any
1 ≤ l ≤ m and 1 ≤ i < j ≤ k

gl(ei + ej) = gl(ei − ej).

Proof. For the first claim take fl(x, y) = (φl(x), φl(y)) and apply Theo-
rem 2.1, while for the second one take fl(x, y) = gl(x+ y)− gl(x− y). �

In some particular cases the obvious inequality bound (2.1) can be substan-
tially improved by more precise cohomology computations.

Theorem 2.5. Let n ∈ N and P (n) = min{2s | s ∈ N, 2s ≥ n}. Then

P (n) ≥ m+ 2 ⇐⇒ n ≥ 1
2P (m+ 2) + 1 =⇒ (n,m, 2) ∈ Rorth

odd,sym.

A further improvement of this result is possible, relating the Rattray prob-
lem for 2-frames to the famous problem of embedding of projective spaces into
a Euclidean space.

Theorem 2.6. If RPn−1 cannot be embedded into Rm because of the “dele-
ted square obstruction”, then (n,m, 2) ∈ Rorth

odd,symm.

Remark 2.7. The deleted square obstruction for an embedding M → Rm is
the obstruction to the existence of a Z2-equivariant map (M ×M) \ ∆(M) →
Sm−1. Here Z2 acts on the deleted square (M ×M) \ ∆(M) by interchanging
coordinates and on Sm−1 antipodally. The Haefliger theory [13] states that
in the range m ≥ 3n/2 (the metastable range) this is the only obstruction for
embedding. The results in [9] (see also the table [8] for some low-dimensional
cases) show that asymptotically the required inequality for embedding of the
projective space has the form m ≥ 2n − O(log n), i.e. falls into the metastable
range. It follows that for sufficiently large n the condition (n,m, 2) ∈ Rorth

odd,symm

also has the asymptotic form m ≤ 2n−O(log n).

Let us state more results in case k = 3. If we want to calculate in mod 2
equivariant cohomology, we may consider the Sylow subgroup W

(2)
3 = D8 × Z2

(D8 is the square group). We obtain the following algebraic criterion.

Theorem 2.8. Consider the graded algebra F2[x, y, w, t] with dimx = dim y

= dim t = 1, dimw = 2, and relation xy = 0. Put

(a) w∗ = (1 + x+ y + w)(1 + t);
(b) w∗ = (w∗)−1.
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In the above notation, if ym(t2 + t(x + y) + w)m 6∈ 〈wn−2, wn−1, wn〉 then
(n,m, 3) ∈ Rorth

odd,symm.

Remark 2.9. It can be checked “by hand” than (3, 1, 3) ∈ Rorth
odd,symm, i.e.

the Rattray theorem for n = 3 follows from this theorem.

The results of Rattray type can be extended also in the following direction.
It can be asked in addition for the “diagonal” values fl(ei, ei) to be equal.

Theorem 2.10. Let k and m be positive integers. There exists a func-
tion n: N2 → N such that for every n ≥ n(k,m) and any collection f1, . . . , fm
of m odd functions Sn−1 × Sn−1 → R there exists an orthonormal k-frame
(e1, . . . , ek) ∈ V kn such that for any 1 ≤ l ≤ m and 1 ≤ i < j ≤ k

fl(ei, ej) = 0 and fl(e1, e1) = . . . = fl(ek, ek).

Remark 2.11. Description of the function n(k,m) remains a challenging
open problem.

The final result of Rattray type we present is the following theorem.

Theorem 2.12. Let ψ:Sn−1 → Sm−1 be an odd continuous map and 1 ≤
k ≤ n. For any linear subspace L ⊆ Rm of codimension n − k there exists
an orthonormal k-frame (e1, . . . , ek) in Rn such that (ψ(e1), . . . , ψ(ek)) is an
orthonormal k-frame in L.

Remark 2.13. This theorem implies that m must be at least n (when con-
sidered k = n), i.e. it implies the Borsuk–Ulam theorem.

2.2. Makeev type results. The following theorem gives sufficient condi-
tions for (n,m, k, l) to be in M∗.

Theorem 2.14. Let (n,m, k, l) ∈ N4. Then

(a)
∏

s1,... ,sk∈Z2
1≤s1+...+sk≤l

(s1t1 + . . .+ sktk)m /∈ 〈tn+1
1 , . . . , tn+1

k 〉

=⇒ (n,m, k, l) ∈M,

(b)
1

t1 · · · tk

∏
s1,... ,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + . . .+ sktk)m /∈ 〈wn−k+1, . . . , wn〉

=⇒ (n,m, k, l) ∈Morth.

Remark 2.15. By considering the maximal degree of the test polynomial
in every variable we can get a rough bound

n ≥ m

( l∑
i=0

(
k − 1
i

))
=⇒ (n,m, k, l) ∈M.
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Remark 2.16. Notice that for m = 1 and l = 2 algebraic conditions of
Theorem 2.14(b) and Theorem 2.1(d) coincide.

Remark 2.17. For l = k, the case (a) is equivalent to the main result of
the paper by Mani-Levitska, S. Vrećica, R. Živaljević [16, Theorem 39]. They
obtained that

n ≥ 2q+k−1 + r =⇒ (n, 2q + r, k, k) ∈M
where m = 2q + r and 0 ≤ r ≤ 2q − 1.

Similar to Theorem 2.6, we prove another particular result on partitioning
measures by pairs of hyperplanes. This result is a projective analogue of the “ham
sandwich” theorem [22], [21], the concept of “projective measure partitions” is
due to Benjamin Matschke (private communication).

Theorem 2.18. Suppose RPn−1 cannot be embedded into Rm because of
the “deleted square obstruction”. Let µ0, . . . , µm be m + 1 absolutely continu-
ous probabilistic measures on RPn−1. Then there exists a pair of hyperplanes
H1,H2 ⊆ RPn−1, partitioning every measure µi into two equal parts.

Remark 2.19. A single hyperplane does not partition a projective space,
but two hyperplanes partition it into two parts.

Remark 2.20. The condition is asymptotically m ≤ 2n − O(log n), as in
Theorem 2.6.

3. Equivariant cohomology of the Stiefel manifold

Let V kn denote the Stiefel manifold of all orthonormal k-frames in Rn. Any
subgroup G ⊆ O(k) acts naturally on k-frames by

(e1, . . . , ek) · g =
( ∑

j

ejsj1, . . . ,
∑
j

ejsjk

)
where (e1, . . . , ek) ∈ V kn and g = (sij)ki,j=1 ∈ O(k). The action is right, but it
transforms in a left action in the usual way g · (e1, . . . , ek) := (e1, . . . , ek) · g−1.

In this section we compute the Fadell–Husseini index of the Stiefel manifold
V kn with the respect to the action of any subgroup G ⊆ O(k) and coefficients F2,
i.e. we determine the generators of the following ideal

IndexG,F2V
k
n = ker(H∗(G; F2) −→ H∗(EG×G V kn ; F2)).

In particular, we determine explicitly the index with respect to the subgroup Zk2
of diagonal matrices with {−1, 1} entries on diagonal. One description of the in-
dex IndexZk

2 ,F2
V kn is given in the paper of Fadell and Husseini [10, Theorem 3.16,

p. 78].
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3.1. The cohomology of the Stiefel manifold V kn with F2 coefficients is the
quotient algebra (consult [6])

H∗(V kn ; F2) = F2[en−k, . . . , en−1]/J k
n

where deg ei = i and J k
n is the ideal generated by the relations

e2i = e2i for 2i ≤ n− 1, e2i = 0 for 2i ≥ n.

In what follows, for a vector bundle F → ξ → B we denote by wi(ξ) ∈
Hi(B; F2) the associated Stiefel–Whitney classes, by wi(ξ) ∈ Hi(B; F2) its dual
Stiefel–Whitney classes, i ≥ 0. There is a relation between these classes ex-
pressed via the total class by w · w = 1 or particularly, for l ≥ 1 by

wl(ξ) =
∑

i1,... ,ik≥0
i1+...+kik=l

(
i1 + . . .+ ik
i1 . . . . . . ik

)
wi11 (ξ) . . . wikk (ξ).

Let us recall that:

(a) the Grassmann manifold Gk(R∞) of all k-flats in R∞ is the classifying
space of the group O(k) and we denote Gk(R∞) also by BO(k),

(b) the Stiefel manifold V k∞ of all k-frames in R∞ as a contractible free O(k)
space serves as a model for EO(k),

(c) the associated canonical bundle:

Rk −→ γk −→ Gk(R∞)

can be seen as a Borel construction of the O(k)-space Rk (where the
action is given by the matrix multiplication from the left):

Rk −→ EO(k)×O(k) Rk −→ BO(k),

(d) the cohomology of the GrassmannianGk(R∞) ≈ BO(k) with coefficients
in F2 is the polynomial algebra generated by the Stiefel–Whithey classes
w1, . . . , wk of the canonical vector bundle γk:

H∗(BO(k); F2) = F2[w1, . . . , wk].

Now we state a very useful result from [6] (see also [15, Theorem 3.3]).

Proposition 3.1. Let (E∗,∗i , di)i≥2 denote the Leray–Serre spectral sequence
associated with the Borel construction

Rk −→ EO(k)×O(k) Rk −→ BO(k).

Then
IndexO(k),F2V

k
n = 〈wn−k+1, . . . , wn〉 ⊂ F2[w1, . . . , wk]

where wi = wi(γk) = di−1(ei−1).
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3.2. The Borel construction is a functorial construction and therefore there
is a morphism of fiber bundles induced by the inclusion ι:G ⊆ O(k):

EO(k)×G V kn //

π

��

EO(k)×O(k) V
k
n

µ

��

BG
Bι

// BO(k)

In the bundle on the left, EO(k) is used as a model for EG. The action of O(k)
on the Stiefel manifold V kn is free. Therefore, the Ep,q∞ -term of the Leray–Serre
spectral sequence for the fibration EO(k) ×O(k) V

k
n → BO(k) has to vanish for

p+q > dim V kn . Furthermore, O(k) acts trivially on the cohomology H∗(V kn ; F2)
and so by Proposition 3.1 we have that di(ei) = wi+1 for n − k ≤ i ≤ n − 1.
Here di denotes the i-th differential of the Leray–Serre spectral sequence. The
morphism of the bundles we considered induces a morphism of the associated
Leray–Serre spectral sequences as well. The morphism in the E2-term on the
0-column is the identity and on the 0-row determines the restriction morphism
ι∗ = resO(k)

G . Thus,

IndexG,F2V
k
n = kerπ∗ = resO(k)

G (kerµ∗) = resO(k)
G (〈wn−k+1, . . . , wn〉)

= 〈resO(k)
G (wn−k+1), . . . , res

O(k)
G (wn)〉.

We have proved the following claim:

Proposition 3.2. IndexG,F2V
k
n = 〈resO(k)

G (wn−k+1), . . . , res
O(k)
G (wn)〉.

3.3. In the final step we identify the restriction morphism resO(k)
G . Consider

Rk as an O(k)-space where the action is given by the left matrix multiplica-
tion. The inclusion ι:G ⊆ O(k) gives to Rk the structure of a G-space. Again,
there is a morphism of associated Borel constructions, which in this case is also
a morphism of vector bundles:

EO(k)×G Rk //

φ

��

EO(k)×O(k) Rk

ψ

��

BG
Bι

// BO(k)

The naturality of the Stiefel–Whitney classes implies that

wi(EO(k)×G Rk) = ι∗(wi) = resO(k)
G (wi)

and consequently
wi(EO(k)×G Rk) = resO(k)

G (wi).

Thus we have proved the following fact:
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Proposition 3.3.

IndexG,F2V
k
n = 〈wn−k+1(EO(k)×G Rk), . . . , wn(EO(k)×G Rk)〉.

3.4. Let G = Zk2 be the subgroup of diagonal matrices with {−1, 1} entries.
Let A := H∗(Zk2 ; F2) = F2[t1, . . . , tk] be the polynomial algebra with variables
t1, . . . , tk of degree 1.

It is well known that the k-dimensional real Zk2-representation Rk can be
decomposed into the sum of 1-dimensional irreducible real Zk2-representation.
The total Stiefel–Whitey class of EO(k)×Zk

2
Rk is given by

w(EO(k)×Zk
2

Rk) =
k∏
i=1

(1 + ti) = 1 + ω1 + . . .+ ωk

where ωi denotes both: the elementary symmetric polynomial of degree i in
variables t1, . . . , tk and the i-th Stiefel–Whitney class of wi(EO(k)×Zk

2
Rk). For

example, ω1 = t1 + . . .+ tk while ωk = t1 . . . tk. Finally, we obtain the following
result.

Proposition 3.4. Let

ωl =
∑

i1,... ,ik≥0
i1+...+kik=l

(
i1 + . . .+ ik
i1 . . . . . . ik

)
ωi11 . . . ωikk ,

for l ≥ 1, then
IndexZk

2 ,F2
V kn = 〈ωn−k+1, . . . , ωn〉 ⊂ A.

4. Proof of Rattray type results

4.1. The proofs of these results will be done via the configuration space/test
map method. There are two different natural configuration spaces of interest:

X = (Sn−1)k= the space of all collections of k vectors on the sphere Sn−1,

Y = V kn = the space of all orthogonal k-frames in Rn.

The group Wk = (Z2)koΣk ⊂ O(k) acts naturally on both configurations spaces.
For the generators ε1, . . . , εn of the component (Z2)n and (e1, . . . , ek) ∈ X or
Y the action is given by

εi · (e1, . . . , ek) = (e′1, . . . , e
′
k) where e′i = −ei and e′j = ej for j 6= i,

and for the permutation π ∈ Σk by

π · (e1, . . . , ek) = (eπ(1), . . . , eπ(k)).

Let us consider the space Mk of all real k × k-matrices as a real O(k)-
representation with respect to the action m 7→ gmg−1 where m ∈ Mk and g
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is k × k-matrix representing an element of O(k). Then Mk has a structure of a
real Wk-representation via the inclusion map Wk ↪→ O(k). Consider the follow-
ing real vector subspaces of Mk:

(4.1)

Rk of all k × k symmetric matrices with zeros on the diagonal,

Uk of all k × k matrices with zeros on the diagonal,

Ik of all k × k matrices with zeros outside the diagonal and trace zero.

These are all real Wk-subrepresentations of Mk. Moreover, when we consider
only the subgroup (Z2)k there is a decomposition Uk ∼= Rk ⊕ Rk of (Z2)k-
representation.

For an odd (and symmetric) function f :Sn−1 × Sn−1 → R and k-vectors
(k-frame) (e1, . . . , ek), we denote by:

• µf (e1, . . . , ek) ∈ Uk [µf (e1, . . . , ek) ∈ Rk] the matrix given by entries

(µf (e1, . . . , ek))ij =

{
f(ei, ej) if i 6= j,

0 if i = j,

• ηf (e1, . . . , ek) ∈ Ik the matrix given by entries

(ηf (e1, . . . , ek))ij =

{
f(ei, ei)− c if i = j,

0 if i 6= j,

where c = 1
k (f(e1, e1) + . . .+ f(ek, ek)).

4.2. Proof of Theorem 2.1. Let (n,m, k) ∈ N3 and f1, . . . , fm be a col-
lection of m odd (and symmetric) functions Sn−1×Sn−1 → R. Let us introduce
the test maps for the Rattray problems:

τodd:X→U⊕mk , τodd,sym:X→R⊕mk , τorth
odd :Y →U⊕mk , τorth

odd,sym:Y →R⊕mk .

All four test maps are defined by the same formula

(e1, . . . , ek)
τ∗∗7−→ (µfr

(e1, . . . , ek))mr=1

assuming appropriate domains and codomains. Have in mind that the test maps
are functions of the collection f1, . . . , fm, even we abbreviate this from notation.
The test maps are all Wk-equivariant maps and moreover have the following
obvious but very important properties: If for every collection f1, . . . , fm of m
odd (and symmetric) functions Sn−1 × Sn−1 → R

• {0 ∈ U⊕mk } ∈ τodd(X), then (n,m, k) ∈ Rodd,
• {0 ∈ U⊕mk } ∈ τodd(X), then (n,m, k) ∈ Rodd,
• {0 ∈ R⊕mk } ∈ τodd,sym(X), then (n,m, k) ∈ Rodd,sym,
• {0 ∈ U⊕mk } ∈ τorth

odd (Y ), then (n,m, k) ∈ Rorth
odd ,

• {0 ∈ R⊕mk } ∈ τorth
odd,sym(Y ), then (n,m, k) ∈ Rorth

odd,sym.
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Let us assume that Theorem 2.1 fails in each case. This means that for
a specific collection f1, . . . , fm of m odd (and symmetric) functions 0 ∈ U⊕mk
or 0 ∈ R⊕mk is not in the image of any of the test maps. Therefore, we have
constructed the following Wk-equivariant maps

(4.2) X → U⊕mk \{0}, X → R⊕mk \{0}, Y → U⊕mk \{0}, Y → R⊕mk \{0},

i.e. after Wk-equivariant homotopy, the Wk-equivariant maps

(4.3) X → S(U⊕mk ), X → S(R⊕mk ), Y → S(U⊕mk ), Y → S(R⊕mk ).

Obviously all these maps are Zk2-equivariant maps, where Zk2 is the diagonal
subgroup of Wk.

The basic monotonicity property of the Fadell–Husseini index theory [10]
states that when there is a G map A → B between G-spaces A and B there
has to be an inclusion of associated indexes IndexG,∗A ⊇ IndexG,∗B. Using the
subgroup Zk2 of Wk the maps (4.3) induce the following inclusions

(4.4)
IndexZk

2 ,F2
X ⊇ IndexZk

2 ,F2
S(U⊕mk , IndexZk

2 ,F2
X ⊇ IndexZk

2 ,F2
S(R⊕mk ),

IndexZk
2 ,F2

Y ⊇ IndexZk
2 ,F2

S(U⊕mk ), IndexZk
2 ,F2

Y ⊇ IndexZk
2 ,F2

S(R⊕mk ).

We determine all Fadell–Husseini indexes appearing in (4.4).

Claim 4.1. With notation already introduced:

(a) IndexZk
2 ,F2

X = 〈tn1 , . . . , tnk 〉,
(b) IndexZk

2 ,F2
Y = 〈ωn−k+1, . . . , ωn〉,

(c) IndexZk
2 ,F2

S(R⊕mk ) =
〈 ∏

1≤a<b≤k
(ta + tb)m

〉
,

(d) IndexZk
2 ,F2

S(U⊕mk ) =
〈 ∏

1≤a<b≤k
(ta + tb)2m

〉
.

Proof. (a) Since the Zk2-action on X is component-wise antipodal the index
of X is computed in the paper of Fadell and Husseini [10, Example 3.3, p. 76].
(b) This fact is established in Proposition 3.4.
(c) Let us denote by Rab, for 1 ≤ a < b ≤ k, the 1-dimension real vector subspace
of Rk described by

Rab = {m ∈ Rk | mij = 0 for (i, j) /∈ {(a, b), (b, a)} and mab = mba ∈ R}.

The subspace Rab is Zk2-invariant and

εi ·m =

{
−m for i ∈ {a, b},
m for i ∈ {1, . . . , k} \ {a, b}.
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Moreover, Rk ∼=
⊕

1≤a<b≤k
Rab as a Zk2-module. Since the Fadell–Husseini index

of a sphere in this case is a principal ideal generated by the Euler class (= the
top Stiefel–Whitney class) of the vector bundle

Rk −→ EZk2 ×Zk
2
Rk −→ BZk2

then

e(EZk2 ×Zk
2
Rk) =

∏
1≤a<b≤k

e(EZk2 ×Zk
2
Rab) =

∏
1≤a<b≤k

(ta + tb).

For details consult [5, Proof of Proposition 3.11]. It follows directly that

e(EZk2 ×Zk
2
R⊕mk ) =

∏
1≤a<b≤k

(ta + tb)m

and consequently

IndexZk
2 ,F2

S(R⊕mk ) =
〈 ∏

1≤a<b≤k

(ta + tb)m
〉
.

(d) Follows from the decomposition Uk ∼= Rk ⊕Rk of Zk2-module. �

Now, the inclusions (4.4) with just determined indexes imply that:∏
1≤a<b≤k

(ta + tb)m ∈ 〈t1, . . . , tk〉,∏
1≤a<b≤k

(ta + tb)m ∈ 〈t1, . . . , tk〉,∏
1≤a<b≤k

(ta + tb)m ∈ 〈ωn−k+1, . . . , ωn〉,∏
1≤a<b≤k

(ta + tb)m ∈ 〈ωn−k+1, . . . , ωn〉.

This gives a contradiction with the assumptions of Theorem 2.1. Therefore,
all claims of Theorem 2.1 hold.

4.3. Proof of Theorem 2.5. Before starting the proof let us once more
isolate an important property of Stiefel–Whitney classes already used in the
proof of Theorem 2.1. Let H be a subgroup of a group G and V a real G-
representation. Then the following equality between the total Stiefel–Whitney
classes holds:

w(EH ×H V ) = resGH(w(EG×G V ))

⇐⇒ wi(EH ×H V ) = resGH(wi(EG×G V )) for all i ≥ 1,

where V inherits the H-representation structure from the inclusion map H ↪→ G.
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In the proof we use the complete group of symmetries W2 = (Z2)2 o Z2 =
(〈ε1〉×〈ε2〉)o〈σ〉 which is isomorphic to the dihedral group D8. The cohomology
of the dihedral group D8 with F2 coefficients is given by

H∗(D8; F2) = F2[x, y, w]/〈xy〉,

where deg x = deg y = 1 and degw = 2. Consult [1, Section IV.1, p. 116] or [5,
Section 4.2]. In what follows we use the notations introduced in the paper [5,
Section 4.3.2]. For example subgroup (Z2)2 is denoted by H1, while subgroup
〈σ〉 is either K4 or K5. Let us assume for clarity that K5 = 〈σ〉.

Let us consider W2 = D8 and its already introduced representations R2

and R2. Computation of the total Stiefel–Whitney class w(E(Z2)2 ×(Z2)2 R2)
conducted in Section 4.2, when translated into the notation of [5, Section 4.3.2],
gives us that

w(EH1 ×H1 R2) = 1 + (a+ a+ b) = 1 + b

Moreover, since EK5 ×K5 R2 is a trivial vector bundle

w(EK5 ×K5 R2) = 1.

Thus, the restriction diagram presented in [5, Section 4.3.2, (26) and (27)] implies
that

(4.5) w(ED8 ×D8 R2) = 1 + y.

On the other hand, presented in the new notation

w(EH1 ×H1 R2) = (1 + a)(1 + a+ b) = 1 + b+ a(a+ b).

The 2-dimensional real K5-representation R2 can be decomposed into the direct
sum R2 ∼= V0⊕V1 of the trivial 1-dimensional real K5-representation V0 and the
1-dimensional real K5-representation V1 where the action of generator σ ∈ K5 is
given by σ · v = −v, for v ∈ V1. Then the total Stiefel–Whitney class is

w(EK5 ×K5 R2) = 1 + t5.

Again the restriction diagram [5, Section 4.3.2, (26) and (27)] implies that

(4.6) w(ED8 ×D8 R2) = 1 + (y + x) + w.

Proposition 4.2. With notation already introduced:

(a) IndexD8,F2V
2
n =〈wn−1(EO(2)×D8 R2), wn(EO(2)×D8 R2)〉⊆H∗(D8,F2)

where

(1 + w1(EO(2)×D8 R2) + w2(EO(2)×D8 R2) + . . . )(1 + (y + x) + w) = 1.

(b) IndexD8,F2S(R⊕m2 ) = 〈ym〉.
(c) ym /∈〈wn−1(EO(2)×D8R2), wn(EO(2)×D8R2)〉 =⇒ (n,m, 2)∈Rorth

odd,sym.
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(d) ym /∈ 〈wn−1(EO(2) ×D8 R2), wn(EO(2) ×D8 R2), x〉 =⇒ (n,m, 2) ∈
Rorth

odd,sym.

Proof. (a) Proposition 3.3 together with the evaluated total Stiefel–Whit-
ney class (4.6) implies the claim.

(b) From (4.5) it follows that e(ED8×D8R2) = y and consequently e(ED8×D8

R⊕m2 ) = ym. Since the Fadell–Husseini index of a sphere in this case is a principal
ideal generated by the Euler class [5, Proof of Proposition 3.11] the claim is
proved.

(c) This is a direct consequence of the configuration test map construction
presented at the beginning of Section 4.2.

(d) If ym is not an element of the bigger ideal

〈wn−1(EO(2)×D8 R2), wn(EO(2)×D8 R2), x〉

it certainly can not belong to the smaller ideal

〈wn−1(EO(2)×D8 R2), wn(EO(2)×D8 R2)〉.

The statement follows from (c). �

Hence, the final effort is to determine a condition on the integer m such that

ym /∈ 〈wn−1(EO(2)×D8 R2), wn(EO(2)×D8 R2), x〉

or 0 6= ym ∈ F2[y, w]/〈wn−1, wn〉 where (1 + y + w)(1 + w1 + w2 + . . . ) = 1.

If y and w are interpreted as the first and the second Stiefel–Whitney class in
the cohomology of the Grassmannian G2(Rn) we can identify F2[y, w]/〈wn−1, wn〉
with H∗(G2(Rn); F2). Then our final step coincides with the well known problem
of determining the height (maximal nonzero power) of the first Stiefel–Whitney
class in the cohomology of the Grassmannian G2(Rn). In [14, Proposition 2.6,
p. 525] the following statement is proved:

Lemma 4.3. Let n ≥ 2 and let P (n) := 2s be the minimal power of two,
satisfying 2s ≥ n. For the first Stiefel–Whitney class w1 of the Grassmannian
G2(Rn) holds

w2s−2
1 6= 0 and w2s−1

1 = 0.

Therefore,

P (n) ≥ m+ 2 ⇐⇒ n ≥ 1
2
P (m+ 2) + 1 =⇒ (n,m, 2) ∈ Rorth

odd,sym.
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4.4. Proof of Theorem 2.6. Consider the Stiefel manifold V 2
n with D8

action on it. We want to know whether V 2
n can be mapped D8-equivariantly to

(R2)m \ {0}.
Denote by σ1, σ2, τ the generators of D8, where σ1 and σ2 reflect the base

vectors in R2, and τ transposes the base vectors. R2 is the one-dimensional real
D8-representation on which σ1 and σ2 act antipodaly, and τ acts trivially.

Now consider an automorphism of D8, defined by

σ′1 = σ1σ2τ. σ′2 = τ, τ ′ = σ1.

Under this automorphism the representation of D8 on R2 remains the same
(it is sufficient to change the base e′1 = e1+e2, e′2 = −e1+e2). The representation
R2 is now given by trivial action of σ′1 and σ′2 and by antipodal action of τ ′. Thus,
we pass to the space Xn = V 2

n /(σ
′
1, σ

′
2) of all ordered pairs of orthogonal lines

through the origin in Rn. This space has the action of Z2 = (τ ′) which permutes
the lines. We want to know whether X can be mapped Z2-equivariantly to
γm \ {0}, where γ is the unique non-trivial one-dimensional representation of
Z2. It is well known that X is homotopy equivalent to the deleted square of the
projective space RPn−1, i.e.

X ' (RPn−1 × RPn−1) \∆(RPn−1).

The existence of a Z2-equivariant map X → S(γm) is exactly the “deleted square
obstruction” for the embedding of RPn−1 to Rm.

The idea of considering the same automorphism of D8 was used by González
and Landweber in [11], where the deleted square obstruction is related to another
problem of finding the symmetric topological complexity of the projective space.

4.5. Proof of Theorem 2.8. We consider the group G := W
(2)
3 = D8×Z2.

We already know that

H∗(D8,F2) = F2[x, y, w]/〈xy〉, H∗(Z2,F2) = F2[t],

and therefore H∗(G,F2) = F2[x, y, w, t]/〈xy〉 by the Künneth formula. The
Stiefel–Whitney class of the standard G-representation on R3 is

w(R3) = (1 + x+ y + w)(1 + t),

and the Euler class of the representation R3 is

e(R3) = y(t2 + t(x+ y) + w),

because R3(G) = R2(D8) ⊕ R1(Z2) and R3(G) = R2(D8) ⊕ R2(D8) ⊗ R1(Z2)
in the obvious notation. The rest of the proof proceeds in the footsteps of the
proof of Theorem 2.1.
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4.6. Proof of Theorem 2.10. Before proving Theorem 2.10 we recall some
basic facts and results on the following Borsuk–Ulam type problem (consult the
book [3]).

Problem 4.4. Let G be a finite group and V its real representation such
that V G = {0}. Determine the conditions for the vector bundle EG× V → EG

to have a G-equivariant nonzero section.

The following result for p-groups will be used, consult [2]–[4], [7].

Lemma 4.5. Let G be a p-group and V its real representation such that
V G={0}. Then the image of an equivariant map f :EG→ V intersects V G=0.
Moreover, there exists an integer n(G,V ) such that for every free G-space X is
(n−1)-connected where n ≥ n(G,V ), the image of an equivariant map f :X → V

meets V G = 0.

In order to prove Theorem 2.10 we slightly change the configuration test map
construction given at the beginning of this chapter. Let us fix positive integers
k and m, and consider a collection of m odd functions f1, . . . , fm. The test map
in this case is the Wk-equivariant map υ:Y → R⊕mk ⊕ I⊕mk defined by

(e1, . . . , ek)
υ7−→ (µfr

(e1, . . . , ek))mr=1 ⊕ (ηfr
(e1, . . . , ek))mr=1

where Y stands for the Stiefel manifold V kn as before. If there exists a positive
integer n = n(k,m) such that there is no Wk-equivariant map

Y → (R⊕mk ⊕ I⊕mk ) \ {0} → S(R⊕mk ⊕ I⊕mk )

then Theorem 2.10 is proved.

Without loss of generality we may increase n and k in such a way that k
becomes power of 2. This can be done since we do not need an optimal n
and moreover proving the theorem for bigger k and fixed n and m yields the
same result for smaller k. Now consider the 2-Sylow subgroup W

(2)
k of Wk.

Since the W (2)
k -fixed point set of the representation R⊕mk ⊕ I⊕mk is trivial, i.e.

(R⊕mk ⊕I⊕mk )W
(2)
k = {0} the previously presented lemma implies that every map

Y → R⊕mk ⊕ I⊕mk must meet origin. Thus there cannot be any W (2)
k -equivariant

(and consequently Wk-equivariant) map Y → S
(
R⊕mk ⊕ I⊕mk

)
. This completes

the proof of the theorem.

4.7. Proof of Theorem 2.12. Let λ1, . . . , λn−k be independent linear
forms defining the subspace L in Rm. In this proof we take Rk to be an O(k)-
representation where the action is given by the left matrix multiplication. The
inclusion Wk ⊆ O(k) gives to Rk also the structure of a Wk-representation. Let
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us denote this Wk-representation by Pk. Consider the following Wk-equivariant
maps

• φ0:V kn → Rk given by

φ0(e1, . . . , ek) = (ψ(ei), ψ(ej))1≤i<j≤k,

• φr:V kn → Pk, for 1 ≤ r ≤ n− k, given by

φr(e1, . . . , ek) = (λr(ψ(e1)), . . . , λr(ψ(ek))) for 1 ≤ i ≤ k.

The sum of these maps, the Wk-equivariant map,

φ = φ0 ⊕ φ1 ⊕ . . .⊕ φn−k:V kn → Rk ⊕ (Pk)n−k

has the property that if the image of φ meets the zero in Rk ⊕ Pn−kk then the
theorem follows. It is sufficient to show that the Euler class

e(Rk ⊕ Pn−kk ) ∈ H∗(BWk; F2)

has nonzero image in H∗
Wk

(V kn ; F2), i.e.

e(Rk ⊕ Pn−kk ) /∈ IndexWk,F2V
k
n .

Let us prove non-vanishing of the Euler class by counting zeroes of a generic
map. We construct another Wk-equivariant map:

τ :V kn → Rk ⊕ Pn−kk

with the unique (up to Wk-action) non-degenerated zero. This will imply that
e(Rk ⊕ Pn−kk ) 6= 0 as an element of H∗

Wk
(V kn ; F2).

Let M = Rk ⊆ Rn be a standard inclusion, and let f(x, y) be a symmetric
quadratic form, such that f |M×M is generic. Put

τ0(e1, . . . , ek) = (f(ei, ej))1≤i<j≤k,

and for 1 ≤ r ≤ n− k

τr(e1, . . . , ek) = (xk+r(e1), . . . , xk+r(ek)),

where xk+r are coordinate functions in Rn. Then a unique (up to Wk-action)
basis in M is mapped by τ to zero; because the conditions τr(e1, . . . , ek) = 0
(for 1 ≤ r ≤ n − k) imply e1, . . . , ek ∈ M and condition τ0(e1, . . . , ek) = 0
implies that f |M×M is diagonal in the basis (e1, . . . , ek) of M . This zero is
non-degenerate, because the image of the differential dτ at (e1, . . . , ek)

• contains Rk, similar to the proof of the Rattray theorem;
• surjects onto Pn−kk , because in the first order approximation the frame

(e1 + δ1, . . . , ek + δk) is orthonormal for any δ1, . . . , δk ∈M⊥.

Thus 0 6= e(Rk ⊕ Pn−kk ) ∈ H∗
Wk

(V kn ; F2) and the proof is complete.
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5. Proof of Makeev type results

5.1. Proof of Theorem 2.14. Makeev type results will be considered via
the classical configuration space/test map scheme used for mass partition prob-
lems by hyperplanes, consult [16] or [5] for more details. We consider two dif-
ferent configuration spaces depending whether we considerconfigurations of or-
thogonal hyperplanes or not.

Let Rn be embedded in Rn+1 by (x1, . . . , xn) 7−→ (x1, . . . , xn, 1). Every
oriented affine hyperplane H in Rn determines a unique oriented hyperplane
H ′ through the origin in Rn+1 by H ′ ∩ Rn = H. Converse is also true if the
hyperplane xn+1 = 0 is excluded. Any oriented hyperplane H in Rn+1 passing
through the origin is uniquely determined by the unit vector v ∈ Sd pointing
inside the halfspace H+. Such a hyperplane we denote also by Hv. Notice that
H−
−v = H+

v . Thus, the space of all oriented affine hyperplanes in Rn (including
two hyperplanes at “infinity”) can be considered to be the sphere Sn. The first
configuration space we consider is

X=(Sn)k= the space of all collections of k oriented affine hyperplanes in Rn.

Let µ be an absolutely continuous probabilistic measure on Rn with con-
nected support. Then the second configuration space Yµ = V kn is shaped by µ

in the following way: every orthonormal k-frame (e1, . . . , ek) ∈ V kn determines
a unique collection of k oriented affine hyperplanes (H1, . . . , Hk) in Rn with
the property that ei ⊥ Hi and µ(H+

i ) = µ(H−
i ) for all 1 ≤ i ≤ k. This is

because for every given direction ei there is a unique hyperplane orthogonal to
ei that partitions µ into equal halves. In case µ has disconnected support, we
may approximate µ by a sequence of measures with connected support, prove
the theorem in this case, and then go to the limit using the compactness of the
following space: for a given 0 < ε < 1 consider the space of hyperplanes H that
partition µ into parts H+,H− with difference |µ(H+)− µ(H−)| ≤ ε.

The group Wk = (Z2)k o Σk ⊂ O(k) acts on both configuration spaces X
and Y in the same way as in Section 4.

Before defining the test maps let us introduce a particular Wk and (Z2)k-
representation on the vector space R2k

and study its structure. If we assume
that the coordinate functions x(a1,... ,ak) on R2k

are indexed by the elements
(a1, . . . , ak) of the group (Z2)k, then the Wk-action we consider is given by

((b1, . . . , bk) o π) · x(a1,... ,ak) = x(b1aπ−1(1),... ,bkaπ−1(k))

where (b1, . . . , bk) ∈ (Z2)k and π ∈ Σk. The inclusion (Z2)k ⊂ Wk induces also
the structure of (Z2)k-representation on R2k

.
All real irreducible representations of the group (Z2)k are all 1-dimensional.

They are completely determined by characters χ: (Z2)k → Z2.
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For (a1, . . . , ak) ∈ (Z2)k = {+1,−1}2k

, let

Va1...ak
= span{va1,... ,ak

} ⊂ R2k

denotes the 1-dimensional representation given by

εi · va1...ak
= ai va1...ak

.

Then there is a decomposition of the real (Z2)k-representation

R2k ∼=
∑

a1,... ,ak∈(Z2)k

Va1...ak
∼= V+...+ ⊕

∑
a1,... ,ak∈(Z2)k\{+...+}

Va1,... ,ak
.

Observe that V+···+ is the trivial 1-dimensional real (Z2)k-representation. In
order to simplify further notation let us define for 1 ≤ i ≤ j ≤ k the following
(Z2)k-representation

Sij =
∑

a1,... ,ak∈(Z2)
k\{+...+}

i≤s(a1,... ,ak)≤j

Va1...ak

where s(a1, . . . , ak) denotes the number of −1 in the sequence (a1, . . . , ak).
Let µ1, . . . , µm be a collection of m absolutely continuous probabilistic mea-

sures on Rn. The test maps we consider

τ :X → S⊕m1l and τorth:Yµ1 → S⊕m1l

are defined by

(v1, . . . , vk)
τ7−→

((
µi(Ha1

v1 ∩ . . . ∩H
ak
vk

)− 1
2k
µi(Rd)

)
(a1,... ,ak)∈(Z2)k

)
i∈{1,... ,m}

,

(e1, . . . , ek)
τorth

7−→
((

µi(Ha1
e1 ∩ . . . ∩H

ak
ek

)− 1
2k
µi(Rd)

)
(a1,... ,ak)∈(Z2)k

)
i∈{1,... ,m}

,

for (v1, . . . , vk) ∈ X and (e1, . . . , ek) ∈ Yµ1 . Since the configuration space Yµ1

is chosen in such a way that each hyperplane equipartitions the measure µ1 the
test map τorth factors

Yµ1

ρ−→ S2l ⊕ S
⊕(m−1)
1l

ι−→ S⊕m1l

so that τorth = ι ◦ ρ and ι is induced by the inclusion S2l → S1l.
All test maps τ , τorth and ρ are Wk-equivariant maps, when the introduced

actions on the spaces are assumed. The key property of these test maps is
that: For every collection µ1, . . . , µm of m absolutely continuous probabilistic
measures on Rn:

• if {0 ∈ S⊕m1l } ∈ τ(X), then (n,m, k, l) ∈M,
• if {0 ∈ S2l ⊕ S

⊕(m−1)
1l } ∈ ρ(Yµ1), then (n,m, k, l) ∈Morth.
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Using the contraposition we get that

• (n,m, k, l) /∈M
=⇒ there exists a collection of m absolutely continuous probabilistic

measures on Rn such that {0 ∈ S⊕m1l } /∈ τ(X)
=⇒ there exists a Wk-equivariant map

X = (Sn)k → S⊕m1l \ {0} → S(S⊕m1l ),

• (n,m, k, l) ∈Morth

=⇒ there exists a collection of m absolutely continuous probabilistic
measures on Rn such that {0 ∈ S2l ⊕ S

⊕(m−1)
1l } /∈ ρ(Yµ1)

=⇒ there exists a Wk-equivariant map

Yµ1 = V kn → S2l ⊕ S
⊕(m−1)
1l \ {0} → S(S2l ⊕ S

⊕(m−1)
1l ).

This implies that

• if there is no Wk-equivariant map X = (Sn)k → S(S⊕m1l ), then
(n,m, k, l) ∈M,

• if there is no Wk-equivariant map Yµ1 = V kn → S(S2l ⊕ S
⊕(m−1)
1l ), then

(n,m, k, l) ∈Morth.

Therefore, by proving the following statement we conclude the proof of Theo-
rem 2.14.

Proposition 5.1.

(a) If ∏
s1,... ,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + . . .+ sktk)m /∈ 〈tn+1
1 , . . . , tn+1

k 〉

then there is no Wk-equivariant map X = (Sn)k → S(S⊕m1l ),
(b) If

1
t1 . . . tk

∏
s1,... ,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + . . .+ sktk)m /∈ 〈wn−k+1, . . . , wn〉

then there is no Wk-equivariant map Yµ1 = V kn → S(S2l ⊕ S
⊕(m−1)
1l ).

Proof. Both statements follow from the Fadell–Husseini index computa-
tions:

IndexZk
2 ,F2

(Sn)k = 〈tn+1
1 , . . . , tn+1

k 〉,

IndexZk
2 ,F2

S⊕m1l =

〈 ∏
s1,... ,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + . . .+ sktk)m
〉
,
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IndexZk
2 ,F2

V kn = 〈ωn−k+1, . . . , ωn〉,

IndexZk
2 ,F2

S2l ⊕ S
⊕(m−1)
1l =

〈
1

t1 . . . tk

∏
s1,... ,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + . . .+ sktk)m
〉
,

and its basic property that if there is a G-equivariant map X → Y then

IndexG,∗X ⊇ IndexG,∗Y. �

5.2. Proof of Theorem 2.18. Let us lift the measures to Sn−1 ⊆ Rn; we
obtain m+ 1 centrally symmetric measures on the sphere. It is sufficient to find
a pair of oriented hyperplanes through the origin H1, H2 such that for every
i = 0, . . . ,m

µi(H+
1 ∩H+

2 ) = µi(H+
1 ∩H−

2 ) = µi(H−
1 ∩H+

2 ) = µi(H−
1 ∩H−

2 ).

Since the conditions µi(H+
1 ∩H

+
2 ) = µi(H−

1 ∩H
−
2 ) and µi(H+

1 ∩H
−
2 ) = µi(H−

1 ∩
H+

2 ) hold always (because of the central symmetry), we may select the compo-
nents of the test map to be

fi(H1,H2) = µi(H+
1 ∩H+

2 )− µi(H+
1 ∩H−

2 )− µi(H−
1 ∩H+

2 ) + µi(H−
1 ∩H−

2 ).

The rest of the proof would follow directly from the proof of Theorem 2.6
(see Section 4.4), if we had m measures. We are going to provide an additional
argument to partition m+ 1 measures.

Take the measure µ0 and assume that its support equals Sn−1. Any measure
can be approximated by such a measure, and the standard compactness argument
(the configuration space of all pairs (H1,H2) is compact) extends the solution
to arbitrary measures. We are going to show the following:

Proposition 5.2. If the support of µ0 is the whole Sn−1, then the config-
uration space X of pairs (H1,H2) that equipartition µ0 (i.e. f0(H1,H2) = 0) is
D8-equivariantly homeomorphic to V 2

n .

Proof. Take an orthogonal 2-frame (e1, e2). Denote the orthogonal com-
plement of (e1, e2) by L⊥(e1, e2), and denote the reflections

σ1:x 7→ x− 2(x, e1)e1, σ2:x 7→ x− 2(x, e2)e2.

Note that the hyperplane H1 is uniquely defined by the following conditions:

• H1 ⊇ L⊥(e1, e2),
• e1, e2 ∈ H+

1 ,
• H2 = σ1(H1) = −σ2(H1),
• f0(H1,H2) = 0.
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The dependence of H1 on (e1, e2) ∈ V 2
n is continuous, and therefore we

obtain a homeomorphism between X and V 2
n , if the action of D8 on V 2

n is chosen
properly. �

Now we continue the proof of Theorem 2.18. The functions f1, . . . , fm may
be considered as functions on V 2

n . If we consider the group Z2 × Z2 ⊂ D8,
generated by σ1, σ2, then the functions fi are invariant under this group action.
Therefore they define the Z2 = D8/(Z2 × Z2)-equivariant map

f̃ :V 2
n /(Z2 × Z2) ' (RPn−1 × RPn−1) \∆(RPn−1) → Rm,

where the action on (RPn−1 × RPn−1) \ ∆(RPn−1) is given by interchanging
factors in the product while the action on Rm is antipodal. This map has a zero,
because the “deleted square obstruction” guarantees its existence.
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