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WHAT AN INFRA-NILMANIFOLD ENDOMORPHISM
REALLY SHOULD BE. . .

Karel Dekimpe

Abstract. Infra-nilmanifold endomorphisms were introduced in the late

sixties. They play a very crucial role in dynamics, especially when studying
expanding maps and Anosov diffeomorphisms. However, in this note we will

explain that the two main results in this area are based on a false result

and that although we can repair one of these two theorems, there remains
doubt on the correctness of the other one. Moreover, we will also show that

the notion of an infra-nilmanifold endomorphism itself has not always been

interpreted in the same way.
Finally, we define a slightly more general concept of the notion of an

infra-nilmanifold endomorphism and explain why this is really the right
concept to work with.

1. Introduction

The notion of an infra-nilmanifold endomorphism appears for the first time
in the proceedings of the symposium in pure mathematics of the American Math-
ematical Society held in 1968 in Berkeley (see [7], [12], [24]).

Nowadays, when using the term infra-nilmanifold endomorphism, most peo-
ple refer to the paper of J. Franks [7], although J. Franks himself in that same
paper (and also M. Shub in [24]), attributes this terminology to M.W. Hirsch [12].
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However, it is immediately clear and this will also be explained in the next sec-
tion, that the definition used by J. Franks and M. Shub is not equivalent to the
one used by M.W. Hirsch.

The results of [7] have played an important role in dynamics, especially in
the study of Anosov diffeomorphisms and expanding maps. On the one hand, it
was a crucial ingredient in the result of M. Gromov (see geometric corollary on
page 55 of [9]) stating that an expanding map on an arbitrary compact manifold
is topologically conjugate to an infra-nilmanifold endomorphism.

On the other hand, A. Manning [18], using the concept of an infra-nilmanifold
endomorphism as introduced in [7], showed that any Anosov diffeomorphism of
an infra-nilmanifold M is topologically conjugate to a so called hyperbolic infra-
nilmanifold automorphism.

Unfortunately, some results of [7] depend on a theorem of L. Auslander [1,
Theorem 2] which is not correct (not only the proof, but the statement of Aus-
lander’s theorem is wrong). We will explain this in the next section. Moreover,
although most of the arguments in [7] which are based on Auslander’s wrong
result can be restored using a modified version of it (see Corollary 2.3 below),
there remain some subtle problems with the definition of the concept of an infra-
nilmanifold endomorphism as given in [7].

The aim of this note is to show that, even with a correct definition of an
infra-nilmanifold endomorphism, both the proofs of the result of A. Manning
and of M. Gromov are not correct, because they are heavily based on a wrong
result [7, Proposition 3.5] of the paper of Franks. As both of these results are
often referred to, I will point out as detailed as possible, where the problems
in the work of L. Auslander and of J. Franks are situated and how this has it’s
influence in the work of M. Gromov and A. Manning. Moreover, I will give
an example of an expanding map and of an Anosov diffeomorphism on a given
infra-nilmanifold which are not topologically conjugate to an infra-nilmanifold
endomorphism of that infra-nilmanifold. Fortunately, by the work of K.B. Lee
and F. Raymond [15], who were, up to my knowledge, the first to discover
the problems in the work of L. Auslander, it is rather easy to define a slightly
broader concept of the notion of infra-nilmanifold endomorphism, namely the
class of affine endomorphisms, which is more suited to study self maps of infra-
nilmanifolds. We will show that using this broader concept the result of M. Gro-
mov on expanding maps can be repaired, but one has to be very careful with the
precise interpretation of the statement. On the other hand, although it is also
to be expected that A. Manning’s result might be repaired, I haven’t been able
to prove this in its full generality yet.



What an Infra-nilmanifold Endomorphism Really Should Be. . . 113

2. Infra-nilmanifolds and endomorphisms
of their fundamental groups

Let N be a connected and simply connected nilpotent Lie group and let
Aut(N) be the group of continuous automorphisms of N . Then Aff(N) =
NoAut(N) acts on N in the following way:

(n, α) · x = nα(x) for all (n, α) ∈ Aff(N) and all x ∈ N.

So an element of Aff(N) consists of a translational part n ∈ N and a linear part
α ∈ Aut(N) (as a set Aff(N) is just N ×Aut(N)) and Aff(N) acts on N by first
applying the linear part and then multiplying on the left by the translational
part). In this way, Aff(N) can also be seen as a subgroup of Diff(N).

Now, let C be a compact subgroup of Aut(N) and consider any torsion free
discrete subgroup Γ of NoC, such that the orbit space Γ \N is compact. Note
that Γ acts on N as being also a subgroup of Aff(N).

The action of Γ on N will be free and properly discontinuous, so Γ \ N is
a manifold, which is called an infra-nilmanifold. It follows from the (correct)
Theorem 1 of L. Auslander in [1], that Γ ∩N is a uniform lattice of N and that
Γ/(Γ∩N) is a finite group. This shows that the fundamental group of an infra-
nilmanifold Γ \N is virtually nilpotent (i.e. has a nilpotent normal subgroup of
finite index). In fact, Γ ∩N is a maximal nilpotent subgroup of Γ and it is the
only normal subgroup of Γ with this property. (This also follows from [1]).

If we denote by p:NoC → C the natural projection on the second factor,
then p(Γ) ∼= Γ/(Γ∩N). Let F denote this finite group p(Γ), then we will refer to
F as being the holonomy group of Γ (or of the infra-nilmanifold Γ\N). It follows
that Γ ⊆ NoF . In case F = 1, so Γ ⊆ N , the manifold N \G is a nilmanifold.
Hence, any infra-nilmanifold Γ\N is finitely covered by a nilmanifold (Γ∩N)\N .
This also explains the prefix “infra”.

When the Lie group N is abelian, so N is the additive group Rn for some
n, it is enough to consider the case C = O(n), the orthogonal group, because
O(n) is a maximal compact subgroup of Aut(Rn) = GLn(R) and so any other
compact subgroup is conjugate to a subgroup of O(n). It follows that in this
situation NoC = RnoO(n) is the group of isometries of Euclidean space Rn. In
this setting, the infra-nilmanifolds are compact flat Riemannian manifolds and
the nilmanifolds are just tori.

Remark 2.1. Many authors (e.g. see [7], [12]) start from discrete subgroups
of NoF for various finite groups F to define the notion of an infra-nilmanifold.
The discussion above shows that this is not a restriction.

In [9] and [11], an infra-nilmanifold is defined as a quotient Γ \ N , where
Γ is a subgroup of the whole affine group Aff(N) acting freely and properly
discontinuously on N . This is not a correct definition, for in this case, the linear
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parts do not have to form a finite group and hence Γ need not be a virtually
nilpotent group. As an example, let ϕ: Z → Aut(Z2) be any morphism and
regard ϕ(z) as being a 2× 2-matrix. Then,

Γ =


 x

y

z

 ,

(
ϕ(z) 0

0 1

) ∣∣∣∣∣∣ x, y, z ∈ Z


is a subgroup of Aff(R3) acting freely and properly discontinuously on R3. The
group Γ is isomorphic to the semi-direct product group Z2oZ, where the action
of Z on Z2 is given via ϕ. Such a group is often not virtually nilpotent. E.g.
there is a unique morphism ϕ: Z → Aut(Z2), with ϕ(1) =

(
2 1

1 1

)
. The corre-

sponding group Z2oZ is not virtually nilpotent. Actually, the manifolds which
are obtained in this way are called complete affinely flat manifolds (see [20]).

Let us now discuss why Theorem 2 of [1] is not correct. In fact, L. Auslander
proves this theorem as a generalization of the second Bieberbach theorem. Un-
fortunately, even L. Auslander’s formulation of this second Bieberbach theorem
is not correct. This was first observed, without further explanation, by K.B. Lee
and F. Raymond in [15]. As this theorem plays an important role in the work of
J. Franks, I will explain in full detail what goes wrong and what can be saved.

We recall the statement of Auslander’s theorem using the notations we in-
troduced above.

Formulation of Theorem 2 in [1]. Let Γ1 and Γ2 be discrete uniform
subgroups of NoC. Let ψ: Γ1 → Γ2 be an isomorphism. Then ψ can be uniquely
extended to a continuous automorphism ψ∗ of NoC onto itself.

It is very easy to produce a counterexample to this statement. In fact, the
statement is almost never correct. Let N = R2 the additive group and C = O(2).
Let Γ1 = Γ2 = Z2 and let ψ ∈ Aut(Z2) be the automorphism represented by the
matrix A =

(
2 1

1 1

)
(almost any matrix will do). Now assume that ψ extends to

a continuous automorphism ψ∗ of R2oO(2). The group R2 (seen as a subgroup
of R2oO(2)) is normal and maximal abelian and is the unique subgroup of
R2oO(2) satisfying this condition, so we must have that ψ∗(R2) = R2. It follows
that the restriction of ψ∗ to R2 is the linear map, given by the matrix A. So
ψ∗(r, 1) = (Ar, 1) for all r ∈ R2. (Here 1 denotes the trivial automorphism of R2

or the 2× 2 identity matrix).

Now let B ∈ O(2), so (0, B) ∈ R2oO(2), and assume that ψ∗(0, B) = (b, B′)
for some b ∈ R2 and some B′ ∈ O(2). Let us perform a small computation,
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where r ∈ R2 is arbitrary:

ψ∗((0, B)(r, 1)(0, B)−1) = ψ∗(0, B)ψ∗(r, 1)ψ∗(0, B)−1

⇓
ψ∗(Br, 1) = (b, B′)(Ar, 1)(−B′−1b, B′−1)

⇓
(ABr, 1) = (B′Ar, 1).

As this holds for any r we must have that AB = B′A, or B′ = ABA−1. It is
now trivial to see that such a B′ does not have to belong to O(2). E.g. when
B =

(
−1 0

0 1

)
. We have that B′ =

(
−3 4

−2 3

)
6∈ O(2). We can conclude that

ψ does not extend to a continuous morphism of R2 o O(2), contradicting the
statement made by L. Auslander. At this point I want to remark that Auslander’s
argumentation is very short, so it is difficult to point out where exactly the error
is situated.

A correct formulation of a generalization of the second Bieberbach theorem
is given in [15].

Theorem 2.2 ([15], see also [4, p. 16]). Let N be a connected and simply
connected nilpotent Lie group and C a compact subgroup of Aut(N). Let Γ1 and
Γ2 be two discrete and uniform subgroups of NoC and assume that ψ: Γ1 → Γ2

is an isomorphism, then there exists an α ∈ Aff(N) such that

ψ(γ) = αγα−1 for all γ ∈ Γ1.

So, any isomorphism between the groups Γ1 and Γ2 is induced by a conju-
gation inside Aff(N).

At this point, I would like to mention a corollary, which can be seen as a fix
to the false statement of L. Auslander.

Corollary 2.3. Let N be a connected and simply connected nilpotent Lie
group and C a compact subgroup of Aut(N) and let Γ be a discrete and uniform
subgroup of NoC. Let p:NoC → C denote the natural projection. If ψ: Γ → Γ
is a monomorphism, then p(Γ) = p(ψ(Γ)). Moreover, in this case ψ extends to
an automorphism ψ∗ of Nop(Γ), such that ψ∗(N) = N .

Proof. ψ is an isomorphism from Γ onto ψ(Γ), so by Theorem 2.2, ψ can
be realized as a conjugation, say by α ∈ Aff(N), inside Aff(N). As N is a normal
subgroup of Aff(N), we have that αNα−1 = N . On the other hand, we also have
that αΓα−1 ⊆ Γ. Therefore, α(Nop(Γ))α−1 = αNΓα−1 ⊆ NΓ = Nop(Γ). In
fact, we can see that α(Nop(Γ))α−1 = Nop(Γ) (and not a proper subset of it).
To prove this, we must show that for any µ ∈ p(Γ), there is a n ∈ N , with
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(n, µ) ∈ ψ(Γ) = αΓα−1. This is however easy, because any morphism ψ of Γ
induces a morphism

ψ: p(Γ) = Γ/(Γ ∩N) → p(Γ) = Γ/(Γ ∩N).

Now, as ψ is conjugation with an element α ∈ Aff(N), it is easy to see that ψ
is conjugation with the linear part of α in Aut(N). Therefore, ψ is bijective,
showing that p(ψ(Γ)) = p(Γ) and α(Nop(Γ))α−1 = Nop(Γ). The proof now
finishes by taking ψ∗ to be conjugation with α inside Aff(N). �

3. Infra-nilmanifold endomorphisms

In this section, we will discuss the notion of an infra-nilmanifold endomor-
phism as introduced by M.W. Hirsch [12] and by J. Franks [7].

To do this, we fix an infra-nilmanifold Γ\N , so N is a connected and simply
connected nilpotent Lie group and Γ is a torsion free, uniform discrete subgroup
of NoF , where F is a finite subgroup of Aut(N). We will assume that F is
the holonomy group of Γ (so for any µ ∈ F , there exists an n ∈ N such that
(n, µ) ∈ Γ).

In what follows, we will identify N with the subgroup N×{1} of NoAut(N)
= Aff(N), F with the subgroup {1} × F and Aut(N) with the subgroup {1} ×
Aut(N). Hence, we can say that an element of Γ is of the form nµ for some
n ∈ N and some µ ∈ F . Also, any element of Aff(N) can uniquely be written
as a product nψ, where n ∈ N and ψ ∈ Aut(N). The product in Aff(N) is then
given as

n1ψ1n2ψ2 = n1ψ1(n2)ψ1ψ2 for all n1, n2 ∈ N and all ψ1, ψ2 ∈ Aut(N).

We will first look at the way M.W. Hirsch introduced the notion of an infra-
nilmanifold endomorphism. Actually, Hirsch defines endomorphisms on a larger
class of spaces, called infra homogeneous spaces, but we immediately specialise
to the case of infra-nilmanifolds.

M.W. Hirsch starts with a given automorphism ϕ of the Lie group NoF ,
with ϕ(F ) = F . Note that we also have that ϕ(N) = N , because N is the
connected component of the identity element in NoF . Before we continue, let
us give a description of these automorphisms.

Lemma 3.1. Let N be a connected, simply connected nilpotent Lie group
and F be a finite subgroup of Aut(N). Let ϕ be an automorphism of NoF with
ϕ(F ) = F and denote by ψ ∈ Aut(N) the restriction of ϕ to N , then

ϕ(x) = ψxψ−1 for all x ∈ NoF

where ψxψ−1 is a conjugation in the group Aff(N).
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Proof. For any n ∈ N and any ξ ∈ Aut(N), the equality ξ(n) = ξnξ−1 is
valid, where ξnξ−1 is a conjugation in Aff(N). So, we also have that

(3.1) ϕ(n) = ψ(n) = ψnψ−1.

Let us now consider an element µ ∈ F . For any n ∈ N , we have the following
equation in the group NoF :

µ(n) = µnµ−1.

By applying ϕ to both sides of this equation, we find that

ϕ(µ(n)) = ϕ(µ)ψ(n)ϕ(µ)−1 ⇒ ψ(µ(n)) = ϕ(µ)(ψ(n))

Since this holds for any n ∈ N , we have that ψ ◦ µ = ϕ(µ) ◦ ψ showing that

(3.2) ϕ(µ) = ψµψ−1.

Now, combining (3.1) and (3.2) we find that for x = nµ, with n ∈ N and µ ∈ F :

ϕ(x) = ϕ(n)ϕ(µ) = ψnψ−1ψµψ−1 = ψxψ−1,

which finishes the proof. �

Now, let ϕ still be an automorphism of NoF with ϕ(F ) = F and assume
that ϕ(Γ) ⊆ Γ, where Γ is a torsion free, discrete and uniform subgroup of NoF .
Now, let γ = mµ be any element of Γ, where m ∈ N and µ ∈ F . We denote the
action of Γ on n ∈ N by γ · n, so γ · n = mµ(n). Now we compute that

ϕ(γ · n) = ϕ(mµ(n)) = ϕ(m)ϕ(µ(n))

= ϕ(m)ϕ(µ)(ϕ(n)) = ϕ(mµ) · ϕ(n) = ϕ(γ) · ϕ(n).

We are now ready to introduce the notion of an infra-nilmanifold endomor-
phism.

Definition 3.2 (Infra-nilmanifold endomorphism following Hirsch). Let N
be a connected and simply connected nilpotent Lie group and F ⊆ Aut(N)
a finite group. Assume that Γ is a torsion free, discrete and uniform subgroup
of NoF . Let ϕ:NoF → NoF be an automorphism, such that ϕ(F ) = F and
ϕ(Γ) ⊆ Γ, then, the map

ϕ: Γ \N → Γ \N : Γ · n 7→ Γ · ϕ(n),

is the infra-nilmanifold endomorphism induced by ϕ. In case ϕ(Γ) = Γ, we call
ϕ an infra-nilmanifold automorphism.

In the definition above, Γ · n denotes the orbit of n under the action of Γ.
The computation above shows that ϕ is well defined. Note that infra-nilmanifold
automorphisms are diffeomorphisms, while in general an infra-nilmanifold endo-
morphism is a self-covering map.
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Remark 3.3. It is easy to check that for an infra-nilmanifold endomorphism
ϕ, the induced morphism ϕ] on the fundamental group Π1(Γ \N,x0) ∼= Γ is ex-
actly the restriction of ϕ to Γ (see also Proposition 3.7 below and note that one
can always choose as basepoint x0 = Γ ·e, the orbit of the identity element of N).
By Lemma 3.1 we know that ϕ] is induced by a conjugation with an automor-
phism inside Aff(N). On the other hand, Theorem 2.2 shows that in general
an injective endomorphism of Γ is induced by a conjugation with a general ele-
ment of Aff(N) and not necessarily by an automorphism. This already indicates
that there might exist (interesting) diffeomorphisms and self–covering maps of
an infra-nilmanifold which are not even homotopic to an infra-nilmanifold endo-
morphism. Further on, we will explicitly construct such examples and obtain an
Anosov diffeomorphism (resp. an expanding map) of an infra-nilmanifold which
is not homotopic to an infra-nilmanifold automorphism (resp. infra-nilmanifold
endomorphism) of that infra-nilmanifold.

As already indicated above, we will also consider the definition of an infra-
nilmanifold endomorphism as introduced by J. Franks in [7, p. 63], the definition
which is in fact most often referred to. Using our notation introduced above,
J. Franks writes that when ϕ:NoF → NoF is an automorphism for which
ϕ(Γ) ⊆ Γ and ϕ(N) = N , it induces a map

ϕ: Γ \N → Γ \N.

(In fact, J. Franks requires that ϕ(Γ) = Γ and not that it is only a subgroup,
but I believe this is a typo).

It is this kind of maps that he calls infra-nilmanifold endomorphisms. As
J. Franks does not impose the condition that ϕ(F ) = F , this seems to be a gen-
eralization of the notion introduced by M.W. Hirsch. Exactly the same definition
was given by M. Shub in [24, p. 274] (without the typo).

Unfortunately, there seems to be a problem with this definition. It is not
true that the map ϕ: Γ\N → Γ\N : Γ ·n 7→ Γ ·ϕ(n) is in general well defined. As
many authors refer to the work of J. Franks when talking about infra-nilmanifold
endomorphisms, we give a detailed example to show where it goes wrong.

Let N = R3, the additive group. We let F ∼= Z2⊕Z2 ⊆ GL3(R) be the group
with elements

1 =

 1 0 0
0 1 0
0 0 1

 , α =

 1 0 0
0 −1 0
0 0 −1

 ,

β =

−1 0 0
0 1 0
0 0 −1

 , αβ =

−1 0 0
0 −1 0
0 0 1

 .
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Moreover, we pick

a =

 1
2

0
0

 and b =

 0
1
2
1
2

 .

Let A = (a, α) ∈ Aff(R3) and B = (b, β) ∈ Aff(R3) and consider the group
Γ ⊆ R3oF to be the group generated by Z3 ∪ {A,B}. Then Γ is a torsion free,
uniform discrete subgroup of R3oF . In fact Γ \R3 is the well known Hantzsche-
Wendt manifold with fundamental group Γ.

Now, let

δ =

 1 0 0
0 0 1
0 1 0

 and d =

 1
4

0
0


and take D = (d, δ) ∈ Aff(R3). Let ϕ: Aff(R3) → Aff(R3):X 7→ DXD−1 be the
inner automorphism determined by D. A calculation shows that ϕ(R3oF ) =
R3oF , so ϕ restricts to an automorphism R3oF for which of course ϕ(R3) = R3

(but ϕ(F ) 6= F !). Moreover,

ϕ(Z3) = Z3 ⊆ Γ, ϕ(A) = A ∈ Γ and ϕ(B) =

 0
1
1

AB ∈ Z3Γ = Γ.

So ϕ(Γ) ⊆ Γ (in fact equality holds). I claim that in this case the map ϕ is not
well defined. To prove this claim, we need to provide a n ∈ R3 and a γ ∈ Γ, such
that Γ · ϕ(n) 6= Γ · ϕ(γ · n). Let

n =

 1
3
1
3
1
3

 and γ = B, then γ · n =

− 1
3

5
6
1
6

 .

It follows that

ϕ(n) =

 1
3
1
3
1
3

 and ϕ(γ · n) =

− 1
3

1
6
5
6

 .

To check that Γ · ϕ(γ · n) 6= Γ · ϕ(n), it suffices to check that ϕ(γ · n) 6∈ Γ · ϕ(n),
or that ϕ(γ · n) 6= γ′ · ϕ(n) for any γ′ ∈ Γ. Any γ′ ∈ Γ can uniquely be written
in one of the following ways:

γ′1 = z, γ′2 = zA, γ′3 = zB or γ′3 = zAB, with z =

 z1
z2
z3

 ∈ Z3.

Computing γ′ · ϕ(n) in each of these four case, we obtain:

γ′1 · ϕ(n) =

 z1 + 1
3

z2 + 1
3

z3 + 1
3

 , γ′2 · ϕ(n) =

 z1 + 5
6

z2 − 1
3

z3 − 1
3

 ,
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γ′3 · ϕ(n) =

 z1 − 1
3

z2 + 5
6

z3 + 1
6

 , γ′4 · ϕ(n) =

 z1 + 1
6

z2 − 5
6

z3 − 1
6

 .

It is obvious that none of these expressions equals ϕ(γ · n), proving the claim.�

At the end of this section, we want to explain that in a certain sense, the
definition of an infra-nilmanifold endomorphism as given by M.W. Hirsch is the
best possible. In fact, we will show that the only maps of an infra-nilmanifold,
that lift to an automorphism of the corresponding nilpotent Lie group are exactly
the infra-nilmanifold endomorphisms defined in Definition 3.2. When reading the
work of J. Franks, it is clear that he also only considers those maps on an infra-
nilmanifold Γ\N which lift to an automorphism of the Lie group N (e.g. see the
first few lines of the proof of Theorem 2.2 of [7]). In fact, when talking about
infra-nilmanifold endomorphisms most authors, including J. Franks, M. Schub
and M. Hirsch (but e.g. also in [2], [10], [11], [26] and in many other papers) are
talking about maps which lift to an automorphism of the Lie group N .

Theorem 3.4. Let N be a connected and simply connected nilpotent Lie
group, F ⊆ Aut(N) a finite group and Γ a torsion free discrete and uniform
subgroup of NoF and assume that the holonomy group of Γ is F . If ϕ:N → N

is an automorphism for which the map

ϕ: Γ \N → Γ \N : Γ · n 7→ Γ · ϕ(n)

is well defined (meaning that Γ · ϕ(n) = Γ · ϕ(γ · n) for all γ ∈ Γ), then

Φ:NoF → NoF : x 7→ ϕxϕ−1 (conjugation in Aff(N))

is an automorphism of NoF , with Φ(F ) = F and Φ(Γ) ⊆ Γ. Hence, ϕ is
a infra-nilmanifold endomorphism (as in Definition 3.2).

Proof. The fact that ϕ is well defined, means that ϕ is a lift of ϕ to the
universal cover N of Γ \ N . Now, for all γ ∈ Γ, also the composition ϕγ is
a lift of ϕ, since Γ is the group of covering transformations of the covering
N → Γ \N . It follows that there exists a γ′ such that ϕγ = γ′ϕ. Now, since ϕ
is an automorphism of N , we can write this as ϕγϕ−1 = γ′ for some γ′ ∈ Γ so

ϕΓϕ−1 ⊆ Γ.

Now, consider the inner automorphism Ψ of Aff(N) induced by ϕ:

Ψ:Aff(N) → Aff(N) : x 7→ ϕxϕ−1.

For all n ∈ N , we have that Ψ(n) = ϕ(n), so Ψ(N) = ϕ(N) = N . We showed
above that that Ψ(Γ) ⊆ Γ. It follows that Ψ(NoF ) = Ψ(NΓ) ⊆ NΓ. Hence,
Ψ induces an injective endomorphism of NoF . As F is mapped into itself
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by Ψ (because Aut(N) is mapped into itself by Ψ) and F is finite, we must
have that Ψ(F ) = F . Together with the fact that Ψ(N) = N , this implies
that Ψ(NoF ) = NoF and hence Ψ restricts to an automorphism Φ of NoF ,
satisfying the conditions mentioned in the statement of the theorem. �

Remark 3.5. When checking literature, it seems that most authors that
are talking about infra-nilmanifold endomorphisms, seem to assume that such
a map lifts to an automorphism of the covering Lie group N . Hence, this implies
that they are actually using the definition of M.W. Hirsch (which is probably
also the definition that J. Franks meant to give). So from now onwards, when
we use the term infra-nilmanifold endomorphism, we are referring to the only
correct Definition 3.2.

We are now ready to define the generalization of the concept of an infra-
nilmanifold endomorphism we announced in the introduction.

Definition 3.6. Let N be a connected and simply connected nilpotent Lie
group, F ⊆ Aut(N) a finite group, Γ a torsion free discrete and uniform subgroup
of NoF . Let α ∈ Aff(N) be an element such that αΓα−1 ⊆ Γ, then α induces
a map

α: Γ \N → Γ \N : Γ · n 7→ Γ · α(n).

We call α an affine endomorphism of the infra-nilmanifold Γ \ N induced by
α. When αΓα−1 = Γ, the map α is a diffeomorphism, and we call α an affine
automorphism.

As it is so crucial for what follows, we briefly recall from the theory of covering
transformations how the group Γ can be seen as the fundamental group of Γ \N
and what the effect of an affine endomorphism is on the fundamental group.
Details of what follows can be found in any text book dealing with this topic,
e.g. [25, Chapter 2] and [19, Chapter 5].

Choose any basepoint n0 ∈ Γ \ N and choose a point ñ0 ∈ N whose orbit
corresponds to the point n0. Now, any loop f : I → Γ \ N at n0 (I is the unit
interval [0, 1]) has a unique lift to a path f̃ : I → N starting at ñ0 (i.e f̃(0) = ñ0).
The endpoint ñ1 = f̃(1) of f̃ lies in the same orbit as ñ0 (because they both
project onto n0) and hence, there exists a γf ∈ Γ with γf · ñ0 = ñ1. In this way,
we associate to any loop f at n0 an element γf ∈ Γ. It is a general fact that this
correspondence does not depend on the path homotopy class of f and defines
an isomorphism Φ:Π1(Γ \ N,n0) → Γ. Note that this isomorphism depends
on the choice of the point ñ0 and that a different choice, say ñ1, changes the
isomorphism by an inner automorphism of Γ.

Now, let α be an affine endomorphism induced by an affine map α ∈ Aff(N)
(with αΓα−1 ⊆ Γ). Choose a basepoint n0 ∈ Γ\N and a point ñ0 ∈ N projecting
onto n0. Then ñ1 = α(ñ0) ∈ N is a point projecting onto n1 = α(n0). Now,
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let us use ñ0 resp. ñ1 to identify Π1(Γ \N,n0), resp. Π1(Γ \N,n1) with Γ. Let
α]: Π1(Γ \N,n0) → Π1(Γ \N,n1) denote the morphism induced by α. We claim
that α is exactly conjugation with α. Indeed, consider again a loop f based at
n0 and let f̃ be the lift of f to N starting at ñ0. Let γ ∈ Γ be the element such
that γ · ñ0 is the endpoint of f̃ (so the path class [f ] ∈ Π1(Γ\N,n0) corresponds
to γ ∈ Γ). It is obvious that α ◦ f̃ is the unique lift, beginning in ñ1, of the loop
α ◦ f . The endpoint of α ◦ f̃ is

α(f(1)) = α(γ · ñ0) = α(γ(α−1(α(ñ0)))) = (αγα−1) · ñ1.

This shows that the element of Γ corresponding to α][f ] = [α ◦ f ] is exactly
αγα−1.

Note that in the discussion above, we have chosen ñ1 based on our knowledge
of α. In practice, this is often not possible or even not desirable. E.g. in this paper
we often choose a fixed point n0 of a selfmap α on an infra-nilmanifold as a base
point. To study then the induced morphism α]: Π1(Γ \N,n0) → Π1(Γ \N,n0)
we will of course use two times the same ñ0 when identifying Π1(Γ \N,n0) with
Γ. This implies that α] will only be the same as conjugation with α in Aff(N)
up to an inner conjugation by an element of Γ.

It follows that we have the following:

Proposition 3.7. Let α be an affine endomorphism of an infra-nilmanifold
Γ \N and let ψ: Γ → Γ : γ 7→ αγα−1 be the corresponding monomorphism of Γ.
Then, the map α]: Γ = Π1(Γ\N,x) → Γ = Π1(Γ\N,α(x)) is, up to composition
with an inner automorphism of Γ, precisely ψ.

Remark 3.8. At this point, it is worthwhile to indicate that [7, Proposi-
tion 3.5], which is crucially used at other places in the work of Franks (e.g. in
the basis theorem [7, Theorem 8.2] on which Gromov’s result is based), is not
correct. This proposition claims that for any covering f :K → K, where Π1(K)
is a finitely generated, torsion free and virtually nilpotent group, there exists an
infra-nilmanifold M and an infra-nilmanifold endomorphism g:M → M which
is Π1–conjugate to f . This is not true (see the example below and the examples
in the following sections) and one really also needs to consider affine endomor-
phisms of the infra-nilmanifolds as well. On the other hand, when Π1(K) is
nilpotent (or abelian) the proposition is correct.

The problem in the alleged proof is situated at the very end of it on page 78.
First of all, the wrong result of Auslander is used (but this can be solved by using
Corollary 2.3). However, as indicated by the example above, the automorphism g

(where I now use the notations of [7, p. 78]) does not necessarily induce a map on
the infra-nilmanifoldM (and even if it does, the induced map on the fundamental
group is not necessarily the map g∗).
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We finish this section by giving a counter-example to Franks’ “Existence of
a Model” – Proposition 3.5 in [7]. Consider the Klein Bottle K and choose a base
point x0 ∈ K. Then, the fundamental group Π1(K,x0) ∼= Γ = 〈a, b | ba = a−1b〉.
It is easy to find a homeomorphism f :K → K, with f(x0) = x0 and such that
f]: Π1(K,x0) → Π1(K,x0) satisfies f](a) = a and f](b) = ab. Now, consider
any embedding of Γ into Isom(R2) as a discrete subgroup, then the translation
subgroup of Γ will be Γ∩R2 = 〈a, b2〉 ∼= Z2. Now, assume that ϕ: Γ\R2 → Γ\R2 is
an infra-nilmanifold endomorphism (induced by the automorphism ϕ: R2 → R2),
which is Π1-conjugate to f . This means that there is a commutative diagram

Π1(K,x0)
Φ //

f]

��

Π1(Γ \ R2,Γ · 0) ∼= Γ

ϕ]

��

Π1(K,x0)
Φ

// Π1(Γ \ R2,Γ · 0) ∼= Γ

for some isomorphism Φ. As f](a) = a and f](b2) = b2, it follows that ϕ] has to
be the identity on the translation subgroup 〈a, b2〉 of Γ. But as the restriction
of ϕ] to the translation subgroup is exactly the same as the restriction of ϕ to
this translation subgroup, it follows that ϕ is the identity on this translation
subgroup and hence ϕ is just the identity automorphism of R2. But this means
that ϕ is the identity map also, hence ϕ] is the identity automorphism, which
contradicts the commutativity of the diagram above.

4. An expanding map not topologically conjugate
to an infra-nilmanifold endomorphism

Already on the smallest example of an infra-nilmanifold which is not a nil-
manifold (or a torus) we can construct an expanding map which is not topolog-
ically conjugate to an infra-nilmanifold endomorphism of that infra-nilmanifold.
Our example will be an affine endomorphism of the Klein Bottle. This exam-
ple shows that there are problems with the proof of the geometric corollary on
page 55 of [9], which we will explain below. Of course, this does not cast any
doubt on the (very nice) main result of [9] stating that finitely generated groups
of polynomial growth are virtually nilpotent!

For completeness, let us recall the definition of an expanding map.

Definition 4.1. Let M be a closed smooth manifold. A C1-map f :M →M

is an expanding map if there exist constants C > 0 and µ > 1 such that

‖Dfn‖ ≥ Cµn‖v‖, for all v ∈ TM,

for some (and hence any) Riemannian metric ‖ · ‖ on M .
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To obtain the example mentioned above, we consider the Klein Bottle which
is constructed by taking the group Γ ⊆ R2oZ2, where

(4.1) Z2 =
{(

1 0
0 1

)
,

(
−1 0
0 1

)}
⊆ GL2(R).

The torsion free discrete and uniform subgroup Γ of R2oZ2 we use to construct
the Klein Bottle is generated by the following 2 elements:

a =
((

1
0

)
,

(
1 0
0 1

))
and b =

((
0
1
2

)
,

(
−1 0
0 1

))
Note that a and b2 generate the group of translations Z2. Let α be the affine
map

α: R2 → R2 :
(
x

y

)
7→

(
3x+ 1

2

3y

)
.

So

α =
(( 1

2

0

)
,

(
3 0
0 3

))
∈ Aff(R2).

One easily checks that

αaα−1 = a3 and αbα−1 = ab3

showing that αΓα−1 ⊆ Γ. Hence α induces an affine endomorphism α: Γ \R2 →
Γ\R2 of the Klein bottle K = Γ\R2. Moreover, as the linear part of α has only
eigenvalues of modulus > 1, the map α is an expanding map of the Klein bottle.

I claim that this map is not topologically conjugate to an expanding infra-
nilmanifold endomorphism of this Klein Bottle.

To see this, suppose that ϕ: R2 → R2 is a linear isomorphism inducing an
endomorphism ϕ: Γ \ R2 → Γ \ R2 of the Klein bottle. By Theorem 3.4, we
know that ϕΓϕ−1 ⊆ Γ. From this, it also follows that ϕZ2ϕ

−1 = Z2, where
Z2 ⊆ GL(2,R) is as in (4.1). Hence,

ϕ

(
−1 0
0 1

)
=

(
−1 0
0 1

)
ϕ,

from which it follows that

ϕ =
(
k 0
0 l

)
for some k, l ∈ R. Now, requiring that ϕaϕ−1 ∈ Γ and ϕbϕ−1 ∈ Γ leads to the
condition that k ∈ Z and l = 2m+ 1, for m ∈ Z (so l is odd).

As recalled in some detail in the discussion before Proposition 3.7, there is
an isomorphism Π1(Γ \ R2, 0) ∼= Γ. Here, we use 0 to denote the image of the
zero vector in the Klein Bottle Γ \ R2 and we use the zero vector as the point
ñ0 (see discussion before Proposition 3.7) to establish the isomorphism between
Π1(Γ \R2, 0) and Γ. From Proposition 3.7, we know that the map induced by ϕ
is the same as conjugation with ϕ inside Aff(R2).
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Now, suppose that α is topologically conjugate to ϕ, then there must exist
a homeomorphism h: Γ\R2 → Γ\R2, such that h◦α = ϕ◦h. Now, choose h−1(0)
as another basepoint of Γ\R2. It is obvious that h−1(0) is a fixed point of α. We
know that we can also fix an isomorphism of Π1(Γ \R2, h−1(0)) with Γ and that
under this identification the map α]: Γ → Γ is , up to an inner automorphism,
exactly the same as conjugation with α ∈ Aff(R2).

Using the above, we find a commutative diagram of groups and morphisms

Γ
h]

//

α]

��

Γ

ϕ]

��

Γ
h]

// Γ

This diagram leads to an induced diagram of morphisms on the abelianization
of Γ:

Γ/[Γ,Γ]
h∗ //

α∗

��

Γ/[Γ,Γ]

ϕ∗

��

Γ/[Γ,Γ]
h∗

// Γ/[Γ,Γ]

We have that Γ/[Γ,Γ] = Z2 ⊕ Z, where Z2 (resp. Z) is generated by the natural
projection a of a (resp. b of b).

As α] was, up to an inner automorphism of Γ, the same as conjugation with
α inside Aff(R2), we know exactly what α∗ is, and we also already obtained some
information on ϕ∗:

α∗(a) = a3 = a, α∗(b) = ab
3
, ϕ∗(a) = al, ϕ∗(b) = b

2m+1
with l,m ∈ Z.

As h is a homeomorphism of the Klein bottle, we know that h∗ is an isomorphism
of Γ/[Γ,Γ]. It follows that h∗(a) = a while for h∗(b) we have one of the following
four possibilities:

h∗(b) = b, h∗(b) = b
−1
, h∗(b) = ab or h∗(b) = ab

−1
.

It is now easy to see that for none of these four possibilities, we can have that

h∗ ◦ α∗ = ϕ∗ ◦ h∗,

contradicting the fact that h ◦ α = ϕ ◦ h and hence showing that ϕ is not
topologically conjugate to α. �

This example indicates a real problem in the proof of the geometric corollary
on page 55 of [9]. In fact, this geometric corollary follows from Gromov’s main
result by applying [7, Theorem 8.3] and [24, Theorem 5] (or the equivalent [7,
Theorem 8.2]). Now looking at the proof of [24, Theorem 5] (or [7, Theorem 8.2])
ones sees that actually the incorrect “Existence of a Model” – proposition of
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Franks is used (see Remark 3.8). In fact, both Shub and Franks are claiming
that an expanding map on an infra-nilmanifold is topologically conjugate to an
expanding infra-nilmanifold endomorphism of the same infra-nilmanfiold, which
is actually wrong by the example above.

However, in the sequel of this section, we will show that any expanding map
of a given infra-nilmanifold is topologically conjugate to an expanding affine
endomorphism of the same infra-nilmanifold, from which it will follow that any
expanding map of a compact manifold M will be topologically conjugate to an
expanding affine infra-nilmanifold endomorphism of any infra-nilmanifold with
the same fundamental group as M .

In order to prove this result, we need some more results concerning affine
maps of infra-nilmanifolds. LetN be a connected and simply connected nilpotent
Lie group, δ ∈ Aut(N) and d ∈ N . Then D = (d, δ) is an affine map of N . As
δ ∈ Aut(N), we know that its differential δ∗ ∈ Aut(n), where n is the Lie algebra
of N . When we talk about the eigenvalues of D (or the eigenvalues of δ) we will
mean the eigenvalues of δ∗.

Lemma 4.2. Let N be a connected and simply connected nilpotent Lie group
and D ∈ Aff(N). If 1 is not an eigenvalue of D, then there is a unique fixed
point n0 ∈ N for the affine map D.

Proof. This is a special case of Lemma 2 in [3]. �

Now, consider a finitely generated and torsion free nilpotent group Λ and an
injective endomorphism ϕ ∈ Aut(Λ). Up to isomorphism there is a unique con-
nected and simply connected nilpotent Lie group N , containing Λ as a uniform
discrete subgroup. This N is called the Mal’cev completion of Λ. The endomor-
phism ϕ extends uniquely to a continuous automorphism ϕ̃ ∈ Aut(N) and we
can talk about the eigenvalues of ϕ, by which we will mean the eigenvalues of ϕ̃
(which in their turn are the eigenvalues of the differential ϕ̃∗ ∈ Aut(n) of ϕ̃).

More generally, we can consider as before a torsion free uniform discrete
subgroup Γ ⊆ NoF , where N is a connected and simply connected nilpotent
Lie group and F is a finite subgroup of Aut(N). We assume that F is the
holonomy group of Γ. We know that Λ = Γ ∩N is a uniform discrete subgroup
of N and so N is the Mal’cev completion of Λ. Let ϕ: Γ → Γ be an injective
endomorphism of Γ. It follows from Corollary 2.3 that ϕ extends uniquely to
an automorphism of NoF and restricts to an injective endomorphism of Λ. We
define the eigenvalues of ϕ to be the eigenvalues of the restriction of ϕ to Λ.

On the other hand, we know that ϕ can also be realized as conjugation by
some element D = (d, δ) in Aff(N). It turns out that the eigenvalues of ϕ are
exactly the same as the eigenvalues of D.
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Lemma 4.3. Let N be a connected and simply connected nilpotent Lie group
and let F be a finite subgroup of Aut(N). Assume that Γ is a uniform discrete
subgroup of NoF with holonomy group F , ϕ is an injective endomorphism of
Γ and that D = (d, δ) ∈ Aff(N) realizes this endomorphism via conjugation
in Aff(N):

ϕ(γ) = (d, δ)γ(d, δ)−1 for all γ ∈ Γ.

Then, the set of eigenvalues of ϕ is exactly the same as the set of eigenvalues
of D.

Proof. To compute the eigenvalues of ϕ, we have to find the eigenvalues of
the induced automorphism ϕ̃ of N (obtained by first extending ϕ to NoF and
then taking the restriction to N). But this automorphism is also obtained by
conjugation with D:

ϕ̃(n) = DnD−1 = (d, δ)n(d, δ)−1 = dδ(n)d−1 = (µ(d) ◦ δ)(n) for all n ∈ N.

where µ(d) denotes conjugation with d ∈ N . It follows that the eigenvalues of ϕ
are precisely the same as the eigenvalues of µ(d) ◦ δ. It is a standard argument
to show that an inner automorphism of a nilpotent Lie group has no influence
on the eigenvalues: indeed, to find the eigenvalues of a given automorphism
ψ ∈ Aut(N), we can consider the filtration of N by the terms of its lower central
series (which goes to 1 as N is nilpotent)

N = γ1(N) ⊇ γ2(N) ⊇ . . . ⊇ γi(N) ⊇ γi+1(N) = [γi(N), N ] ⊇ . . . ⊇ γc(N) = 1.

Each term in this filtration is invariant under ψ and analogously the correspond-
ing terms of the lower central series of the Lie algebra n of N :

n = γ1(n) ⊇ γ2(n) ⊇ . . . ⊇ γi(n) ⊇ γi+1(n) = [γi(n), n] ⊇ . . . ⊇ γc(n) = 1

are then invariant under the differential ψ∗ of ψ. It follows that to find the
eigenvalues of ψ, we have to find the eigenvalues of the induced automorphism
on each quotient γi(n)/γi+1(n). However, an inner automorphism of N induces
the identity on each quotient γi(N)/γi+1(N) and so its differential induces the
identity on γi(n)/γi+1(n). It follows that δ and µ(d) ◦ δ induce the same linear
map on each quotient γi(n)/γi+1(n) and hence, they have the same eigenvalues.�

In what follows it will be crucial to know when an affine map does not have 1
as an eigenvalue (so that we will be able to apply Lemma 4.2). The following
lemma can serve as a criterion for this.

Lemma 4.4. Let N be a connected and simply connected nilpotent Lie group
and Let F be a finite subgroup of Aut(N). Assume that Γ is a uniform discrete
subgroup of NoF with holonomy group F and ϕ is an injective endomorphism
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of Γ. If ϕ has 1 as an eigenvalue, then there exists a non-trivial subgroup ∆
of Γ such that for all γ ∈ ∆ such that ϕ(γ) = γ.

Proof. Let Λ = Γ∩N . As already argued above, ϕ restricts to an injective
endomorphism of Λ and this restriction extends uniquely to an automorphism of
N . We will use the same symbol ϕ to denote all these endomorphisms. Recall
that for nilpotent Lie groups, the exponential map exp: n → N is a diffeomor-
phism (n is the Lie algebra of N) and we denote its inverse by log. Consider
now nQ = Q log(Λ) (the rational span of log(Λ)) and NQ = exp(nQ). The vector
space nQ is a rational Lie algebra and the differential ϕ∗ of ϕ restricts to an
automorphism of nQ. For more details about this and following facts on these
rational Lie algebras, we refer to [22, Chapter 6]. As ψ∗ has 1 as an eigen-
value, there exists a nonzero vector X ∈ nQ with ϕ∗(X) = X. This implies that
1 6= x = exp(X) ∈ NQ is an element with ϕ(x) = x. Now, NQ is the radicable
hull (see [22, p.107]) of Λ, and so there exists a positive integer k > 0 such that
1 6= xk ∈ Λ. It follows that xk is a nontrivial element of Λ with ϕ(xk) = xk. The
proof now finishes by taking ∆ to be the group generated by xk. �

We are now ready to prove the main result of this paper in which we will adopt
J. Franks’ original approach for infra-nilmanifold endomorphisms [7, Section 8]
to the more general case of affine endomorphisms.

Theorem 4.5. Let f :M → M be an expanding map of a compact mani-
fold M . Then, there exists an infra-nilmanifold Γ \N whose fundamental group
Γ is isomorphic to Π1(M). And for any such Γ \ N , there exists an expanding
affine endomorphism of that infra-nilmanifold which is topologically conjugate
to f .

Proof. By [23, Theorem 1] we can choose a fixed point m0 ∈M of f . From
[7, Theorem 8.3] we know that Π1(M,m0) has polynomial growth and so by the
main result of [9] it follows that Π1(M,m0) has a nilpotent subgroup of finite
index. Moreover, by [23, Proposition 3], we know that Π1(M,m0) is torsion free,
M is aK(Π1(M,m0), 1)-space and the induced map f]: Π1(M,m0) → Π1(M,m0)
is an injective endomorphism.

Every finitely generated torsion free virtually nilpotent group can be realized
as a uniform and discrete subgroup of a semi-direct product NoF , where N is
a connected and simply connected nilpotent Lie group and F is a finite subgroup
of Aut(N) (e.g. [4, Theorem 3.1.3]). Fix such an embedding i: Π1(M,m0) →
NoF realizing Π1(M,m0) as such a uniform discrete subgroup and denote Γ =
i(Π1(M,m0)). Without loss of generality we assume that F is the holonomy
group of Γ. So there is an isomorphism A: Γ → Π1(M,m0) (where A is in fact
the inverse of i), already showing the existence of the infra-nilmanifold Γ \N .



What an Infra-nilmanifold Endomorphism Really Should Be. . . 129

We continue our proof with a fixed choice of such an infra-nilmanifold. Let
B = A−1 ◦ f] ◦A, then B is an injective endomorphism of Γ and so there exists
an affine map α = (d, δ) ∈ Aff(N) with B(γ) = αγα−1, for all γ ∈ Γ (see
Theorem 2.2 and Corollary 2.3). By [23, Corollary 1] we know that the identity
element is the unique fixed element of f] and so the identity element is also the
only fixed point for B. By Lemma 4.4 it follows that α does not have 1 as one
of its eigenvalues and so, by Lemma 4.2 there exists a unique fixed point ñ0 ∈ N
for α. Let n0 be the corresponding point in the infra-nilmanifold Γ\N and use ñ0

to identify the fundamental group Π1(Γ\N,n0) with Γ. By the discussion before
Proposition 3.7, we know that α induces an affine endomorphism α of Γ\N , with
n0 as a fixed point, and that the induced endomorphism α] of Π1(Γ\N,n0) = Γ
is exactly B. We therefore have a commutative diagram

Π1(Γ \N,n0) = Γ A //

α]

��

Π1(M,m0)

f]

��

Π1(Γ \N,n0) = Γ
A

// Π1(M,m0)

By [23, Theorem 4] there exists a unique continuous map h: (Γ\N,n0) → (M,m0)
with f ◦ h = h ◦ α and for which h]: Π1(Γ \ N,n0) → Π1(M,m0) is exactly A.
(As usual, by a map g: (X,x) → (Y, y) we mean a map from the space X to the
space Y , with g(x) = y where x and y are given points of X and Y respectively).
As A is an isomorphism, h is a homotopy equivalence, since we are working with
K(Π, 1)-spaces.

Let M̃ denote the universal covering space of M , with covering projection
pM : M̃ →M and let m̃0 ∈ M̃ be a point with pM (m̃0) = m0. Now, consider the
unique lift h̃: (N, ñ0) → (M̃, m̃0) of h and the unique lift f̃ : (M̃, m̃0) → (M̃, m̃0)
of f , then

f̃ ◦ h̃ = h̃ ◦ α.

Let L
en0 :N → N , x 7→ ñ0 x denote left translation by ñ0 in N . As ñ0 is a fixed

point of α = (d, δ), we have that L
en0 ◦ δ = α ◦ L

en0 . Summarizing the above, we
obtain the following commutative diagram of maps and spaces in which exp and
L
en0 are diffeomorphisms.

n

δ∗

��

exp
// N

δ

��

L
en0 // N

α

��

eh //
M̃

ef

��

n
exp

// N
L
en0

// N
eh

//
M̃
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Let k = h̃ ◦ L
en0 ◦ exp. By [7, Lemma 3.4], the map h̃ and hence also k is

a proper map. We can now continue as in Franks’ paper to show that δ∗ only
has eigenvalues of modulus > 1.

From f̃ ◦ k = k ◦ δ∗ it immediately follows that f̃n ◦ k = k ◦ δn
∗ . Now,

assume that δ∗ has an eigenvalue of modulus ≤ 1. It then follows that there
exists a non-zero element x ∈ n with ‖δn

∗ (x)‖ ≤ ‖x‖ (where ‖ ·‖ denotes a chosen
norm on n). (Note that the argument given in [7] is not completely correct,
because he considers an eigenvector of the corresponding eigenvalue of modulus
≤ 1. However this eigenvalue can be complex and a corresponding eigenvector
does not have to exist in the real Lie algebra n. It is however not difficult to
see that also in this case, we can find an x as claimed). As f̃ is expanding
(see [23, Lemma 6]), we have that f̃n(m) tends to infinity as n goes to infinity
for all m ∈ M which are not equal to the (unique) fixed point m̃0 of f̃ . As
f̃n(k(x)) = k(δn

∗ (x)), this implies that k(x) = m̃0. Moreover, the same argument
applies to any point of the form rx ∈ n. Hence, the whole line Rx is mapped
onto the point m̃0 by k, which contradicts the fact that k is a proper map. So,
the assumption that there exists an eigenvalue of modulus ≤ 1 is wrong. This
shows that δ∗ is an expanding linear map and hence α is an expanding affine
endomorphism of the infra-nilmanifold Γ \N .

Now, since we have the information that α is expanding, we can apply [23,
Theorem 5] to conclude that h is actually a homeomorphism and hence α and f
are topologically conjugate. �

Note that in the above theorem it did not matter in which way we realised
the fundamental group Γ as a uniform discrete subgroup of NoF . It turns out
that if we choose the embedding in a good way (depending on the expanding
map f !) we can recover completely Gromov’s result.

Theorem 4.6. Let f :M →M be an expanding map of a compact manifold
M , then f is topologically conjugate to an expanding infra-nilmanifold endomor-
phism.

Proof. We already know that f is topologically conjugate to an expanding
affine endomorphism α of an infra-nilmanifold Γ \ N , by Theorem 4.5. So it is
enough to show that this affine infra-nilmanifold endomorphism is topologically
conjugate to an expanding infra-nilmanifold endomorphism of a possibly other
infra-nilmanifold.

Let α = (d, δ) ∈ Aff(N) be a lift of α, hence αΓα−1 ⊆ Γ. As α is expanding,
the map α:N → N has a fixed point, say x0. Now let h:N → N :n 7→ x−1

0 n and
Γ′ = x−1

0 Γx0 ⊆ Aff(N). Then Γ′ \N is also an infra-nilmanifold (with Γ′ ∼= Γ)
and h determines a homeomorphism h: Γ\N → Γ′\N : Γ·n 7→ Γ′ ·x−1

0 n. One also
easily checks that δΓ′δ−1 ⊆ Γ′ so that δ induces an expanding infra-nilmanifold
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endomorphism δ of Γ′ \N , for which the following diagram commutes:

Γ \N h //

α

��

Γ′ \N

δ
��

Γ \N
h

// Γ′ \N

.

This shows that α, and hence also f , is topologically conjugate to the expanding
infra-nilmanifold endomorphism δ. �

Remark 4.7. We want to stress the fact here that the infra-nilmanifold
which is obtained in the theorem does not only depend on M , but also on the
expanding map f itself.

5. An Anosov diffeomorphism not topologically conjugate
to an infra-nilmanifold automorphism

Analogously as in the previous section, we will show that there exists an
infra-nilmanifold M = Γ \ N and an Anosov diffeomorphism f :M → M which
is not topologically conjugate to an infra-nilmanifold automorphism of M .

For this example, we will use a 4-dimensional flat manifold. Again the holo-
nomy group of the corresponding Bieberbach group will be Z2, where we embed
Z2 as the subgroup {I4, Lf} ⊆ GL2(R), where I4 is the 4×4 identity matrix and

Lf =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

Now, let Γ be the torsion free, discrete and uniform subgroup of R4oZ2 generated
by

a = (e1, I4), b = (e2, I4), c = (e3, I4), d = (e4, I4), f =




0
0
1
2
1
2

 , Lf

 ,

where ei is the standard basis vector with a 1 on the i-th spot and 0 elsewhere.
It follows that Γ is a Bieberbach group, with translation subgroup Z4 generated
by a, b, c and d.

We consider the affine map

α: R4 → R4 :


x

y

z

t

 7→


13x+ 8y + 1

2

8x+ 5y + 1
2

13z + 8t
8z + 5t

 .
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So

α =




1
2
1
2

0
0

 ,


13 8 0 0
8 5 0 0
0 0 13 8
0 0 8 5


 ∈ Aff(R4).

One can compute that

αa α−1 = a13b8, αbα−1 = a8b5, αcα−1 = c13d8,

αdα−1 = c8d5, αfα−1 = abc10d6f.

From this, one can see that αΓα−1 = Γ and hence, α induces a diffeomorphism
α on Γ \ R4. Moreover, as the linear part of α only has eigenvalues of mod-
ulus different than 1, α is an Anosov diffeomorphism. We will show that this
Anosov diffeomorphism is not topologically conjugate to an infra-nilmanifold
automorphism of Γ \ R4. Suppose on the contrary that ϕ: R4 → R4 is a linear
automorphism inducing a map ϕ on Γ\R4 which is topologically conjugate to α.
We have seen that in this case ϕΓϕ−1 = Γ and ϕZ2ϕ

−1 = Z2, which now implies
that the matrix representation of ϕ is of the form:

ϕ =
(
A 0
0 B

)
with A,B ∈ GL2(Z),

where we also used that ϕZ4ϕ−1 = Z4. The matrix form of ϕ implies that

ϕfϕ−1 = ckdlf for some k, l ∈ Z.

The fact that we suppose that ϕ is topologically conjugate to α implies the
existence of a homeomorphism h: Γ \ R4 → Γ \ R4 with α = h−1 ◦ ϕ ◦ h. Let
α], ϕ] and h] denote the induced maps on the fundamental group Γ of Γ \ R4.
Then, we know that, up to an inner conjugation of Γ, α] resp. ϕ] is the same
as conjugation with α, resp. ϕ in Aff(R4) and h](Z4) = Z4. We already remark
here that we will be dividing out by the derived subgroup of Γ in a moment, so
that without any problems we can forget about the possible inner conjugations.

From α = h−1 ◦ ϕ ◦ h, it follows that α] = h−1
] ◦ ϕ] ◦ h]. We claim that

this condition leads to a contradiction. To easily see this, note that the derived
subgroup of Γ is [Γ,Γ] = grp{a2, b2} and the centre of Γ is Z(Γ) = grp{c, d}. So
Z(Γ)[Γ,Γ] is a normal subgroup of Γ and

Γ/Z(Γ)[Γ,Γ] = Z2 ⊕ Z2 ⊕ Z2.

where we view the first Z2 factor as being generated by a, the second factor
by b and the last one by f , where a, b, f denote the images of a, b, f under
the natural projection Γ → Γ/Z(Γ)[Γ,Γ]. Any automorphism of Γ induces an
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automorphism of Γ/Z(Γ)[Γ,Γ], which can also be seen as a linear map of the 3-
dimensional vector space Z3

2 over the field Z2. So, we can represent the induced
automorphism on Γ/Z(Γ)[Γ,Γ] by means of a matrix in GL3(Z2).

From the conjugation relations given above, we see that α](a) = a13b
8

= a,
α](b) = b and α](f) = a bf , so the corresponding matrix in GL3(Z2) is

Mα =

 1 0 1
0 1 1
0 0 1

 .

Analogously, one can see that the matrix representations of the linear automor-
phisms induced by ϕ] and h] are of the form

Mϕ =

 a1 a2 0
a3 a4 0
0 0 1

 and Mh =

h1 h2 h3

h4 h4 h6

0 0 1


where the ai are obtained by reducing the entries of A modulo 2. Now, the
relation α] = h−1

] ◦ ϕ] ◦ h] implies that Mα = M−1
h MϕMh. By focussing on

the upper left 2 × 2 corner, one immediately gets that Mϕ = I3. But this then
implies that also Mα = I3 which is clearly a contradiction.

This example casts a lot of doubts on the main result of [18] (Theorem C).
Note that [18] does not really contain a proof for Theorem C, but refers to the
proof of Franks’ Theorem for Anosov diffeormorphisms on tori [6, Theorem 1].
There is, up to my knowledge, indeed nothing wrong with [6, Theorem 1] or its
proof, but to be able to generalize this to the class of infra-nilmanifolds, it is
assumed in [18] (see the sentence immediately after the statement of Theorem A
on page 423) that each homotopy class of maps from an infra-nilmanifold to
itself inducing a hyperbolic automorphism of the fundamental group, contains
a hyperbolic infra-nilmanifold automorphism. In [18], the author refers to the
wrong result of Auslander for this, but even with the use of Corollary 2.3 of the
current paper, the claim does not follow.

In fact, the example above shows that this is not correct and one really
needs also to consider hyperbolic affine automorphisms! Of course, an affine
automorphism α is hyperbolic if α (or the linear part of α) does not have any
eigenvalue of modulus 1.

Unfortunately, I have not been able to give an alternative proof for the anal-
ogous version of [18, Theorem C] for the case of affine automorphisms. So, we
are left with the following open question:

Question. Let f :M → M be an Anosov diffeomorphism of an infra-nil-
manifold. Is it true that f is topologically conjugate to a hyperbolic affine
automorphism of the infra-nilmanifold M?
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It is very tempting to believe that the answer to this question is indeed
positive. In fact, for nilmanifolds, the arguments of A. Manning in [18] are correct
(every map on a nilmanifold is homotopic to a nilmanifold endomorphism) and
so a correct partial version of [18, Theorem C] is

Theorem 5.1. Any Anosov diffeomorphism of a nilmanifold M is topologi-
cally conjugate to a hyperbolic nilmanifold automorphism.

So for nilmanifolds there is no need to consider affine maps (this is also true
for expanding maps).

More generally one can even ask whether or not it is true that an Anosov
diffeomorphism on any given compact manifold M is conjugate to a hyperbolic
affine automorphism of an infra-nilmanifold. For this, it would be very useful to
have a generalization of [7, Theorem 2.1] to the case of hyperbolic affine auto-
morphisms. However, the proof of [7, Theorem 2.1] is very dependent on the fact
that the lift of an infra-nilmanifold automorphism is really an automorphism of
the covering Lie group and it seems rather impossible to generalize this approach
to the case of affine automorphisms.

Recently, there has been a lot of interest in the existence question of Anosov
diffeomorphisms on infra-nilmanifolds (e.g. [5], [8], [13], [14], [16], [17], [21]).
Often, one refers to [18, Theorem C] to reduce the question to a pure algebraic
question. Luckily, in case one is only dealing with nilmanifolds, there is by the
above theorem no problem at all. On the other hand, for infra-nilmanifolds one
has to be a bit more careful. However, for the existence question, there is not
really a problem.

Theorem 5.2. Let M be an infra-nilmanifold. Then the following are equiv-
alent:

(a) M admits an Anosov diffeomorphism,
(b) M admits a hyperbolic affine automorphism,
(c) M admits a hyperbolic infra-nilmanifold automorphism,

Proof. The implications (c) ⇒ (b) and (b) ⇒ (a) are obviously true, so we
only have to show (a) ⇒ (c).

Let M = Γ\N where N is a connected simply connected nilpotent Lie group
and Γ is a uniform discrete subgroup of NoF where F is a finite subgroup of
Aut(N). We also assume that F is the holonomy group of Γ. Moreover, as is
explained in [5, Section 3], we can assume that any element of F restricts to
an automorphism of NQ (see [5] or the proof of Lemma 4.4 for the meaning of
NQ) and that Γ is actually a subgroup of NQoF (which we called a rational
realization in [5]).
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Assume that f :M → M is an Anosov diffeomorphism. By [18, Theorem A]
f induces a hyperbolic automorphism

f]: Π1(M,m0) ∼= Γ → Π1(M,f(m0)) ∼= Γ.

We recall here that for different choices of isomorphisms of Π1(M,x) with Γ the
induced map f]: Γ → Γ will change by an inner automorphism of Γ. Anyhow, the
existence of an Anosov diffeomorphism of M implies the existence of a hyperbolic
automorphism ϕ = f] of Γ. In the second part of the proof of Theorem A in [5,
p. 564], we show that for some positive power ϕk there exists a ψ ∈ Aut(N) such
that ϕk is just conjugation by ψ ∈ Aff(N):

ϕk(γ) = (1, ψ)γ(1, ψ)−1 for all γ ∈ Γ.

As ϕ is a hyperbolic, the same holds for ϕk and hence also for ψ (Lemma 4.3).
It follows that Ψ:NoF → NoF , x 7→ (1, ψ)x(1, ψ)−1 is an automorphism of
NoF with Ψ(F ) = F and Ψ(Γ) = Γ. Hence, Ψ determines a hyperbolic infra-
nilmanifold automorphism of Γ \N . �

Actually, the proof given above also shows the following

Theorem 5.3. An infra-nilmanifold M admits an Anosov diffeomorphism
if and only if Π1(M) admits a hyperbolic automorphism.

Moreover, we also showed that for any Anosov diffeomorphism f on a given
infra-nilmanifold M , there is some positive power fn of f such that fn is homo-
topic to an infra-nilmanifold endomorphism of M . Actually, this is true for any
homeomorphism of an infra-nilmanifold. We note here that this does not hold
for expanding maps.

As a conclusion of this paper we can state that in the study of selfmaps of
a given infra-nilmanifold, which play a crucial role in the theory of expanding
maps and Anosov diffeomorphisms, the class of infra-nilmanifold endomorphisms
is just not rich enough to contain at least one map from each homotopy class
and one really should consider the more general class of affine endomorphisms
on that infra-nilmanifold.
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