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CENTRAL POINTS AND MEASURES,
AND DENSE SUBSETS OF COMPACT METRIC SPACES

P1oTR NIEMIEC

ABSTRACT. For every nonempty compact convex subset K of a normed
linear space a (unique) point cx € K, called the generalized Chebyshev
center, is distinguished. It is shown that cx is a common fixed point for
the isometry group of the metric space K. With use of the generalized
Chebyshev centers, the central measure px of an arbitrary compact metric
space X is defined. For a large class of compact metric spaces, including the
interval [0, 1] and all compact metric groups, another ‘central’ measure is
distinguished, which turns out to coincide with the Lebesgue measure and
the Haar one for the interval and a compact metric group, respectively. An
idea of distinguishing infinitely many points forming a dense subset of an
arbitrary compact metric space is also presented.

1. Introduction

Distinguishing points, subsets or other ‘ingredients’ related to spaces is im-
portant in many parts of mathematics, including algebraic topology (homotopy
groups), theory of Lipschitz functions (the base point), theory of locally compact
groups (the Haar measure, unique up to a constant factor). In most of algebraic
structures the neutral element is a naturally distinguished point. In other ar-
eas of mathematics distinguishing appears as a useful tool. For example, the
well-known Chebyshev center of a nonempty compact convex subset of a strictly
convex normed linear space (i.e. such a space in which the unit sphere contains
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no segments [6, p. 30]) finds an application in fixed point theory, being a common
fixed point for the isometry group of the convex set. The characteristic and im-
portant feature of some of the above examples is the uniqueness, in a categorical
or weaker sense, of the distinguished ingredients. In such cases this distinguished
ingredient may be seen as an integral part of the space (e.g. the Haar measure of
a locally compact group or the neutral element of an algebraic structure), while
in the others it plays an additional role (e.g. in homotopy groups, spaces of
Lipschitz functions). In these cases the distinguishing is just a necessity and it
hardly ever finds applications. The foregoing examples show that the situation
changes when the distinguished ingredient turns out to be uniquely determined
by some natural conditions. (The precise meaning of this in category of metric
spaces shall be explained in the next section.)

The aim of this paper is to present a few results dealing with constructive
‘applied’ distinguishings. In particular, we shall show that every nonempty com-
pact metric space X isometric to a convex subset of a normed linear space (even
of a more general class, containing all metric R-trees) contains a unique point
cx (called the generalized Chebyshev center) which is in a sense its center. As
an application of this, we shall prove that the isometry group of each such space
has a common fixed point. This gives a constructive proof of Kakutani’s fixed
point theorem in a special case. Details are included in Section 3.

In Section 4 we shall apply the results of the previous part to an arbitrary
(nonempty) compact metric space X in order to define the central (probability
Borel) measure px of X by means of the so-called Kantorovich (or Kantorovicz—
Rubenstein, cf. [21]) metric induced by the metric of X. In case of a compact
metric group G, pg turns out to be the Haar measure of G and thus we shall
obtain an alternative proof of the Haar measure theorem for compact metrizable
groups. However, the problem of whether 1o ;) is the one-dimensional Lebesgue
measure we leave as open. Section 5 deals with the so-called quasi-nilpotent
compact metric spaces for which we shall prove another result on distinguishing
measures. As a special case we shall obtain the characterizations of the Lebesgue
measure on [0, 1] and (again) the Haar measure of a compact metric group. The
last, sixth, part is devoted to distinguishing countable dense subsets in arbitrary
compact metric spaces, which is related to theory of random metric spaces (see
e.g. [19], [20]).

2. Preliminaries

In this paper we deal with categories of metric spaces with additional struc-
tures in which every isomorphism between spaces is an isometric function be-
tween them. For simplicity, let us call each such a category an iso-category.
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We shall write K € X to express that K is a metric space with an additional
structure which belongs to an iso-category X.

Let X be an iso-category. For any two members X and Y of K let Isox (X, Y)
stand for the set of all isomorphisms of X onto Y. We write Isox(X) for
Isox (X, X). If no additional structures on metric spaces are needed to describe
the category X, we shall write simply Iso(X,Y") and Iso(X).

For X € X let ‘~’ be the equivalence relation on X given by

x gy <= O(z) =y for some @ € Isox(X);

let X be the quotient set X/~g and ng)I X — X the canonical projection.
Similarly, for any isomorphism ® € Isox(Y,Z) between spaces Y,Z € X let
M.y — Z(M) be the unique function such that ’/T(Zl) 0od=dMo 7r§/1).

DEFINITION 2.1. Let X be an iso-category. By a distinguishing in X we
mean any assignment X 3 X — Cx € X such that whenever ® € Isoy (K, L)
with K, L € X, then ®1)(Cg) = C.

More natural approach to distinguishing is the following: to each space
X € X assign a point cx € X in such a way that whenever K and L are
two isomorphic members of K, there is an isomorphism ®: K — L which sends
ck to cr. However, we are interested in constructive methods of distinguishing
(so, without using the axiom of choice) and thus the original Definition 2.1 is
more appropriate.

A very special and the most important case of distinguishing appears when
the distinguished equivalence class C'i consists of a single point and then we
may consider C'k as an element of K. To make this precise, we put

DEFINITION 2.2. By a strict distinguishing in an iso-category X we mean
any assignment KX 3 X — cx € X such that

(2.1) P(ck) = cr
for any K, L € X and each ® € Isox (K, L).

Strict distinguishings appear very rarely in mathematics, which the following
immediate result witnesses to

ProrosiTiON 2.3. If X 3 X +— cx € X is a strict distinguishing in an
1so-category K, then for every K € X, cx is a common fixed point for the group
Isox(K). That is, ®(cx) = cx for all ® € Isox(K).

PROOF. Just substitute L = K in (2.1). O

Since there are iso-categories K (even among those of nonempty compact
spaces) in which for some spaces K € X the group Isox(K) has no common
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fixed point, a strict distinguishing is not always possible. In the next section we
introduce an iso-category for which this is realizable.

3. Weakly convex compact metric spaces

In the literature there are two main approaches to the notion of convexity in
metric spaces. The first is related to joining points by line segments, the second
relies on emphasizing and focusing on some aspects of the global position of
the middle point between two points in convex subsets of normed linear spaces
and adapting this to arbitrary metric spaces. Although the key condition is
fulfilled by the middle point (in convex sets), usually this condition does not
determine the middle point, that is, there are other points which satisfy it. One
of such approaches is proposed in the definition below. Other ideas are recalled
in Examples 3.2.

DEFINITION 3.1. A metric space (X, d) is said to be weakly convex if and
only if for any two points z and y of X there is a point z € X such that for each
we X:

(C1) d(z,w) < max(d(z,w),d(y,w)),

(C2) d(z,w) = d(y,w) provided d(z,w) = max(d(x,w), d(y,w)).

The set of all points z € X which satisfy (C1) and (C2) for fixed z,y € X and
all w € X is denoted by M (z,y) = Mx(x,y).

The class of weakly convex metric spaces includes all known to us convex
metric spaces defined by describing the global position of a special point related
to two other ones. Examples are given below.

EXAMPLES 3.2. (a) Takahashi [18] calls a metric space (X, d) convex if and
only if for any x,y € X and every A € (0,1) there is a point z), € X such that

(3.1) d(zy,w) < (1 = N)d(z,w) + Md(y,w) for all w € X.

(b) Kijima [8] and Yang and Zhang [22] speak about convexity when (3.1)
with A = 1/2 is fulfilled.

(c) Kindler [9] says about ¢-convexity for any continuous concave, nonde-
creasing in both variables function ¢: Ry x Ry — R, such that

(3.2) o(z,y) < max(z,y)

whenever © # y. Namely, a metric space (X, d) is p-convex (or ¥-convex with
respect to @) if for any two points z,y € X there is a point z € X such that
d(w, z) < p(d(w, z),d(w,y)) for all w € X.

Let us show that every ‘convex’ metric space defined by any of the conditions
(a)—(c) is weakly convex. To do this, it suffices to check (c). Indeed, (a) is
stronger than (b) and (b) is equivalent to p-convexity with u(z,y) = Fz + 3y.
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Now if ¢, (X,d), z, y and z are as in (c), then z € M (x,y): for any w € X we
have d(w,z) < p(d(w,z),d(w,y)) < max(d(w,z),d(w,y)) (the last inequality
follows from (3.2) and the continuity of ¢) which yields (C1); (C2) follows from
(3.2). In particular, every convex subset of a normed linear space is weakly
convex (zy := (1 — N)a + Ay witnesses (a)). Further examples follow.

(d) All metric R-trees are weakly convex. Recall that a complete metric
space T is said to be an R-tree if for any two distinct points « and y of T' there
is a unique homeomorphic copy 7, of the interval [0,1] which joins z and y;
and 7, is isometric to a line segment (cf. [10]). Now if T is an R-tree and x
and y are arbitrary two distinct points of T' (when z = y, it is enough to put
z =), let e.g. z be the middle point of v, ,. For w € T we distinguish between
two cases. When A := 7, , U7, is homeomorphic to [0,1], it follows from the
definition of an R-tree that A is isometric to a line segment. Thus the assertion
(i.e. conditions (C1) and (C2)) follows from the weak convexity of intervals.
Hence, we may assume that A is non-homeomorphic to [0,1]. This implies that
there is a unique point v such that v € v 4 N Vz,w N Y,y Then a5 = Ya,o UYwp
for distinct a,b € {z,y, w}. With no loss on generality we may assume z € v, ,.
But then d(z,w) = d(z,z) + d(z,w). Since d(z,z) > 0, both (C1) and (C2) are
satisfied.

(e) We leave this as an exercise that the set of rationals and R\ {0} (with
natural metrics) are weakly convex.

The above example (e) shows that there exist totally disconnected as well as
disconnected locally compact metric spaces which are weakly convex. In the next
result we shall prove that every compact weakly convex space is both connected
and locally connected.

A set A C X is said to be a fully convex subset of a weakly convex space X
if and only if M(a,b) C A for all a,b € A. It follows from the definition that in
a weakly convex metric space X:

(FC1) a fully convex subset A of X is itself a weakly convex metric space as
well and M4(a,b) D Mx(a,b) for any a,b € A,

(FC2) a fully convex subset of a fully convex subset of X is a fully convex
subset of X,

(FC3) the intersection of a nonempty family of fully convex subsets of X is
a fully convex subset of X as well.

PROPOSITION 3.3. Let (X,d) be a weakly convex metric space.
(a) If x and y are distinct points of X, then max(d(z,z),d(z,y)) < d(z,y)
for any z € M(x,vy).
(b) Open and closed balls in X are fully convex subsets.
(¢) X is connected and locally connected provided X is compact.
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PrOOF. (a) Put w = z. Since d(z,w) # d(y,w), (Cl) and (C2) give
d(z,z) < d(z,y). Similarly, d(z,y) < d(z,y).

(b) Let a be the center of a ball B C X. If x,y € B and z € M(x,y), then
d(a,z) < max(d(a,z),d(a,y)). Consequently, z € B and we are done.

(¢) Assume X is compact. Since closed balls in X are compact and weakly
convex (by (b)) as well, it suffices to verify that X is connected. Suppose, for
the contrary, that X is disconnected. Let K and L be two nonempty disjoint
compact subsets of X such that X = K U L. Take x € K and y € L with

(3.3) d(z,y) = min{d(u,v) :u € K, v € L}

and let z € M(x,y). Say z € K. Then, by (a), d(z,y) < d(x,y) which contra-
dicts (3.3). O

Our aim is to construct a strict distinguishing in the class WCC of all non-
empty weakly convex compact metric spaces (where the category is determined
only by metrics). As a corollary, we shall obtain a theorem on common fixed
points in weakly convex compact metric spaces.

Now we shall recall the classical atributes of a metric space (see e.g. [3]
or [9]). By §(X) we denote the diameter of a metric space (X,d), that is,
6(X) := sup, yex d(z,y) € [0,400] provided X is nonempty and 6(f)) := 0.
For each z € X let rx(v) := sup,cx d(z,y) and let r(X) := infex rx(z)
(r(@) :== 0). The number r(X) € [0,+o0] is called the Chebyshev radius of X.
Finally, the Chebyshev center of X is the set C(X) :={z € X : rx(z) = r(X)}.
If the last set consists of a single point, the unique element of C'(X) is also called
the Chebyshev center of X. The classical result states that C(K) is a singleton
provided K is a nonempty compact convex subset of a strictly convex normed
linear space. If the assumption of strict convexity of the norm is relaxed, the set
C(K) may be infinite. However, C'(X) is nonempty for every nonempty compact
metric space X.

In order to define the generalized Chebyshev center (as a uniquely determined
point of a space), we introduce the following

DEFINITION 3.4. The n-th Chebyshev center, C™(X), of a metric space X
is given by the recursive formula: C°(X) := X and C"(X) := C(C" (X)) for
n > 0. Additionally, let C*(X) := (7, C™(X).

Our goal is to show that C°°(X) consists of a single point provided X is
a nonempty weakly convex compact metric space. To show this, we need the
next result. It was proved (in a different way) in special cases by Takahashi [18]
and Kindler [9].

LEmMA 3.5. If (X, d) is a weakly conver compact metric space having more
than one point, then r(X) < §(X).
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PROOF. Let us first show, by an induction argument, that for every n > 1

and any z1,...,x, € X there is a point z = z(z1,...,2,) € X such that for
each w € X,
(CC1) d(z,w) < max(d(z1,w),...,d(x,,w)),
(CC2) d(z1,w) = ... = d(xn,w) provided (CC1) is fulfilled with the equality
sign.

For n =1 put z = z1 and for n = 2 take any z € M (z1,23). Now assume n > 3
and that the above assertion holds true for n — 1. Put 2’ = z(z1,... ,2,—1) and
let z € M(Z',x,). Then for any w € X,

d(z,w) < max(d(z',w), d(xn,w)) < max(d(z1,w),... ,d(x,,w))
(by the definition of 2’). And
d(z,w) = max(d(z1,w), ... ,d(z,,w)) = d(z,w) =max(d(z',w),d(z,,w)).

So, d(z',w) = d(xy,w) (since z € M(2',x,)). We infer from this that d(z’,w) =
max(d(z1,w),... ,d(xn—1,w)) and hence d(z1,w) =...= d(xp-1,w) = d(z,, w).
This proves (CC1) and (CC2).

Now suppose, for the contrary, that r(X) = 6(X). By the compactness, there
is a maximal finite system x1,...,z, of elements of X such that d(z;,zx) =
0(X) whenever j # k. Let z € X be a point satisfying (CC1) and (CC2) for
Z1,...,%,. By our assumption, rx(z) = §(X) and hence there is w € X such
that d(z,w) = §(X). But then, by (CC2), d(z1,w) = ... = d(zp,w) = §(X)
which contradicts the maximality of the system 1, ... ,z,. O

PROPOSITION 3.6. For every nonempty weakly conver compact metric space
X the set C*°(X) consists of a single point.

PROOF. First we shall check that for every weakly convex metric space (Y, o),
(3.4) CY(Y) is a fully convex subset of Y.

(
For this, let a,b € C*(Y) and z € My (a,b). We infer from (C1) that ry(z) <
max(ry (a),ry (b)) = 7(Y). Since always r(Y) < ry(z), we see that z € C1(Y)
and (3.4) is proved.

Now we pass to the main proof. By the compactness of X and the closedness
of all C™(X)’s, C*°(X) is nonempty and compact. What is more, the combina-
tion of (3.4) and (FC1)—(FC3) yields that C°°(X) is a weakly convex space. Take
z € C*°(X). For every natural n, z belongs to C'(C™(X)) and hence there is
yn € C™(X) for which d(z,y,) = r(C™(X)). By the definitions of the Chebyshev
center and the Chebyshev radius, r(Y) > 6(C(Y')) for every metric space Y. We
infer from this that r(C™(X)) > §(C™*1 (X)) which implies that

(3.5) d(z,yn) > 6(C¥(X)) (n€N).
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Now let (yn, )52, be a subsequence of (y,)32; which converges to some y €
X. Then y € C*°(X) and hence d(z,y) = 6(C*(X)), thanks to (3.5). This
shows that 7o (x)(2) = 6(C°(X)) for every z € C*°(X) and thus r(C*(X)) =
0(C*(X)). Now it suffices to apply Lemma 3.5 to finish the proof. O

DEFINITION 3.7. Let X be a nonempty weakly convex compact metric space.
The unique point of C*°(X) is called the generalized Chebyshev center of X and
is denoted by cx.

The reader should notice that if a weakly convex compact metric space X
has Chebyshev center (a point), then this point coincides with the generalized
Chebyshev center of X (because then C'(X) = C°°(X)). This justifies the
undertaken terminology.

We can now formulate our first result on strict distinguishing.

THEOREM 3.8. Let WCC be the class of all nonempty weakly convex compact
metric spaces. The assignment WCC 3 X — cx € X is a strict distinguishing.

PrROOF. Let X, Y € WCC and let @ € Iso(X,Y). It follows from the defini-
tion of the Chebyshev center that ®(C*(X)) = C*(Y) and hence, by induction,
O(C™(X)) = C™(Y) for each n € N. Consequently, ®(C>*(X)) = C>*(Y) and
we are done. g

The above result combined with Proposition 2.3 yields

COROLLARY 3.9. Let X € WCC. For every isometry ® of X onto X,

@(Cx) = Cx.

When X is a convex subset of a normed linear space, Corollary 3.9 is a special
case of Kakutani’s fixed point theorem on equicontinuous group of affine trans-
formations ([7]; or [17]). The proof presented here is constructive. However, it
works only for the specific group — the isometry one.

REMARK 3.10. The problem whether every (bijective) isometry between
convex subsets of normed linear spaces is affine seems to be still open. (Beside
the classical Mazur—Ulam theorem ([13]; or [1, 14.1]), the author knows only one
general result [12] in this direction.) If there was a compact convex subset in a
normed linear space admitting a non-affine isometry, then Corollary 3.9 would
be stronger than Kakutani’s fixed point theorem (in this specific case).

4. Central measure

In this section we apply the results of the previous part to distinguish a mea-
sure on a compact metric space. To do this, let us fix a nonempty compact
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metric space (X, d). Denote by Prob(X) the set of all probabilistic Borel mea-
sures on X. Equip Prob(X) with the metric d given by the formula

(4.1) E(u,u)sup{' | tan= [ gav

where p, v € Prob(X) and Contr(X,R) stands for the family of all d-nonexpan-

: f € Contr(X, R)}

sive maps of X into R. The metric d is called the Kantorovich (or Kantorovich-
Rubenstein, cf. [21, Definition 2.3.1]) metric induced by d.

The space (Prob(X), c/l\) is compact and d induces on Prob(X) the topology
inherited, thanks to the Riesz characterization theorem, from the weak-* topol-
ogy of the dual Banach space of C(X,R). To see that (Prob(X), c?) is weakly
convex, let us briefly show that it is affinely isometric to a convex subset of
a normed space. For this, let M(X) be the real vector space of all Borel signed
(that is, real-valued) measures p on X with u(X) = 0. For each u € M(X) put

Il :sup{’/deu‘ 1 fe Contr(X,R)}.

The above defined function || - || is a norm on M(X) (J|u|| < oo because ||u|| <
O(X)|u|(X) where |p| is the variation of p). Now if we fix a point a € X,
the formula Prob(X) 3 p — p — 0, € M(X) well defines an affine isometric
embedding (here 4, is Dirac’s measure at a, i.e. §,(A) = 1ifa € Aand 6,(A) =0
otherwise).

We may now introduce

DEFINITION 4.1. The generalized Chebyshev center of (Prob(X), d) is called
the central measure of X and it is denoted by px.

Notice that every isometry ®: X — X induces an affine isometry d: Prob(X)
— Prob(X) given by the formula (/IS(/L) =y 0 ® ! where o ®! denotes the
transport of the measure y € Prob(X) under the transformation ® (that is,
(po® 1 (A) = u(®~1(A))). We conclude from Corollary 3.9 that &5(;@() = px
for all ® € Iso(X); that is, pux is an invariant measure for the isometry group
of X. Again, we have obtained a constructive proof that the isometry group of
an arbitrary (nonempty) compact metric space admits an invariant measure.

Now suppose that Iso(X) acts transitively on X, i.e. for each two points
and y of X there is ® € Iso(X) with ®(z) = y. It is known that in that case
there is a unique measure invariant under every isometry of X (see e.g. [14,
Theorem 2.5]). So, we get

PROPOSITION 4.2. If the isometry group of X acts transitively on X, pux is
the unique measure invariant under every isometry of X.
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By a metric group we mean a metrizable topological group equipped with
a left-invariant metric inducing the topology of the group (there exists one, see
e.g. [2]). As a special case of Proposition 4.2 we obtain

COROLLARY 4.3. Let G be a compact metric group. The central measure of
G is the Haar measure of G.

Corollary 4.3 provides a new constructive proof of the Haar measure theorem
for metrizable compact groups.

Although in compact metric spaces with transitive actions of the isometry
groups the central measures may be found thanks to their very specific properties,
unfortunately computing the central measure in general is very complicated. For
example, we do not know the one of [0, 1]. The reader interested in this problem
may try first to compute the central measure of a three-point space (with non-
discrete metric).

PROBLEM 4.4. Is pjo 1) the Lebesgue measure?

5. Quasi-nilpotent compact metric spaces

Although we do not know whether the central measure of the unit interval is
the Lebesgue measure, we are able to make another distinguishing of measures
in a special class of compact metric spaces in such a way that the distinguished
measure for the unit interval will be the Lebesgue measure. This will be done in
this section.

Recall (see Section 2) that for a metric space (X,d) the set X1 is the set of
all orbits of points of X under the natural action of the isometry group of X. It
turns out that X V) may be topologized by an ‘axiomatically’ defined metric when
(X, d) is compact. Precisely, we denote by d™ the greatest pseudometric on X (V)
which makes the canonical projection w;): (X,d) — (XD, d™) nonexpansive.
For an arbitrary metric space (X,d), d® may not be a metric. However, we
have

PROPOSITION 5.1. For every compact metric space (X,d), dWY is a metric
on XU Moreover, for each x,y € X,

(5.1) dD P (@), 7 () = sup{ | f(7 (@) = F(x ()]:

f: XM SR, fo 7T§(1) is d-nonexpansive}.

PROOF. First we shall verify (5.1). If f: X() — R is such that f oy is
d-nonexpansive, then the formula g: XM x XM 5 (&, n) — |f(€) — f(n)] € Ry
defines a pseudometric on X (1) with respect to which 7&) is nonexpansive. Thus,
d™) > p. This shows the inequality “>” in (5.1). To prove the inverse one, for
re X put fr: X 3¢ d(l)(ﬁ,ﬂ';)(m)) € R. Clearly, f, is dV-nonexpansive
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. 1) . . 1) . .
and consequently (since 7T_(X) is nonexpansive as well) f, Oﬂg() is d-nonexpansive.

Moreover, |fx(y) (2)) — fo(nd (1)) = dV(x{ (2), 7 () for every y € X,
Since x was arbitrary, this finishes the proof of (5.1).

Now we shall show that d!) is a metric. We shall do this with use of the
variation of the Gromov-Hausdorff metric [4], [5] (see also [16]). Namely, let
X, = X x{j} (j =0,1,2) and for distinct j,k € {0,1,2} let P(j,k) be the
family of all pseudometrics p on X; U X}, such that p((z, s), (y,s)) = d(z,y) for
any z,y € X and s € {j, k}. Of course, (1, 2) may naturally be identified with
PB(0,1) as well as with P(0,2), which shall be used later. For ¢ and b in X let

o(a,b) = inf{pn (X1, X3) + p((a, 1), (b,2)) : p € P(1,2)}

where py (A, B) is the Hausdorff distance induced by p. (In other words, o(a, b)
is a counterpart of the Gromov-Hausdorff distance for pointed metric spaces
(X,a) and (X,b).) Let us check that g is a pseudometric on X such that for all
a,be X,

0(a,b) =0 < 3P €Iso(X): P(a) =0.
Observe that g is symmetric, because for every p € %(1,2) also p* € P(1,2)
and pfl(Xl,Xg) = py (X1, X2) where

p*((x,7), (y, k) = p((2, k), (4, 1));

and o(a, ®(a)) = 0 for any @ € Iso(X) (to convince of that consider a pseudo-
metric p on X UX, given by p((z, j), (y, k) = d(¥,(x), Yi(y)) where ¥y (z) =z
and ¥y = ®@). To establish the triangle inequality for a,b,c € X, for € > 0 take
pseudometrics A € P(0,1) and p € P(0,2) such that o(a,b) +¢ > Mg (Xo, X1) +
A((a, 1), (,0)) and o(b,c) +¢& > pu(Xo, X2) + 1((b,0), (¢,2)). Since A and p co-
incide on the intersection of their domains, that is, on Xy x X, we may extend
both these pseudometrics to a pseudometric p on Xy U X7 U X5 by a classical
method, namely by putting for x,y € X:

p((:L‘, 1), (y7 2)) = inf{)\((w, 1), (Z7 0)) + M((z70)7 (yv 2)): z € X}

Then the restriction of p belongs to §(1,2) and therefore

o(a,c) <pu (X1, X2) +p((a,1), (¢, 2))
<pu(X1,Xo) + pu(Xo, X2) + p((a, 1), (b,0)) + p((b,0), (¢, 2))
=Ar (X1, Xo) + A(a, 1), (b,0) + pa (Xo, Xa) + p((b,0), (¢, 2))
<o(a,b) + o(b,c) + 2¢
which finishes the proof of the triangle inequality. It remains to prove that
if o(a,b) = 0, then there is ® € Iso(X) such that ®(a) = b. For need of

this, we may and do assume that X has more than one point, that is, that
4(X) > 0. Define a metric A € PB(1,2) by putting A((z, 1), (y,2)) = 6(X) for
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every z,y € X and put B = {p € B(1,2): p < A}. Additionally, let A be a metric
on Z := (X1UXz) x (X1UX2) given by A((§1,m1), (§2,m2)) = A(€1,&2) +A(n1,m2)
(&5,m; € X1UXz). Since for every p € PB(1,2), min(p, 6(X)) € P and (of course)
min(p, §(X)) < p, we see that

o(z,y) = inf{pu (X1, X2) + p((x,1), (y,2)) : p € B}

Observe that P C Contr(Z,[0,0(X)]) (when Z is equipped with the metric A)
and P is closed in the topology of pointwise convergence of [0, §(X)]?. Hence, by
the Ascoli theorem, B is compact in the topology of uniform convergence. What
is more, for every (£,7) € Z, a function P 3 p — p(§,n) € Ris (A-)nonexpansive.
We infer from this that also functions > p — infeex; p(n,€) € Rand B > p—
sup, ey, (infeex; p(n,§)) € R are nonexpansive as well. Consequently, B > p —
pr (X1, X2) € R is continuous and it follows from the compactness of (Z, A) that
in fact

o(z,y) = min{py (X1, X3) +p((,1), (y,2)) : p € B}-
So, if o(a,b) = 0, there exists p € P for which

(5-3) pH(XlaX2):O and p((a,l),(b,Z)) =

Since p makes X; and X5 compact metric spaces, the first relation in (5.3) implies
that for every x € X there is a unique point ®(z) € X with p((z, 1), (®(z),2)) =
0. We have obtained in this way a function ®: X — X. We conclude from the
triangle inequality that p((®(x),2), (®(y),2)) = p((z,1), (y,1)) for any =,y € X.
Since p € PB(1,2) and every isometric map of a compact metric space into itself
is onto [11], this implies that ® € Iso(X). Finally, the uniqueness of ®(a) and
the second relation in (5.3) yield ®(a) = b. This proves (5.2).

Now (5.2) implies that ¢ induces a metric o* on X(!) in such a way that
o*(m ¢ )( ), (1)( )) = o(z,y) for all z,y € X. Since p < d (for p((z, 1), (y,2)) :=
d(x,y) one obtains py (X7, X2) = 0 and consequently o(z,y) < py (X1, X2) +
p((z,9), (y, k) =d(z,y)), © ( ) is nonexpansive with respect to the metrics d and
o*, and thus dV) > p*. O

By Proposition 5.1, (X,d)® := (X1 d1) is a compact metric space pro-
vided (X,d) is so. Thus we may repeat this construction to obtain subse-
quent spaces X, X®) and so on. Namely, for a compact metric space let
(X© d0)) = (X,d) and (X, d™) = (X1 =YD for n > 0. Notice
that 6(X (™) < §(X™=1) and thus the sequence (5(X (™), is convergent. We

introduce the following

DEFINITION 5.2. A compact metric space X is said to be quasi-nilpotent if
and only if
lim §(X™) = 0.

n—oo
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The class of quasi-nilpotent compact metric spaces includes all spaces on
which their isometry groups act transitively. One may think that such spaces
have to have rich isometry groups. The next example shows that it is not the

rule.

EXAMPLE 5.3. Let (X, d) be the interval [a,b] with the natural metric. Ob-
serve that the isometry group of X is very poor — there is only one isometry
on X different from the identity map, namely ¢: X >z —a+b—xz € X. How-
ever, X is quasi-nilpotent. To see this, it suffices to show that X1 is isometric
to [a/2,b/2]. Since Iso(X) = {id x,}, the set X (with no metric) and the
canonical projection 7 Xl may be represented as (respectively)

Y:{ma—’_b] a+b ‘ _a+b

d X _— = Y.
an T S X 9 x 9 ‘E

With use of (5.1) we shall check that the natural metric of Y corresponds under
the above identification to d(). In what follows the term ‘nonexpansive’ is
understood with respect to natural metrics in both X and Y. It is easily seen
that 7 is nonexpansive. Finally, if f:Y — R is any function such that f o7
is nonexpansive, then f is nonexpansive as well, because ’7'|Y =1idy. So, the
assertion follows from (5.1).

Now we shall distinguish a special measure on a quasi-nilpotent (nonempty)
compact metric space, which may also be called central. For a convex subset K of
a normed linear space let Fix(K) be the set of all fixed points under every affine
isometry of K onto K. The set K is convex as well (however, it may be empty).
Further, let Fix(K) := K and for natural n > 0 let Fix"(K) = Fix(Fix"~!(K)).
Finally, put Fix>(K) = (,—, Fix"(K). Note that Fix>(K) is convex and if K
is compact, Fix>(K) is nonempty.

Now let X be a nonempty compact metric space and Prob(X) be equipped
with the Kantorovich metric induced by the metric of X.

Let A(X) = Fix*°(Prob(X)). In the sequel we shall prove that A(X) consists
of a single measure iff X is quasi-nilpotent. The proof of this fact is based on
the next lemmas, some of which are already known.

For a continuous function f: X — Y between compact metrizable spaces X
and Y let f.:Prob(X) — Prob(Y) be given by (f«(1))(B) = u(f~1(B)) where
u € Prob(X) and B is a Borel subset of Y (in other words, f. () is the transport
of p under f).

The following result is well known. For reader’s convenience, we give its
proof.

LEMMA 5.4. For a compact metric space (X, d), the assignment ® — @, es-
tablishes a one-to-one correspondence between isometries [®] of (X, d) and affine

-~

isometries [®.] of (Prob(X),d).
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PRrROOF. First we shall check that ®, is an affine isometry provided ® is an
isometry. It follows from the definition that &, is affine. Further, since every
isometric map of a compact metric space into itself is onto [11], it suffices to
check that ®, is isometric. But this follows from (4.1) and the following two
relations: [y fdv = [, f o ®dyu where v = ®,(u); and Contr(X,R) = {fo ®:
f € Contr(X,R)}.

Now assume that ¥ is an affine isometry of Prob(X). Then ¥ sends the set
of all extreme points of Prob(X) onto itself. But extreme points of Prob(X)
are precisely Dirac’s measures. So, ¥ induces a bijection ®: X — X such that
V(6;) = bg(y) for any z € X. Further, the relation EI\(SI,%) = d(z,y) implies
that ® € Iso(X). Finally, since ®, and ¥ are two affine isometries of Prob(X)
which coincide on the set of extreme points, the Krein-Milman theorem gives
U =2a,. |

The above result implies that Fix(Prob(X)) coincides with the set of all prob-
abilistic Borel measures invariant under every isometry of X. This observation
allows us to formulate the following two results.

LEMMA 5.5 (special case of [14, Theorem 2.5]). For every nonempty compact
metric space (X,d), the function

Fix(Prob(X)) 5 pu (71';))*([1) € Prob(X )
s an affine homeomorphism.

LEMMA 5.6 (special case of [15, Proposition 2.5]). Let (X,d) be a compact
metric space. For every continuous function v: X — R the closed convezr hull
(in the topology of uniform convergence) of the set {vo®: ® € Iso(X)} contains
a map w: X — R such that

(5.4) wod=w forall ® € Iso(X).

Lemma 5.6 may also be deduced from Kakutani’s fixed point theorem (for
equicontinuous groups of affine transformations of a compact convex set).

Now we have
THEOREM 5.7. For a nonempty compact metric space (X,d) the function
U:Fix(Prob(X)) 3 pu — (WS))*(M) € Prob(x)
is an affine isometry of Fix(Prob(X)) onto Prob(X™M). In particular,

§(Fix(Prob(X))) = §(XW).

PROOF. Since §(Prob(Y)) = §(Y) for every compact metric space Y, it
suffices to prove the first assertion. By Lemma 5.5, ¥ is an affine bijection. So,
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we only need to check that U is isometric. Fix pi, pe € Fix(Prob(X)) and put
vj = W(u ). If u € Contr(X () R), then

/ udz/j:/ uowg)duj.
X X

This, combined with (4.1), gives E(ul,,uQ) > (ﬂl\)(yl, V).

Conversely, if v € Contr(X,R), then (since p; € Fix(Prob(X)) and thanks to
Lemma 5.4) fX vdp; = fX vo ®dpu; for every ® € Iso(X). Now by Lemma 5.6,
the closed convex hull of the set {v o ®: ® € Iso(X)} contains a map w: X — R
such that (5.4) is satisfied. This implies that w € Contr(X,R) and [y vdu; =
[y wdp;. We infer from (5.4) that there is wo: X — R such that w = woorly.
The last connection and (5.1) yield that wy € Contr(X ™) R). So, we finally
obtain

‘/ vdm—/ vdpg
X X

:‘/ woowg)dul—/woowg)dﬂg
X X

= / wo dI/1 — / wo d’/2
XM x@)

which finishes the proof. O

< E(T)(VN&%

PRroOPOSITION 5.8. If X is a nonempty compact metric space, then for each
natural n, §(Fix"™(Prob(X))) = (X ™).

ProoF. It suffices to show that K,, := Fix"(Prob(X)) and Prob(X (™) are
affinely isometric. For n = 0 this is immediate. Assume K,, 1 is affinely isometric
to Prob(X(™~1V) for some n > 0. Then K,, = Fix(K,_1) is affinely isometric to
Fix(Prob(X(™~1)) as well. But this set is affinely isometric to Prob(X ™)) (by
Theorem 5.7) and we are done. ]

Now since 6(A(X)) = lim,, oo d(Fix™(Prob(X))), Proposition 5.8 leads to

COROLLARY 5.9. Let X be a nonempty compact metric space. A(X) consists
of a single measure iff X is quasi-nilpotent.

DEFINITION 5.10. Let X be a nonempty quasi-nilpotent compact metric
space. The unique member of A(X) is denoted by Ax and it is called the central
measure of X of a second kind.

It follows from the definition that whenever X is a nonempty quasi-nilpotent
compact metric space, so is X (™ for each n € N. For n > 1 let

77&?') = Wg(l?n,l) 0...0 wg):X — X,

Another consequence of Theorem 5.7 is
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ProprosITION 5.11. Let X be a monempty compact quasi-nilpotent metric
space. Then:
(a) (Wg?))*(AX) = Ax) for eachn >1,
(b) Ax is a unique measure A € Fix(Prob(X)) such that for all positive
integers n, (Wg?)>*(/\) € Fix(Prob(X™)).

ProOOF. To show (a), it is enough to check that (775(1))*()\)() = Axw. By
Theorem 5.7, (71';))* is an affine isometry from Fix(Prob(X)) onto Prob(X ™).
Therefore, it follows from the induction argument that

(1), (Fix" 1 (Prob(X))) = Fix" (Prob(X ™))
for each n € N. Consequently,
(1), (Fix™ (Prob(X))) = Fix™ (Prob(X 1))

and we are done.

Now we pass to (b). Thanks to (a), it remains to establish the uniqueness of A.
Put p, = (Wg?))*()\) € Fix(Prob(X ™)) for n > 0 and pp = A € Fix(Prob(X)).
We then have

(5:5) (180 ) (fin) = b,
The proof of (a) shows that
(ﬂﬁi?w )« (Fix™ 1 (Prob(X ™)) = Fix™ (Prob(X 1))

for each m > 1. This, combined with (5.5) and induction argument, gives
A € Fix"(Prob(X)) (since j,,_1 € Fix(Prob(X™~1)) and (ng?j))* is one-to-one
on Fix(Prob(X ))) for each j) which finishes the proof. O

Since Ax € Fix(Prob(X)), the central measure of X of a second kind is
invariant under every isometry of X. We conclude from this that A\x = px
provided X is a compact metric space such that X is a singleton (i.e. if the
isometry group of X acts transitively on X). We end the section with

PROPOSITION 5.12. The central measure of [0,1] of a second kind coincides
with the Lebesgue measure on [0,1].

Proor. For n > 0 let I,, = [0,1/2"] be equipped with the natural metric.

§1) may be repre-

The argument involved in Example 5.3 shows that Ir(Ll) and 7}
sented as (respectively) I,+1 and 7,: I, > t — 1/27F1 — |t — 1/2"FY € I,.;.
Further, let m denote the Lebesgue measure on R and p,, € Prob([l,,) be given by
pn(A) = 2"m(A). Thanks to Lemma 5.4, u,, € Fix(Prob(I,)). So, taking into

account point (b) of Proposition 5.11, it suffices to check that (7,)x(tin) = fint1-

n
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Let ®,,:R 5> 2 +— 1/2" — 2 € R and note that for a Borel subset A of 1,1 we
have 7, 1(A) = AU®,1(A) and AN ®,1(A) C {1/2"*1} which yield

(Tn)« () (A) = pn(A) + /Ln(q)r:l(A))
= 2 m(A) + m(®; 1 (A))] = 2 n(4) = g (4)

and we are done. O

6. Distinguishing dense subsets

We know that strict distinguishing is impossible in general. However, one
may still ask whether it is possible to define a distinguishing in the class X of
all nonempty compact metric spaces. This part is devoted to the solution of this
problem. We shall show that there is a sequence of distinguishings X 5 K +—
Cn(K) € KM (n > 1) such that for every K € X there is a dense in K sequence
{en}2, C K such that 7% (c,) = Cp(K).

Let N = {0,1,...}. Fix an infinite compact metric space (X,d). Instead of
constructing an ‘intrinsic’ dense subset of X, we shall construct a metric px on
N such that (N, gx) is isometric to a dense subset of X. Suppose for some n > 0
we have defined the metric ox on {0,... ,n — 1} in such a way that the space
({0,... ,n— 1}, ox) is isometrically embeddable into X (ox is uniquely defined
on {0}). Put

(6.1) Fr—1 :={(z0,... ,2n_1) € X" 1 d(zj,21) = 0x (4, k), 5,k=0,... ,n—1}
and let f,—1: F,—1 X X — R be given by

(6.2) fr—1(xoy .., Zp_1;2) = min(d(zg, x), ... ,d(Tn-1,)).

By our assumption, Fj,_1 is nonempty. Next, let

(6.3) Ay = {(z;y) € Fre1 X X ¢ fr_1(x;y) = max fr,—1(Fr—1 x X)}.
Now inductively define sets A7 for j =1,... ,n by

(6.4) A7 :={(Yo,--- yn-139) € A]_; :
d(yj-1,y) = max{d(z;_1,2) | (20,... , 2n-1;2) € A] 1 }}.

It follows from induction and the compactness of the space that
(1), A C A" _, C...C A} and A" # 0,
(2)n for every (Yo, s Yn—15Yn)s (Yo s Yn—13Yp,) € Ap (With 1 <k <n),

d(Yp,yq) = 0x(p,q) (p,q€{0,...,n—1})

and d(y;,yn) = d(y},y,,) for 0 < j < k.
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Now take any (zo,...,%Zn—1;2n) € Al and put ox(j,n) = d(z;,z,) for
j=0,...,n. Observe that this definition is independent of the choice of

(zo,-.. ,Zpn_1;2) € A,

by (2),. It is also clear that px is a metric (not only a pseudometric) on
{0,...,n} (because X is infinite — and hence max f,,_1(F,,—1 x X) > 0).

In this way we obtain a metric ox on N such that px = gy for every space
Y isometric to X. We claim that

PROPOSITION 6.1. For every infinite compact metric space (X,d), the space
(N, 0x) is isometric to a dense subset of X.

PRrOOF. For each n € N let P, be the set of all sequences (z,,)%_, € XV
such that the function ({0,...,n},ox) 3 j — z; € (X,d) is isometric. By
construction of px, P, is nonempty. It is also clear that P, is closed in X~ and
that P, D P,y1. Therefore, by the compactness of X, the intersection ()7, Py
is nonempty. We infer from this that there is an isometric function ® of (N, gx)
into (X,d). We claim that ®(N) is dense in X. Suppose, for the contrary, that
there is x € X and r > 0 such that

(6.5) d(xz,®(n)) >r

for every n € N. Note that ($(0),...,®(n)) € A" C A} C F,,—1 x X for any
n > 0, where A7}’s and F),_1’s are given by (6.4), (6.3) and (6.1). So, (6.5) yields
max fp—1(Fn—1xX) > r for f,_1’s given by (6.2). Finally, we conclude from the
relation (®(0),...,®(n)) € A} and (6.5) that f,—1(®(0),... ,2(n—1);®(n)) >
r which means that d(®(j),®(k)) > r for j < k. But this contradicts the

compactness of X. O

By a representation of the metric pox we mean any isometric function of
(N, 0x) into (X,d), provided X is infinite.

If X is finite and has n elements, we may repeat the above construction to
obtain a metric gx on {0,...,n — 1} which makes this set isometric to X. In
that case by a representation of px we mean any function ®:N — X such that
® is isometric on {0,...,n — 1} (with respect to the metrics px and d) and
O(k)=®(n—1)for k>n-—1.

We may ask how many representations has the metric px for an arbitrary
space X. The answer to this gives

PROPOSITION 6.2. Let X be a nonempty compact metric space and ®o: N —
X be a representation of px. The function ¥ — W o &g establishes a one-to-one
correspondence between isometries (V] of X and representations [V o ®q] of ox.

PROOF. Since the composition of two isometric maps is isometric as well, we
see that ¥ o @y is a representation of px for each ¥ € Iso(X). Conversely, the
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proof of Proposition 6.1 shows that every representation of px has dense image
in X. So, the assignment ¥ +— W o & is one-to-one. Finally, if &:N — X is
any representation of gx, then the sets A := ®¢(N) and B := ®(N) are dense
in X and a function ¢ = ® o @51:14 — B is an isometry of A onto B. The
completeness of X implies that there is ¥ € Iso(X) which extends . But then
® = U o &y which finishes the proof. (]

Proposition 6.2 says that if the isometry group of a space X is poor, there
are only few representations of px. In the opposite, if there are many represen-
tations, the isometry group of X is rich. Both the situations are interesting.

Now we pass to distinguishing of points. Observe that whatever represen-
tation ®:N — X of px we take, the function wg(l) o ® is the same (thanks to
Proposition 6.2). We infer from this that the definition C),(X) := wg(l)(q)(n))

where n € N and @ is any representation of px is correct. We now have

PROPOSITION 6.3. For eachn € N, the assignment X 3 K — C,,(K) € K
18 a distinguishing.

Proor. Let K and L be two isometric compact nonempty metric spaces.
Then o = or. Let &:N — K be a representation of px and ¥ € Iso(K, L).
Since then ®' := W o ® is a representation of gr, we obtain that C,(L) =
(@' (n)). Note that WW(C,(K)) = Cy(L), since Cp(K) = 7% (®(n)) and
v o Wg) = W(Ll) oV, O

In studying the class of separable complete metric spaces, especially in theory
of random metric spaces (cf. [19], [20]), one of methods is to consider the set of all
metrics © on N and to make the assignment ® > d — ‘the completion of (N, d)’.
In other words, the ‘world’ of infinite separable complete metric spaces may be
identified (by this assignment) with the ‘world’ of metrics on N. This is quite
natural approach, however, there is no one-to-one correspondence between the
members of these two worlds. The distinguishing of dense subsets of compact
metric spaces constructed in this section may be seen as an example of the
‘inverse function’ to the above assignment after restricting the considerations to
totally bounded metrics on N.
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