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POINTWISE COMPARISON PRINCIPLE
FOR CLAMPED TIMOSHENKO BEAM

Grzegorz Bartuzel — Andrzej Fryszkowski

Abstract. We present the properties of three Green functions for:

1. general complex “clamped beam”

Dα,β [y] ≡ y′′′′ − (α2 + β2)y′′ + α2β2y = f,

y(0) = y(1) = y′(0) = y′(1) = 0.(BC)

2. Timoshenko clamped beam Dα,α[y] ≡ f with (BC).

3. Euler–Bernoulli clamped beam Dk(1+i),k(1−i)[y] ≡ f with (BC).

In case 1. we represent solution via a Green operator expressed in terms of
Kourensky type system of fundamental solutions for homogeneous case.

This condense form is, up-to our knowledge, new even for the Euler–
Bernoulli clamped beam and it allows to recognize the set of α′s for which

the Pointwise Comparison Principle for the Timoshenko beam holds. The

presented approach to positivity of the Green function is much straightfor-
ward then ones known in the literature for the case 3 (see [12]).

1. Introduction

Consider the BVP for complex clamped beam

Dα,β [y] ≡ y′′′′ − (α2 + β2)y′′ + α2β2y = f,(1.1)

y(0) = y(1) = y′(0) = y′(1) = 0,(1.2)
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where f ∈ L1([0, 1], C) and α, β ∈ C \ {0}, α2 6= β2. By a solution of (1.1) with
boundary conditions (1.2) we mean a function

y ∈ V = W 4,1[0, 1] ∩H2
0 [0, 1]

satisfying (1.1) and (1.2) almost everywhere (a.e.). Actually the theory of the
beam equation is quite well developed (see [1], [17]–[19], [9]). In particular, it is
known that the solutions can be expressed with the use of the Green function.
However in [N1] the a priori estimates are given in the integral form (nonlocal
form) and there is a lack of pointwise inequalities. The reason of that is that
for second order problem we have a maximum principle, while in the general
situation it is actually unknown, with many counterexamples. The possibility
to take advantage of the maximum principle is equivalent to nonnegativity of
the Green functions. Some answers are in J. Schroeder [11]–[13], G. Sweers [14],
H.-C. Grunau and G. Sweers [3], B. Kawohl and G. Sweers [6] and M. Ulm [15].
The list is far for being complete. For certain boundary conditions it is easy
to obtain the nonnegativity of the Green kernel, but it is not the case of the
problem we deal with. Our goal is to give an elementary analysis of properties
of the Green function for Timoshenko beam

Dα,α[y] = y′′′′ − (α2 + α2)y′′ + |α|4y = f

with (1.2). However our approach is fair enough for general complex “clamped
beam” Dα,β [y] = f with the boundary conditions (1.2). For α = k(1 + i) we
have the usual result for Euler–Bernoulli clamped beam

Dk[y] = y′′′′ + 4k4y = f

with boundary conditions (1.2).
In the complex case we derive a representation of the solution via a Green

operator expressed in terms of Kourensky type system of fundamental solutions
for homogeneous case. This condense form is, up-to our knowledge, new even
for the Euler–Bernoulli clamped beam and it allows to recognize the set of α′s

for which Pointwise Comparison Principle (PCP) for the Timoshenko clamped
beam holds.

Definition 1.1 (PCP). We say that the operator Dα,α fulfills the Pointwise
Comparison Principle (PCP) on V if for any y, z ∈ V the inequality Dα,α[y] ≤
Dα,α[z] almost everywhere in [0, 1] implies that for all x is y(x) ≤ z(x).

Since the problem under consideration is linear the PCP is equivalent to
Maximum Principle and this, in turn, is equivalent to nonnegativity of the Green
function. Recall that Maximum Principle for higher order problem generally
fails. Our main result gives sufficient and necessary conditions when they hold
for Timoshenko beam.
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Theorem 3.3 gives us a a condensed form of the Green function o consid-
ered BVP. If we write the determinants in expanded form we obtain the Green
function in terms of hyperbolic trigonometric functions. Similar complicated
forms appear in the paper by M. Ulm [15], who has given an elementary and
straightforward analysis of the nonnegativity of the integral kernel.

The presented construction of the Green function for complex beam clear-
ifies complicated formulas known in the literature for the Euler–Bernoulli case
(see [12]). Additionally, we obtain that the Green kernel G = Gα,β to (1.1) is
meromorphic in (α, β) ∈ C× C.

The properties of Green functions are proved in Sections 4 and 5. In Section 2
we give some preliminary facts, while Section 3 is provided two methods of
construction the solution operator of problem (1.1) with (1.2) in terms of the
Green function. In our considerations some Maple symbolic calculations have
been performed.

2. Preliminary notions and facts

For the corresponding homogeneous equation

(2.1) y′′′′ − (α2 + β2)y′′ + α2β2y = 0

there are many ways of choosing the system of FS. Following the idea of M. Kou-
rensky [7] we take a system of FS

(2.2)

Y1(x) =
α2 cosh(αx)− β2 cosh(βx)

α2 − β2
, Y2(x) =

α sinh(αx)− β sinh(βx)
α2 − β2

,

Y3(x) =
cosh(αx)− cosh(βx)

α2 − β2
, Y4(x) =

sinh(αx)
α

− sinh(βx)
β

α2 − β2
.

We shall call this system to be complex principal, since it has similar properties
to the principal systems considered by P. Hartman [5], A.Yu. Levin [8] and
W.F. Trench [20]. This system has unit constant Wronskian and the following
properties:

Y ′i+1(x) = Yi(x), i = 1, 2, 3

Y1(0) = 1, Y2(0) = Y3(0) = Y4(0) = 0.

Remark 2.1. Note that functions Y4(x), Y3(x), Y2(x), Y1(x) are analytic
with respect to α, β and x. In particular,

Y4(x) =
x3

6
+ . . . +

x2n+1

(2n + 1)!
((α2n−2 + . . . + α2iβ2n−2i−2 + . . . + β2n−2)) + . . .

In what follows we shall need the following properties of complex principal
system (2.2):
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Proposition 2.2. We have:

(a)

(2.2)
Y ′1(x) = (α2 + β2)Y2(x)− α2β2Y4(x),

Y ′′′1 (x) = (α4 + α2β2 + β4)Y2(x)− α2β2(α2 + β2)Y4(x),

(b)

(2.3)
[

α2β2(2Y4(x)Y2(x)− Y3(x)2)− (α2 + β2)Y2(x)2 + Y1(x)2

α2β2Y4(x)2 − (α2 + β2)Y3(x)2 − Y2(x)2 + 2Y1(x)Y3(x)

]
=
[

1
0

]
,

(c)

det

 Y3(1) Y3(1− t) Y2(1)
Y3(x) Y3(x− t) Y2(x)
Y4(1) Y4(1− t) Y3(1)

− det

 Y3(1) Y2(1− t) Y2(1)
Y4(x) Y3(x− t) Y3(x)
Y4(1) Y3(1− t) Y3(1)


= −det

Y2(1− t) Y2(x) Y2(1)
Y3(1− t) Y3(x) Y3(1)
Y4(1− t) Y4(x) Y4(1)

 ,

(d)([
Y4(x)
Y3(x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1− t)
Y3(1− t)

]

+det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

]
Y4(s)

)
= det

 Y3(1) Y3(1− t) Y2(1)
Y4(x) Y4(s) Y3(x)
Y4(1) Y4(1− t) Y3(1)

 ,

(e)

det

 Y3(1) Y3(1− t) Y2(1)
Y4(x) 0 Y3(x)
Y4(1) Y4(1− t) Y3(1)

 = det

 Y3(1) Y3(t) Y2(1)
Y4(1− x) Y4(t− x) Y3(1− x)

Y4(1) Y4(t) Y3(1)

 ,

(f)

d

dx

(
Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− (Y3(x))2

)
= −

(
Y4(x)

Y2(x)Y4(x)− (Y3(x))2

)2

.

Proof. (a) Since Y4(x) is a solution of (2.1) then

Y4
′′′′(x)− (α2 + β2)Y ′′4 (x) + α2β2Y4(x) = 0.

But Y4
′′(x) = Y2(x) and Y4

′′′′(x) = Y1
′(x).

(b) Differentiating the left-hand side we get

d

dx

[
α2β2(2Y4(x)Y2(x)− Y3(x)2)− (α2 + β2)Y2(x)2 + Y1(x)2

α2β2Y4(x)2 − (α2 + β2)Y3(x)2 − Y2(x)2 + 2Y1(x)Y3(x)

]
= 2(Y ′1(x)− (α2 + β2)Y2(x) + α2β2Y4(x))

[
Y1(x)
Y3(x)

]
=
[

0
0

]
.
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Therefore [
α2β2(2Y4(x)Y2(x)− Y3(x)2)− (α2 + β2)Y2(x)2 + Y1(x)2

α2β2Y4(x)2 − (α2 + β2)Y3(x)2 − Y2(x)2 + 2Y1(x)Y3(x)

]
is a constant vector function equal to

[
1

0

]
, since such is it value at x = 0.

(c) It follows from algebraic identity

det

 a c b

d e f

g h a

− det

 a k b

l e d

g c a

+ det

 k f b

c d a

h l g

 = 0,

what can be checked directly.
(d) It is a consequence of the formula AAadj = (detA)I, where (Aadj)T is

matrix of cofactors.
(e) By direct checking we have

Y4(x− t) =Y1(t)Y4(x)− Y2(t)Y3(x) + Y3(t)Y2(x)

− Y4(t)Y1(x)− (α2 + β2)(Y3(t)Y4(x)− Y4(t)Y3(x)),

Y3(x− t) =Y1(t)Y3(x)− Y2(t)Y2(x)

+ Y3(t)Y1(x) + Y4(t)Y4(x)α2β2 − Y3(x)Y3(t)(α2 + β2).

Pluging that formulas one can check that

det

 Y3(1) Y3(1− t) Y2(1)
Y4(x) 0 Y3(x)
Y4(1) Y4(1− t) Y3(1)

− det

 Y3(1) Y3(t) Y2(1)
Y4(1− x) Y4(t− x) Y3(1− x)

Y4(1) Y4(t) Y3(1)


=(Y3(t)Y4(x)− Y4(t)Y3(x))

× (−Y4(1)2α2β2 + Y3(1)2α2 + Y3(1)2β2 + Y2(1)2 − 2Y1(1)Y3(1)).

Now (b) makes the deal.
(f) It is equivalent to

L = (Y2(x)Y4(x)− (Y3(x))2)2
d

dx

(
Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− (Y3(x))2

) + (Y4(x)
)2

= 0.

But

L = −Y4(x)
(

Y1(x)2Y4(x) + Y2(x)3 − 2Y1(x)Y2(x)Y3(x)

+
∂Y1(x)

∂x
(Y3(x)2 − Y2(x)Y4(x))

)
.

Using (2.2) we obtain

L = − Y4(x)(α2β2Y4(x)(−Y3(x)2 + Y2(x)Y4(x))

− (α2 + β2)Y2(x)2Y4(x) + (α2 + β2)Y3(x)2Y2(x)

+ Y1(x)2Y4(x)− 2Y1(x)Y2(x)Y3(x) + Y2(x)3 − Y4(x).
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Since from (2.3) is

−(α2 + β2)Y2(x)2 = 1− α2β2(2Y4(x)Y2(x)− Y3(x)2)− Y1(x)2

then pluging we get

L = −Y4(x)Y2(x)(−α2β2Y4(x)2 + (α2 + β2)Y3(x)2 + Y2(x)2 − 2Y1(x)Y3(x)).

Now the use of (2.3) again yields

(Y2(x)Y4(x)− (Y3(x))2)2
d

dx

(
Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− (Y3(x))2

) + (Y4(x)
)2

= 0. �

3. Solution operators for the complex clamped beam problem

In this paper we present two ways of constructing the solutions of (1.1) with
the boundary conditions (1.2). Both are done with the use of a Green function,
however the second method is more suitable to prove the nonnegativity of the
Green function.

3.1. Right inverse method. The construction of the Green function for
the problem (1.1) with the boundary conditions (1.2) can be done in few ways.
We propose one which, in a sense, is a generalization of the Hilbert resolvent
formula. Observe first that the differential operator can be rewritten down in
a form

D[y] = (y′′ − α2y)′′ − β2(y′′ − α2y) = f.

This means that D[y] = (Tβ2Tα2)[y], where Tλ[z] = z′′ − λz for λ = α2 and
λ = β2, respectively. Therefore

y = Rα2Rβ2 [f ],

where Rλ is any right inverse to Tλ. In this case we have the following version
of the Hilbert resolvent formula:

Proposition 3.1. Let z, w ∈ H2,1[0, 1] be functions satisfying

(3.1) Tλ[z] = z′′ − λz = f.

for λ = α2 and λ = β2, respectively. Then the function

(3.2) y =
z − w

α2 − β2

is a solution of (1.1).

Remark 3.2. In terms of resolvents the formula (3.2) can be written down as

Rα2Rβ2 [f ] =
Rα2 [f ]−Rβ2 [f ]

α2 − β2
.
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It looks similar to the Hilbert resolvent identity, but in the Hilbert’s case the
domains are fixed, while in the presented above situation we can take any right
inverse.

Proof. Taking u = z − w we have

u′′ = z′′ − w′′ = α2z − β2w ∈ H2,1[0, 1]

and this implies that u ∈ H4,1[0, 1]. Hence

u′′′′ = α2z′′ − β2w′′ = α2(α2z + f)− β2(β2w + f) = α4z − β4w + (α2 − β2)f

and

u′′′′ − (α2 + β2)u′′ + α2β2u

= α4z−β4w+(α2−β2)f− (α2 +β2)(α2z−β2w)+α2β2(z−w) = (α2−β2)f.

Therefore y = u/(α2 − β2) is a solution of (1.1). �

For further considerations let us notice that the boundary conditions (1.2)
can be translated as

z(0) = w(0), z(1) = w(1), z′(0) = w′(0) = A and z′(1) = w′(1) = B.

Now we can present the following construction of the Green function for (1.1)
with the boundary conditions (1.2).

Theorem 3.3. Let f ∈ L1([0, 1], C) and α, β ∈ C \ {0}, α2 6= β2. Then the
solution of (1.1) with the boundary conditions (1.2) is

y(x) =
∫ 1

0

G(x, t)f(t) dt,

where

(3.3) G(x, t) =



det
"

H(1,0) H(0,1−t) H(0,0)
H(1−x,0) H(1−x,t) H(x,0)

H(0,0) H(0,t) H(0,1)

#

αβ(α2−β2)(sinh α sinh β) det

�
H(1,0) H(0,0)
H(0,0) H(0,1)

� for 0 ≤ t ≤ x ≤ 1,

det
"

H(1,0) H(0,1−t) H(0,0)
H(1−x,0) H(x,1−t) H(x,0)

H(0,0) H(0,t) H(0,1)

#

αβ(α2−β2)(sinh α sinh β) det

�
H(1,0) H(0,0)
H(0,0) H(0,1)

� for 0 ≤ x ≤ t ≤ 1,

and

H(x, t) = α sinhα cosh(βt) cosh(βx)− β sinhβ cosh(αt) cosh(αx).

Proof. We start with the equation

z′′ − α2z = f.
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The general Sturm–Liouville theory (see [5]) says that for boundary conditions

z′(0) = z′(1) = 0

the solution is given by integral operator

z0(x) = (TΦf)(x) =
∫ 1

0

Φ(x, t)f(t) dt,

where the Green function is

Φ(x, t) =
−1

α sinhα

{
cosh(αt) cosh(α(1− x)) for 0 ≤ t ≤ x ≤ 1,

cosh(αx) cosh(α(1− t)) for 0 ≤ x ≤ t ≤ 1.

It can also be done directly. Indeed, differentiating twice the function

z0(x) = −cosh(α(1− x))
α sinhα

∫ x

0

cosh(αt)f(t) dt− cosh(αx)
α sinhα

∫ 1

x

cosh(α(1−t))f(t) dt

we have

z′′0 (x) = −α cosh(α− xα)
sinhα

∫ x

0

cosh(tα)f(t) dt

− α coshxα

sinhα

∫ 1

x

cosh(α− tα)f(t) dt + f(x) = α2z0(x) + f(x).

Checking the boundary conditions is straightforward.
For the equation

z′′ − α2z = f with boundary conditions z′(0) = A, z′(1) = B

we obtain the solution

z(x) = z0(x)−A
cosh(α(1− x))

α sinhα
+ B

cosh(αx)
α sinhα

=
∫ 1

0

Φ(x, t)f(t) dt + AΦ(x, 0)−BΦ(x, 1).

Analogously, the problem

w′′ − β2w = f with boundary conditions w′(0) = A, w′(1) = B

possess the solution

w(x) =
∫ 1

0

Ψ(x, t)f(t) dt + AΨ(x, 0)−BΨ(x, 1),

where

Ψ(x, t) =
−1

β sinhβ

{
cosh(βt) cosh(β(1− x)) for 0 ≤ t ≤ x ≤ 1,

cosh(βx) cosh(β(1− t)) for 0 ≤ x ≤ t ≤ 1.

By Proposition 2.2 we have got a family of solutions of

y′′′′ − (α2 + β2)y′′ + α2β2y = f



PCP for Timoshenko Beam 343

with boundary condition y′(0) = y′(1) = 0 given by

y(x) =
z(x)− w(x)

α2 − β2

Now the boundary condition y(0) = y(1) = 0 lead to

[
A

B

]
= −

∫ 1

0



det
[

(Φ(0,t)−Ψ(0,t)) (Φ(1,t)−Ψ(1,t))

(Φ(1,0)−Ψ(1,0)) (Φ(1,1)−Ψ(1,1))

]
det
[

(Φ(0,0)−Ψ(0,0)) (Φ(0,1)−Ψ(0,1))

(Φ(1,0)−Ψ(1,0)) (Φ(1,1)−Ψ(1,1))

]
det
[

(Φ(0,t)−Ψ(0,t)) (Φ(1,t)−Ψ(1,t))

(Φ(1,1)−Ψ(1,1)) (Φ(1,0)−Ψ(1,0))

]
det
[

(Φ(0,0)−Ψ(0,0)) (Φ(0,1)−Ψ(0,1))

(Φ(1,0)−Ψ(1,0)) (Φ(1,1)−Ψ(1,1))

]


f(t) dt.

Hence

y(x) =
∫ 1

0

G(x, t)f(t) dt,

where

G(x, t) =
det
[

(Φ(0,0)−Ψ(0,0)) (Φ(0,t)−Ψ(0,t)) (Φ(0,1)−Ψ(0,1))

(Φ(x,0)−Ψ(x,0)) (Φ(x,t)−Ψ(x,t)) (Φ(x,1)−Ψ(x,1))

(Φ(1,0)−Ψ(1,0)) (Φ(1,t)−Ψ(1,t)) (Φ(1,1)−Ψ(1,1))

]
(α2 − β2) det

[
(Φ(0,0)−Ψ(0,0)) (Φ(0,1)−Ψ(0,1))

(Φ(1,0)−Ψ(1,0)) (Φ(1,1)−Ψ(1,1))

] .

Denote now

H(x, t) = α sinhα cosh(βt) cosh(βx)− β sinhβ cosh(αt) cosh(αx)

and observe that

Φ(x, t)−Ψ(x, t) =


H(1− x, t)

αβ sinhα sinhβ
for 0 ≤ t ≤ x ≤ 1,

H(x, 1− t)
αβ sinhα sinhβ

for 0 ≤ x ≤ t ≤ 1.

In particular,

Φ(1, 0)−Ψ(1, 0) = Φ(0, 1)−Ψ(0, 1) =
H(0, 0)

αβ sinhα sinhβ
,

Φ(1, 1)−Ψ(1, 1) = Φ(0, 0)−Ψ(0, 0) =
H(0, 1)

αβ sinhα sinhβ
.

The latter easily leads to the required form of the Green function. �

3.2. Principal solution method. Theorem 3.3 gives us a condensed form
of the Green function o considered BVP. If we write the determinants in ex-
panded form we obtain the Green function in terms of hyperbolic trigonometric
functions. Similar complicated forms appear in the paper by M. Ulm [15], who
was concerned with nonnegativity of the integral kernel. His analysis is elemen-
tary and straightforward, however it is quite hard. Our formula (3.3) is more
condensed, but it’s analysis in even harder. Therefore for the direct analysis of
some properties of the solution operator we need another form of it. The idea
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of the presented below considerations comes from a thorough analysis of the
M. Kourensky paper [7] and relies on the principal solutions Y4, . . . , Y1 given
by (2.2). It also gives similar formula for the Green function, but more suitable
for establishing the nonnegativity.

Theorem 3.4. Let f ∈ L1([0, 1], C) and α, β ∈ C \ {0}, α2 6= β2. Then the
solution of (1.1) with the boundary conditions (1.2) is

y(x) =
∫ 1

0

G(x, t)f(t) dt,

where

(3.4) G(x, t) =



det
[

Y3(1) Y3(1−t) Y2(1)
Y4(x) Y4(x−t) Y3(x)
Y4(1) Y4(1−t) Y3(1)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ t ≤ x ≤ 1,

det
[

Y3(1) Y3(t) Y2(1)
Y4(1−x) Y4(t−x) Y3(1−x)

Y4(1) Y4(t) Y3(1)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ x ≤ t ≤ 1,

=



[
Y4(1−x)
Y3(1−x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(t)
Y3(t)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ t ≤ x ≤ 1,

[
Y4(x)
Y3(x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1−t)
Y3(1−t)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ x ≤ t ≤ 1.

Proof. Let us observe first that a PS of (1.1) is in convolution form

y0(x) = (Y4 ∗ f)(x).

Indeed. For each function ϕ ∈ C1 we have

(ϕ ∗ f)′(x) = (ϕ′ ∗ f)(x) + ϕ(0)f(x).

Thus evaluating the derivatives we obtain

y′0(x) = (Y3 ∗ f)(x), y′′0 (x) = (Y2 ∗ f)(x),

y′′′0 (x) = (Y1 ∗ f)(x), y′′′′0 (x) = (Y ′1 ∗ f)(x) + f(x).

Hence, by (2.2), we get

y′′′′0 (x) = (((α2 + β2)Y2 − α2β2Y4) ∗ f)(x) + f(x)

= (α2 + β2)y′′0 (x)− α2β2y0(x) + f(x).
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So the GS of (1.1) is

y(x) = AY4(x) + BY3(x) + CY2(x) + DY1(x) + (Y4 ∗ f)(x)

with
y′(x) = AY3(x) + BY2(x) + CY1(x) + DY ′1(x) + (Y3 ∗ f)(x).

The boundary conditions at x = 0 give C = D = 0 and hence[
y(x)
y′(x)

]
=
[

Y4(x) Y3(x)
Y3(x) Y2(x)

] [
A

B

]
+
([

Y4

Y3

]
∗ f

)
(x).

Now the boundary conditions at x = 1 yield the system[
Y4(1) Y3(1)
Y3(1) Y2(1)

] [
A

B

]
= −

([
Y4

Y3

]
∗ f

)
(1).

Solving we get

[
A

B

]
=

[
Y2(1) −Y3(1)
−Y3(1) Y4(1)

]([
Y4

Y3

]
∗ f

)
(1)

det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] .

Thus[
y(x)
y′(x)

]
=

1

det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] ([ Y4(x) Y3(x)
Y3(x) Y2(x)

] [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] ([
Y4
Y3

]
∗ f
)
(1)

+det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] ([
Y4
Y3

]
∗ f
)
(x)
)

=
1

det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] ([ Y4(x) Y3(x)
Y3(x) Y2(x)

] [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] ∫ 1

0

[
Y4(1−t)
Y3(1−t)

]
f(t) dt

+det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] ∫ x

0

[
Y4(x−t)
Y3(x−t)

]
f(t) dt

)
=

1

det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] (∫ x

0

([
Y4(x) Y3(x)
Y3(x) Y2(x)

] [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1−t)
Y3(1−t)

]
+det

[
Y3(1) Y4(1)
Y2(1) Y3(1)

] [
Y4(x−t)
Y3(x−t)

])
f(t) dt

+
∫ 1

x

[
Y4(x) Y3(x)
Y3(x) Y2(x)

] [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1−t)
Y3(1−t)

]
f(t) dt

)
.

Therefore

y(x) =
1

det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] (∫ x

0

([
Y4(x)
Y3(x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1−t)
Y3(1−t)

]
+ det

[
Y3(1) Y4(1)
Y2(1) Y3(1)

]
Y4(x− t)

)
f(t) dt

+
∫ 1

x

[
Y4(x)
Y3(x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1−t)
Y3(1−t)

]
f(t) dt

)



346 G. Bartuzel — A. Fryszkowski

Applying Proposition 2.2(d) and (e) we therefore obtain

y(x) =
1

det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] (∫ x

0

[
Y4(1−x)
Y3(1−x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(t)
Y3(t)

]
f(t) dt

+
∫ 1

x

[
Y4(x)
Y3(x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1−t)
Y3(1−t)

]
f(t) dt

)
=

1

det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] (∫ x

0

det
[

Y3(1) Y3(1−t) Y2(1)
Y4(x) Y4(x−t) Y3(x)
Y4(1) Y4(1−t) Y3(1)

]
f(t) dt

+
∫ 1

x

det
[

Y3(1) Y3(t) Y2(1)
Y4(1−x) −Y4(x−t) Y3(1−x)

Y4(1) Y4(t) Y3(1)

]
f(t) dt

)
Thus the Green kernel is

G(x, t) =



det
[

Y3(1) Y3(1−t) Y2(1)
Y4(x) Y4(x−t) Y3(x)
Y4(1) Y4(1−t) Y3(1)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ t ≤ x ≤ 1,

[
Y3(1) Y3(t) Y2(1)

Y4(1−x) Y4(t−x) Y3(1−x)
Y4(1) Y4(t) Y3(1)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ x ≤ t ≤ 1,

or

G(x, t) =



[
Y4(1−x)
Y3(1−x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(t)
Y3(t)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ t ≤ x ≤ 1,

[
Y4(x)
Y3(x)

]T [
Y2(1) −Y3(1)
−Y3(1) Y4(1)

] [
Y4(1−t)
Y3(1−t)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ x ≤ t ≤ 1,

what completes the proof. �

4. Pointwise Comparison Principle

Theorem 3.4 gives the complex Green function for the problem (1.1) with the
boundary conditions (1.2). However in applications we need to describe some
situations when it is real or nonnegative.

4.1. Timoshenko beam. By Timoshenko beam we mean the case α = β =
a + ib, ab 6= 0. This assumption implies that for k = 1, . . . , 4 is

Yk(x) = Yk(x)
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and so all functions Yk(x) are real-valued. Furthermore, the functions:

W (x, t) = Y3(x)Y4(t)− Y4(x)Y3(t),
∂W (x, x)

∂x
= Y2(x)Y4(x)− (Y3(x))2,

Y3(x)
Y4(x)

and
Y2(x)
Y4(x)

are real-valued as well. Additionally the function Y2(x)
Y4(x) is also even, since both

Y2(x) and Y4(x) are odd. Notice that, for x 6= 0, we have

sinh2(ax)
(ax)2

> 1 >
sin2(bx)
(bx)2

and hence

∂W (x, x)
∂x

= Y2(x)Y4(x)− (Y3(x))2 =

sin2(bx)
(bx)2

− sinh2(ax)
(ax)2

4x2(a2 + b2)
< 0.

Further properties of the Timoshenko beam will be provided later.

4.1.1. Zeros of Y4(x). In further analysis the crucial role play the set of
zeros of Y4(x). Let α = β = r(cos ϕ + i sinϕ), where sin 2ϕ 6= 0. Then

Y4(x) =
sin(rx sinϕ) cosh(rx cos ϕ) cotϕ− cos(rx sinϕ) sinh(rx cos ϕ)

2r3 cos ϕ

=
cosh(rx cos ϕ) cos(rx sinϕ)

2r3 cos ϕ
Tϕ(rx sinϕ),

where Tϕ(t) = (tan t)(cot ϕ)−tanh(t cot ϕ). Observe also that Y4(x) is even with
respect to ϕ and therefore we may assume that ϕ ∈ (0, π/2). If cos(rx sinϕ) = 0
then

| sin(rx sinϕ)| = 1 and |Y4(x)| = cosh(rx cos ϕ)
2r3| sinϕ|

> 0.

Therefore for zeros of Y4(x) we may assume that cos(rx sinϕ) 6= 0. Notice that
x is a zero of Y4(x) if and only if t = rx sinϕ is a zero of Tϕ(t).

Lemma 4.1. Fix ϕ ∈ (0, π/2) and consider the function Tϕ(t) defined on

D =
∞⋃

n=0
(nπ, π/2 + nπ). Then Tϕ(t) possess, in each interval (nπ, π/2 + nπ),

n = 1, 2, . . . , exactly one zero tn. The zeros tn are in the form tn = ϕ+nπ− εn,
where εn ∈ (0, ϕ) ⊂ (0, π/2) is such a sequence tending to 0 that

εn = exp(−(2ϕ + 2nπ) cotϕ) sin 2ϕ+
exp(−(4ϕ + 4nπ) cot ϕ)

2
(4 sin 2ϕ + sin 4ϕ)

+
exp(−(6ϕ + 6nπ) cot ϕ)

24
(8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ)+Rn,
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where |Rn| ≤ exp(7 + (2ϕ− 8nπ) cotϕ).

Proof. Both functions (tan t)(cot ϕ) and tanh(t cot ϕ) are increasing with
lim

t→∞
tanh(t cot ϕ) = 1.

Also the function Tϕ(t) is increasing on each component of D, because
T ′ϕ(t) = (cot ϕ)(tan2 t + tanh2(t cot ϕ)) > 0. So in the interval (0, π/2) there
is no zeros of Tϕ(t) because

(tan t)(cot ϕ)|t=0 = (tanh(t cot ϕ))|t=0 = 0.

For t ∈
∞⋃

n=1
(nπ, π/2 + nπ) we have the following values at the end points

(tan t)(cot ϕ)|t=(nπ)+ = 0, (tan t)(cot ϕ)|t=(π/2+nπ)− = ∞,

0 < tanh(t cot ϕ)|t=(nπ)+ < tanh(t cot ϕ)|t=(π/2+nπ)− < 1.

Hence in every interval (nπ, π/2 + nπ), n = 1, 2, . . . there is exactly one zero tn
of Tϕ(t). But then (tan tn)(cot ϕ) = tanh(tn cot ϕ) < 1 and this yields tan tn <

tanϕ. Hence each tn can be represented in the form

tn = ϕ + nπ − εn,

where εn ∈ (0, ϕ) ⊂ (0, π/2). Because tn →∞ then we have

lim
n→∞

(tan(ϕ− εn)) = lim
n→∞

(tan tn) = lim
n→∞

{(tanϕ) tanh(tn cot ϕ)} = tan ϕ.

Thus εn → 0.
Observe now that tanh((ϕ + nπ − εn) cot ϕ) = (tan(ϕ− εn))(cot ϕ) ∈ (0, 1).
Denoting an = exp(−(2ϕ + 2nπ) cot ϕ) we obtain

(4.1) (tan(ϕ− εn))(cot ϕ) =
exp(−2εn cot ϕ)− an

exp(−2εn cot ϕ) + an
.

Notice that (4.1) leads to the formula:

an =
tanϕ− tan(ϕ− εn)
tanϕ + tan(ϕ− εn)

exp(−2εn cot ϕ).

In further analysis we shall examine the function

a = a(ε) =
tanϕ− tan(ϕ− ε)
tanϕ + tan(ϕ− ε)

exp(−2ε cot ϕ)

defined on the interval (ϕ− π/2, ϕ). Thus

tan(ϕ− ε) = (tanϕ)
(1− a(ε) exp(2ε cot ϕ))
(1 + a(ε) exp(2ε cot ϕ))

and

a′(ε) =
(exp(−ε cot ϕ)− a(ε) exp(ε cot ϕ))2

sin 2ϕ
> 0.
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The latter yields the existence of the inverse ε = ε(a) defined on (− exp((π −
2ϕ) cot ϕ), exp(−2ϕ cot ϕ)). Moreover, we have

ε′(a) =
sin 2ϕ

(exp(−ε cot ϕ)− a exp(ε cot ϕ))2
,

ε′′(0) = 4 sin 2ϕ + sin 4ϕ,

ε′′′(0) =
1
4
(8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ)

and

ε′′′′(a) =
2(sin 2ϕ)

(exp(2ϕ cot ϕ)− 1)14

(
12e12ε cot ϕa9 + 36e10ε cot ϕ(cos 2ϕ− 2)a8

+ 6e8ε cot ϕ(3 cos 4ϕ− 24 cos 2ϕ + 45)a7

+ (e6ε cot ϕ(317 cos 2ϕ− 40 cos 4ϕ + 3 cos 6ϕ− 648)

− 21e8ε cot ϕ(sin2 2ϕ))a6

+
(
− 2e4ε cot ϕ(214 cos 2ϕ− 5 cos 4ϕ + 2 cos 6ϕ− 535)

− 1
2
e6ε cot ϕ(21 cos 2ϕ + 84 cos 4ϕ− 21 cos 6ϕ− 4)

)
a5

+ (e2ε cot ϕ(265 cos 2ϕ + 64 cos 4ϕ− cos 6ϕ− 1312)

− 3e4ε cot ϕ(sin2 2ϕ)(4 cos 4ϕ− 22 cos 2ϕ + 79))a4

+ (144 cos 2ϕ− 90 cos 4ϕ + 1242

− 6e2ε cot ϕ(sin2 2ϕ)(10 cos 2ϕ + cos 4ϕ− 61))a3

+
(
− 3

2
(2 cos 2ϕ− 133 cos 4ϕ− 2 cos 6ϕ + 6 cos 8ϕ + 127)

+ e−2ε cot ϕ(8 cos 4ϕ− 481 cos 2ϕ + cos 6ϕ− 920)
)

a2

+ (2e−4ε cot ϕ(214 cos 2ϕ + 31 cos 4ϕ + 2 cos 6ϕ + 239)

+ 6e−2ε cot ϕ(sin2 2ϕ)(25 cos 2ϕ− cos 4ϕ + 47))a

− e−6ε cot ϕ(137 cos 2ϕ + 32 cos 4ϕ + 3 cos 6ϕ + 120)

− 3e−4ε cot ϕ(sin2 2ϕ)(34 cos 2ϕ + 4 cos 4ϕ + 37)
)

.

Restrict the domain of ε(a) to the interval |a| ≤ exp(−3ϕ cot ϕ). Then

exp(−ε cot ϕ)− a exp(ε cot ϕ) ≥ exp(−ϕ cot ϕ)− exp(−2ϕ cot ϕ) > 0.

Therefore

|ε′′′′(a)| < exp(10 + 24ϕ cot ϕ + 2π cot ϕ)
(exp(2ϕ cot ϕ)− 1)14

.

and hence ∣∣∣∣ε′′′′(a)
24

∣∣∣∣ ≤ exp(7 + 24ϕ cot ϕ + 2π cot ϕ)
(exp(2ϕ cot ϕ)− 1)14

.
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From the Taylor expansion formula we have for each |a| ≤ exp(−3ϕ cot ϕ)

ε(a) = a sin 2ϕ +
a2

2
(4 sin 2ϕ + sin 4ϕ)

+
a3

24
(8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ) + R(a),

where |R(a)| ≤ |a|4 exp(7 + 24ϕ cot ϕ + 2π cot ϕ)/(exp(2ϕ cot ϕ)− 1)14. There-
fore

εn = exp(−(2ϕ+2nπ) cot ϕ) sin 2ϕ+
exp(−(4ϕ + 4nπ) cot ϕ)

2
(4 sin 2ϕ+sin 4ϕ)

+
exp(−(6ϕ + 6nπ) cot ϕ)

24
(8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ) + Rn

and

tn ≈ϕ + nπ − exp(−(2ϕ + 2nπ) cotϕ) sin 2ϕ

− exp(−(4ϕ + 4nπ) cotϕ)
2

(4 sin 2ϕ + sin 4ϕ)

− exp(−(6ϕ + 6nπ) cotϕ)
24

× (8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ) + Rn,

where |Rn| ≤ exp(7 + 16ϕ cot ϕ + 2π(1− 4n) cot ϕ)/(exp(2ϕ cot ϕ)− 1)14. In
particular

t1 =ϕ + π − exp(−(2ϕ + 2π) cot ϕ) sin 2ϕ

− exp(−(4ϕ + 4π) cotϕ)
2

(4 sin 2ϕ + sin 4ϕ)

− exp(−(6ϕ + 6π) cotϕ)
24

(8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ) + R1,

where |R1| ≤ exp(7 + 16ϕ cot ϕ− 6π cot ϕ)/(exp(2ϕ cot ϕ)− 1)14. �

Remark 4.2. If ϕ = π/4 then t1 ≈ 3.9266 with the accuracy |R1| ≤ 1.5052×
10−8 and for ϕ = π/3 we have t1 ≈ 4.1818 with the accuracy |R1| ≤ 2.0792 ×
10−3. But for ϕ > 0.36022π the error |R1| > 0.1.

Passing to the positive zeros of

Y4(x) =
cosh(rx cos ϕ) cos(rx sinϕ)

2r3 cos ϕ
Tϕ(rx sinϕ)

we have
xn(ϕ) =

ϕ + nπ − εn

r sinϕ
,

where

εn = exp(−(2ϕ+2nπ) cot ϕ) sin 2ϕ+
exp(−(4ϕ + 4nπ) cot ϕ)

2
(4 sin 2ϕ+sin 4ϕ)

+
exp(−(6ϕ + 6nπ) cot ϕ)

24
(8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ) + Rn
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with |Rn| ≤ exp(7 + (2ϕ− 8nπ) cot ϕ). In particular is

x1(ϕ) =
t1

r sinϕ
=

1
r sinϕ

(
ϕ + π − exp(−(2ϕ + 2π) cotϕ) sin 2ϕ

− exp(−(4ϕ + 4π) cot ϕ)
2

(4 sin 2ϕ + sin 4ϕ)

− exp(−(6ϕ + 6π) cot ϕ)
24

× (8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ)−R1

)
,

where |R1| ≤ exp(7 + (2ϕ− 8π) cotϕ).
Let us now observe that for the positivity of Y4(x) we need the assumption

that (0, 1) ⊂ (0, x1(ϕ)). This holds for such α′s that x1(ϕ) > 1. Equivalently

|α|+ R1

sinϕ
<r0(ϕ) =

1
sinϕ

(
ϕ + π − exp(−(2ϕ + 2π) cot ϕ) sin 2ϕ

− exp(−(4ϕ + 4π) cotϕ)
2

(4 sin 2ϕ + sin 4ϕ)

− exp(−(6ϕ + 6π) cot ϕ)
24

× (8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ)
)

.

Graph of the function r0(ϕ) is presented in Figure 1.

0 1 2 3 4 5 6 7 8 9 10

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8

x

y

Figure 1. Graph of r0(ϕ).

Hence for ϕ ∈ (0, 2π) the domain of positivity of the Green function for the
clamped Timoshenko beam is between the lower and upper curves (see Figure 2).
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Figure 2. Asymptotes are dashed at ±π.

Additionally for the reader wondering to make an idea of the phenomenon
we make the graph of inversion

1
r0(ϕ)

=
sinϕ

M

where

M =
(

ϕ + π − exp(−(2ϕ + 2π) cot ϕ) sin 2ϕ

− exp(−(4ϕ + 4π) cot ϕ)
2

(4 sin 2ϕ + sin 4ϕ)

− exp(−(6ϕ + 6π) cot ϕ)
24

(8 sin 6ϕ− 30 sin 4ϕ− 96 sin 2ϕ + 3 sin 8ϕ)
)

and the admissible domain is out of the “apples” (see Figure 3).

-0.15-0.10-0.05 0.050.100.15

-0.3
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0.1

0.2

0.3

Figure 3. Graph of
1

r0(ϕ)
.
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Figure 4. Graph of dr0
dϕ

, where ϕmin = 1.4134 and ϕmax = 1.5764.

4.1.2. Properties of principal solutions. In further analysis we need
some properties of principal solutions.

Proposition 4.3. The functions

Y2(x)
Y4(x)

,
Y3(x)
Y4(x)

,
∂W (x, x)

∂x
= Y2(x)Y4(x)−Y3(x)2,

Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− Y3(x)2

are strictly decreasing on (0, x1(ϕ)). Moreover, for all x ∈ (0, x1(ϕ)) is

Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− Y3(x)2

> 0.

Proof. We shall show then the derivatives of considered functions are neg-
ative.

(a) Differentiating the function Y2(x)
Y4(x) on (0, x1(ϕ)) we have

d

dx
(
Y2(x)
Y4(x)

) =
Y1(x)Y4(x)− Y2(x)Y3(x)

(Y4(x))2
=

sin 2bx

2b
− sinh 2ax

2a
2|Y4(x)|2(a2 + b2)

.

But for each x ∈ R, by Mean-Value Theorem, there are θx, ϑx ∈ (0, 1) such that

sin 2bx = 2bx cos(2bxθx) and sinh 2ax = 2ax cosh(2axϑx).

Hence for any x ∈ (0, x1(ϕ)) is

sin 2bx

2b
− sinh 2ax

2a
= (cos(2bxθx)− cosh(2axϑx))x < 0.

Thus for each x ∈ (0, x1(ϕ)) is

d

dx

(
Y2(x)
Y4(x)

)
< 0.
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(b) For the function Y3(x)
Y4(x) on (0, x1(ϕ)) is

d

dx

(
Y3(x)
Y4(x)

)
=

Y2(x)Y4(x)− (Y3(x))2

(Y4(x))2
=

∂W (x, x)
∂x

(Y4(x))2
< 0.

(c) For the function Y2(x)Y4(x)−Y3(x)2 = ∂W (x,x)
∂x < 0 on (0, x1(ϕ)) we have

d

dx
((Y2(x)Y4(x)− Y3(x)2)) =Y1(x)Y4(x)− Y2(x)Y3(x)

= (Y4(x))2
d

dx

(
Y2(x)
Y4(x)

)
< 0.

(d) Applying Proposition 2.2(f) we have

d

dx

(
Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− (Y3(x))2

)
= −

(
Y4(x)

Y2(x)Y4(x)− (Y3(x))2

)2

< 0.

To see that
Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− (Y3(x))2

> 0

observe that since Y2(x)Y4(x)−Y3(x)2 is negative and decreasing then the func-
tion ln((Y3(x))2 − Y2(x)Y4(x)) is increasing. Hence

Y1(x)Y4(x)− Y2(x)Y3(x)
Y2(x)Y4(x)− (Y3(x))2

=

d

dx
((Y3(x))2 − Y2(x)Y4(x))

(Y3(x))2 − Y2(x)Y4(x)

=
d

dx
(ln((Y3(x))2 − Y2(x)Y4(x))) > 0.

This completes the proof. �

Lemma 4.4. Let 0 < t < s < x < x1(ϕ). Then

det

Y2(t) Y2(s) Y2(x)
Y3(t) Y3(s) Y3(x)
Y4(t) Y4(s) Y4(x)

 > 0.

Proof. Observe first that

(4.2) det

Y2(t) Y2(s) Y2(x)
Y3(t) Y3(s) Y3(x)
Y4(t) Y4(s) Y4(x)

 = Y4(t)Y4(s)Y4(t)
(

Y3(s)
Y4(s)

− Y3(x)
Y4(x)

)

×
(

Y3(t)
Y4(t)

− Y3(s)
Y4(s)

)
(

Y2(t)
Y4(t)

− Y2(s)
Y4(s)

)
(

Y3(t)
Y4(t)

− Y3(s)
Y4(s)

) −

(
Y2(s)
Y4(s)

− Y2(x)
Y4(x)

)
(

Y3(s)
Y4(s)

− Y3(x)
Y4(x)

)
 .
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From the Cauchy Mean-Value Theorem there are σ, ω with 0 < t < σ < s <

ω < x < x1(ϕ) such that

Y2(t)
Y4(t)

− Y2(x)
Y4(x)

Y3(t)
Y4(t)

− Y3(x)
Y4(x)

=

(
Y2

Y4

)′
(σ)(

Y3

Y4

)′
(σ)

=
(

Y1Y4 − Y2Y3

Y2Y4 − (Y3)2

)
(σ)

and
Y2(x)
Y4(x)

− Y2(1)
Y4(1)

Y3(x)
Y4(x)

− Y3(1)
Y4(1)

=

(
Y2

Y4

)′
(ω)(

Y3

Y4

)′
(ω)

=
(

Y1Y4 − Y2Y3

Y2Y4 − (Y3)2

)
(ω).

But the functions Y1Y4−Y2Y3
Y2Y4−(Y3)2

and Y3(x)
Y4(x) are decreasing. Therefore

Y2(t)
Y4(t)

− Y2(x)
Y4(x)

Y3(t)
Y4(t)

− Y3(x)
Y4(x)

−

Y2(x)
Y4(x)

− Y2(1)
Y4(1)

Y3(x)
Y4(x)

− Y3(1)
Y4(1)

=
(

Y1Y4 − Y2Y3

Y2Y4 − (Y3)2

)
(σ)−

(
Y1Y4 − Y2Y3

Y2Y4 − (Y3)2

)
(ω) > 0

and
Y3(s)
Y4(s)

− Y3(x)
Y4(x)

> 0,
Y3(t)
Y4(t)

− Y3(s)
Y4(s)

> 0.

Therefore all factors in (4.2) are positive, what yields our claim. �

4.2. Nonnegativity of the Green kernel. We are now ready to demon-
strate the positivity of the Green function. It can be done with the use of the
formula (3.4), when the integral kernel is given by

G(x, t) =



det
[

Y3(1) Y3(1−t) Y2(1)
Y4(x) Y4(x−t) Y3(x)
Y4(1) Y4(1−t) Y3(1)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ t ≤ x ≤ 1,

det
[

Y3(1) Y4(1−x) Y4(1)
Y3(t) Y4(t−x) Y4(t)
Y2(1) Y3(1−x) Y3(1)

]
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

] for 0 ≤ x ≤ t ≤ 1.

We shall show the following

Theorem 4.5. Assume that α = β = a+ib = r(cos ϕ+i sinϕ), where ab 6= 0
and x1(ϕ) > 1. Then for each x, t ∈ (0, 1) we have G(x, t) > 0.

Proof. We may restrict our considerations to the quarter 1/2 < x < 1
and 1 − x < t < x since the Green function is symmetric with respect to both
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diagonals of the square [0, 1]× [0, 1]. We shall show first that

∂G(x, t)
∂v

< 0, where v =
[

1√
2
;

1√
2

]
.

Using Proposition 2.2(c) we proceed as follows(
det
[

Y3(1) Y4(1)
Y2(1) Y3(1)

])
∂G(x, t)

∂v

√
2 = det

[
Y3(1) Y4(1)
Y2(1) Y3(1)

](
∂G(x, t)

∂x
+

∂G(x, t)
∂t

)

= det

 Y3(1) Y3(1− t) Y2(1)
Y3(x) Y3(x− t) Y2(x)
Y4(1) Y4(1− t) Y3(1)

− det

 Y3(1) Y2(1− t) Y2(1)
Y4(x) Y3(x− t) Y3(x)
Y4(1) Y3(1− t) Y3(1)


= det

Y2(1− t) Y2(x) Y2(1)
Y3(1− t) Y3(x) Y3(1)
Y4(1− t) Y4(x) Y4(1)

 .

But we have 1− t < x < 1, hence from Lemmas 4.1 and 4.4 we conclude that

∂G(x, t)
∂v

< 0,

what gives our claim.
Negativity of ∂G(x,t)

∂v means that the function G(x, t) is decreasing on each
line x− t = s, where 0 < s < 1. Hence for x ∈ (1/2, 1) and t = x− s is

G(x, t) = G(x, x− s) > G(1, 1− s) =

det

Y2(s) Y2(1) Y2(1)
Y3(s) Y3(1) Y3(1)
Y4(s) Y4(1) Y4(1)


det
[

Y4(1) Y3(1)
Y3(1) Y2(1)

] = 0,

what was to be proved. �

We are now in the position to present our main results concerning the
clamped Timoshenko beam:

Theorem 4.6 (PCP). Assume that α = β = a + ib = r(cos ϕ + i sinϕ),
where ab 6= 0 and x1(ϕ) > 1. Then for every α such that |α| < x1(ϕ)/sin(ϕ)
the Pointwise Comparison Principle holds for solutions of clamped Timoshenko
beam problem

y′′′′ − (α2 + α2)y′′ + |α|4y = f,(4.3)

y(0) = y(1) = y′(0) = y′(1) = 0.(4.4)

Proof. The formulas for solutions are the contents of Theorems 3.3 and 3.4.
For |α| < x1(ϕ)/sin(ϕ) the function GT(x, t) ≥ 0. Thus for f ∈ L1([0, 1]) with
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f ≥ 0 we have

y(x) =
∫ 1

0

GT(x, t)f(t) dt ≥ 0,

what shows that GT(x, t) ≥ 0 for all x, t ∈ [0, 1]. �

5. Clamped Euler–Bernoulli beam

A particular case of the problem considered in our Theorem PCP, presented
in the previous section, is the following BVP

y′′′′ + 4k4y = f(x),(5.1)

y(0) = y(1) = y′(0) = y′(1) = 0,(5.2)

where k > 0 is given. The case k = 0 was examined by T. Boggio [2] in 1905
and k = 1/

√
2 by W. Gunsenheimer [4] in 1994. The general case was covered

by M. Ulm [15] in 1999 and Sweers with collaborators (see, [14], [3], [6]). In our
case

α = (1− i)k, β = α = (1 + i)k

and the fundamental solutions are

Y4(x) =
cosh kx sin kx− sinh kx cos kx

4k3
, Y3(x) =

sinh kx sin kx

2k2
,

Y2(x) =
cosh kx sin kx + sinh kx cos kx

2k
, Y1(x) = cosh kx cos kx.

Following J. Schröder [11] denote by κ = t1 ≈ 3.9266 the first positive zero of
the equation tanhx − tanx = 0. In our case the first positive zero of Y4(x) is
x1 = x1(π/4) = κ/k. Because of the boundary conditions we need to assume
that x1 = κ/k ≥ 1, which holds for 0 < k ≤ κ. Therefore we have the following
(PCP) result for the clamped Euler–Bernoulli beam:

Theorem 5.1. For each 0 < k ≤ κ the solution of the problem (5.1) with
(5.2) is given by formula

y(x) =
∫ 1

0

GEB(x, t)f(t) dt,

where the Green function GEB(x, t) is for 0 ≤ t ≤ x ≤ 1 given by

det



2 sinh k sin k 2 sinh(k(1−t)) sin(k(1−t))
1

(
cosh k sin k

+ sinh k cos k

)
(

cosh kx sin kx

− sinh kx cos kx

) ( cosh(k(x−t)) sin(k(x−t))
1

− sinh(k(x−t)) cos(k(x−t))
1

)
sinh kx sin kx

(
cosh k sin k

− sinh k cos k

) ( cosh(k(1−t)) sin(k(1−t))
1

− sinh(k(1−t)) cos(k(1−t))
1

)
sinh k sin k


4k3 det

[
2 sinh k sin k cosh k sin k + sinh k cos k

cosh k sin k − sinh k cos k sinh k sin k

]
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and for 0 ≤ x ≤ t ≤ 1 by

det



sin k sinh k

( cos(k(1−x)) sinh(k(1−x))
1

− sin(k(1−x)) cosh(k(1−x))
1

) (
sin k cosh k

− cos k sinh k

)
sinh kt sin kt

( cosh(k(t−x)) sin(k(t−x))
1

− sinh(k(t−x)) cos(k(t−x))
1

)( cos(k(1−t)) sinh(k(1−t))
1

− sin(k(1−t)) cosh(k(1−t))
1

)
( cos k sinh k

1

+ sin k cosh k
1

)
2 sin(k(1−x)) sinh(k(1−x))

1 2 sin k sinh k


4k3 det

[
2 sinh k sin k cosh k sin k + sinh k cos k

cosh k sin k − sinh k cos k sinh k sin k

] .

Furthermore GEB(x, t) > 0 for all x, t ∈ (0, 1).

References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for the so-

lutions of elliptic partial differential equations satisfying general boundary conditions I,
Comm. Pure Appl. Math 12 (1959), 623–727.

[2] T. Boggio, Sulle funzioni di Green d’ordine m, Rend. Circ. Math. Palermo 20 (1905),

97–135.

[3] H.-C. Grunau and G. Sweers, Positivity for equations involving polyharmonic oper-

ators with Dirichlet boundary conditions, Math. Ann. 307 (1997), 589–626.

[4] W. Gunsenheimer, Nichtnegativität Greenscher Functionen für u′′′′ + u = f Ab-
hängingheit vom Zugrundliegenden Definitionsbereich [−L, L], Arbeitsbericht Univer-

sität Bayreuth, 1994.

[5] P. Hartman, Corrigendum and Addendum: Principal Solutions of disconjugate n-th
order linear differential equations, Amer. J. Math. 93 (1971), 439–451.

[6] B. Kawohl and G. Sweers, On Anti-eigenvalues for elliptic systems and a question

of McKenna and Walter, Indiana Univ. Math. J. 51 (2002), 1023–1040.

[7] M. Kourensky, Zur Lösung der Differentialgleichung der Biegung des Balkens auf
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