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THE CONLEY INDEX OVER A PHASE SPACE FOR FLOWS

Jacek Szybowski

Abstract. We construct the Conley index over a phase space for flows.
Our definition is an alternative for the Conley index over a base defined
in [5]. We also compare it to other Conley-type indices and prove its con-
tinuation property.

1. Introduction

The theory of dynamical systems provides us with several indices, such as the
fixed point index or the Morse index, which allow to examine some properties of
a given system. Recently, one of the most exploited ones has been the Conley
index, which was defined in [2] for flows and, for example, in [3] or [11] for
semidynamical systems generated by a map.
The Conley index has been used to prove the existence and behavior of an

isolated invariant set in its so-called isolating neighbourhood. Due to the local
character of the index a lot of information about an isolated invariant set is lost,
in paticular, its position in a phase space.
The idea how to overcome this difficulty was presented in [5] where the Conley

index over a base was defined for flows (see also Chapter 4). A natural problem
appeared how to extend this definition for the discrete case. The solution was
given in [7] and [8] where the Conley index over a phase space for discrete
semidynamical systems was defined. Its construction was based on a relation of
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the so-called M -equivalence. If one assumes that a map generating the system
is homotopic with identity, as it is in the case of a time-one map induced by
a flow, we may introduce a new relation of a fiberwise moving homotopy (see
Chapter 2). This allows to define an alternative index for flows, which also
distinguishes two isolated invariant sets differently situated in a phase space and
is strongly related to its discrete version.
Theorem 4.16 which shows the relation between the indices may be essential

for the computer-assisted proofs concerning the isolated invariant sets for flows.
In order to use a computer for precise calculations one has to discretize the
problem.

2. Spaces over a base

2.1. Category of spaces over a base. For a given topological space X we
define the category of spaces over a base X , which will be denoted by SB(X).

Definition 2.1.

Ob(SB(X)) ={(U, r, s) : U is a topological space,
r:U → X, s:X → U continuous, such that r ◦ s = idX},

MorSB(X)((U, r, s), (U ′, r′, s′)) = {(F, f) : F :U → U ′, f :X → X
continuous, such that F ◦ s = s′ ◦ f and r′ ◦ F = f ◦ r}

Identity:

idSB(X)((U, r, s), (U, r, s)) = (idU, idX).

Composition of two morphisms:

(F, f) ∈ MorSB(X)((U, r, s), (U ′, r′, s′)),
(G, g) ∈ MorSB(X)((U ′, r′, s′), (U ′′, r′′, s′′))

is defined by (G, g) ◦ (F, f) = (G ◦ F, g ◦ f).
Remark 2.2. We may naturally identify r with a projection (r ◦ s ◦ r = r)

and s with an inclusion (s(X) ⊆ U). Their presence in the definition of objects
may seem to be redundant, but it is convenient in the later notation.

Example 2.3. Given a pair P = (P1, P2) of compact subsets of a metric
space (X, d) satisfying P2 ⊆ P1 we define U(P ) as the adjunction P1 ∪id|P2 X ,
i.e.

U(P ) := X × 0 ∪ P1 × 1/∼,
where ∼ denotes the minimal equivalence relation such that (x, 0) ∼ (x, 1) for
each x ∈ P2. Let [x, q]P denote the equivalence class of (x, q) in U(P ).
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Figure 1. The space over a base

Now we have a natural inclusion sP :X � x �→ [x, 0]P ∈ U(P ) and a projec-
tion rP :U(P ) � [x, q]P �→ x ∈ X .
U(P ) is a metrizable space. In particular, if P2 	= ∅, then U(P ) is a metric

space with a metric dP :U(P )× U(P )→ [0,+∞) given by a formula:

dP ([x1, q1]P , [x2, q2]P ) =

{
d(x1, x2) for q1 = q2,

infy∈P2{d(x1, y) + d(y, x2)} for q1 	= q2.
Obviously, maps rP , sP are continuous and rP ◦ sP = idX , so (U(P ), rP , sP ) ∈
Ob(SB(X)).

Remark 2.4. SB is a well-defined category.
Note that the second element of a morphism in the category of spaces over

a base is always determined by the first one:

Remark 2.5. (F, f) ∈MorSB(X)((U, r, s), (U ′, r′, s′))⇒ f = r′ ◦ F ◦ s.
Therefore the second element in this morphism seems to be redundant. How-

ever, it is convenient to use it in order to make the notation clearer.
Denote a compact interval [0, 1] by I.
For two morphisms in SB(X) we define the relation ∗ of homotopy:
Definition 2.6. (F, f), (F ′, f ′) ∈ MorSB(X)((U, r, s), (U ′, r′, s′)).

(F, f) ∗ (F ′, f ′)⇔ ∃H :U × I→ U ′, h:X × I→ X continuous:
H ◦ (s× idI) = s′ ◦ h, r′ ◦H = h ◦ (r × idI),

H( · , 0) = F, H( · , 1) = F ′, h( · , 0) = f, h( · , 1) = f ′.

A pair (H,h) will be called a homotopy joining (F, f) with (F ′, f ′).

Uwaga 2.7. ∗ is an equivalence relation.
Remark 2.8. If (H,h) is a homotopy joining (F, f) with (F ′, f ′) – two

morphisms from MorSB(X)((U, r, s), (U ′, r′, s′)), then

(H( · , t), h( · , t)) ∈MorSB(X)((U, r, s), (U ′, r′, s′)), for every t ∈ I.
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2.2. Homotopy types over a base. We recall the notion of the fiber-
wise deforming homotopy type defined in [5], which was a key definition for the
construction of the Conley index over a base for flows.

Definition 2.9. Two objects (U, r, s) i (U ′, r′, s′) in the category SB(X)
are said to have the same fiberwise deforming homotopy type over X , if there
exist continuous maps Φ:U → U ′ and Ψ:U ′ → U satisfying

Φ ◦ s = s′, Ψ ◦ s′ = s,(2.1)

r′ ◦ Φ  r rel s(X), r ◦Ψ  r′ rel s′(X),(2.2)

Ψ ◦ Φ  idU rel s(X), Φ ◦Ψ  idU ′ rel s′(X).(2.3)

Now we define a different homotopy type for objects in the same category:

Definition 2.10. Two objects (U, r, s) and (U ′, r′, s′) in the category SB(X)
are said to have the same fiberwise moving homotopy type over X , if there
exist (Φ, ϕ) ∈ MorSB(X)((U, r, s), (U ′, r′, s′)) and (Ψ, ψ) ∈ MorSB(X)((U ′, r′, s′),
(U, r, s)) satisfying:

ϕ  idX  ψ,(2.4)

(Ψ, ψ) ◦ (Φ, ϕ) ∗ (idU , idX), (Φ, ϕ) ◦ (Ψ, ψ) ∗ (idU ′ , idX).(2.5)

The fiberwise moving homotopy type over X of (U, r, s) will be denoted by
[U, r, s]X .

Remark 2.11. Having the same fiberwise moving homotopy type over X is
the equivalence relation.

The following examples illustrate the lack of relation between the fiberwise
deforming homotopy type and the fiberwise moving homotopy type. The spaces
U(P ) and U(Q) are constructed according to the Example 2.3.

Example 2.12. Let X = R, P1 = {0} ∪ {1/2n : n ∈ N}, P2 = {0}, Q1 =
{1} ∪ {1 + 1/2n : n ∈ N}, Q2 = {1}.
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Figure 2. U(P ) and U(Q) have the same fiberwise moving homotopy
types and different fiberwise deforming homotopy types
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One can easily notice that fiberwise moving homotopy types over X for U :=
(U(P ), rP , sP ) and U ′ := (U(Q), rQ, sQ) are equal. The maps Φ,Ψ, ϕ, ψ from
Definition 2.10 are given as follows:

Φ:U(P ) � [u, q]P �→ [u+ 1, q]Q ∈ U(Q), ϕ:X � u �→ u+ 1 ∈ X,
Ψ:U(Q) � [u, q]Q �→ [u− 1, q]P ∈ U(P ), ψ:X � u �→ u− 1 ∈ X.

On the other hand, U and U ′ have different fiberwise deforming homo-
topy types over X . Otherwise, there would exist maps Φ:U(P ) → U(Q) and
Ψ:U(Q) → U(P ) from Definition 2.9. Then Φ([0, 1]P ) = Φ([0, 0]P ) = [0, 0]Q
and there would exist a neighbourhood V of the point [0, 1]P in U(P ) such that
Φ(V ) ⊆ sQ(X), so the image of “almost all” points from U(P ) \ sP (X) by the
map Ψ◦Φ would be contained in sP (X). That would contradict Ψ◦Φ  idU(P ).

Example 2.13. Consider A := {1/2n : n ∈ N}. Now take X = [−1, 0] ∪ A,
P1 = {0}, Q1 = {−1}, P2 = Q2 = ∅.

� �� �� �

� �

� �� �� �
−1 0 1 −1 0 1

Figure 3. U(P ) and U(Q) have the same fiberwise deforming homotopy
types and different fiberwise moving homotopy types

This time U := (U(P ), rP , sP ) and U ′ := (U(Q), rQ, sQ) have the same fiber-
wise deforming homotopy types over X . Indeed, the maps Φ:U(P )→ U(Q) and
Ψ:U(Q)→ U(P ) from Definition 2.9 are given by formulas:

Φ:U(P ) � [u, q]P �→
{
[−1, 1]Q if [u, q]P = [0, 1]P ,

[u, 0]Q otherwise,
∈ U(Q),

Ψ:U(Q) � [u, q]Q �→
{
[0, 1]P if [u, q]Q = [−1, 1]Q,
[u, 0]P otherwise,

∈ U(P ).

On the other hand, U and U ′ have different fiberwise moving homotopy types
over X . Assume the opposite. Then there exist the maps Φ:U(P ) → U(Q),
Ψ:U(Q) → U(P ) and ϕ, ψ:X → X from Definition 2.9. We have Φ([0, 1]P ) =
[−1, 1]Q. Otherwise, (Ψ ◦Φ)([0, 1]P ) ∈ sP (X) and Ψ ◦Φ 	 idU(P ). This implies

ϕ(0) = (ϕ ◦ rP )([0, 1]P ) = (rQ ◦Φ)([0, 1]P ) = −1.
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We have ϕ  idX , so ϕ|A = idA and from the continuity of ϕ we get a contra-
diction ϕ(0) = 0.

3. Isolated invariant sets

We start with a simple definition of a section, which will be necessary to
formulate and prove the property of continuation for the index.

Definition 3.1. Let Λ ⊆ R be a compact interval. For K ⊆ X ×Λ i λ ∈ Λ
we define its section Kλ := {x ∈ X : (x, λ) ∈ K}.

3.1. The continuous case. Definitions and theorems recalled in this sub-
section come, for example, from [2], [1], [6] and [5].

Let X be a locally compact metric space with a flow ρ:X × R → X . To
simplify notation, for x ∈ X and a, b, t ∈ R we will write x · t instead of ρ(x, t)
and x · [a, b] instead of ρ(x, [a, b]).

Definition 3.2. For a given subset N ⊆ X sets

InvN := {x ∈ N : x ·R ⊆ N};
Inv+N := {x ∈ N : x ·R+ ⊆ N};
Inv−N := {x ∈ N : x ·R− ⊆ N};

are called respectively an invariant, positively invariant, and negatively invariant
part of N .

Definition 3.3. A given set N ⊆ X is called invariant when N = InvN .

Remark 3.4. For every N ⊆ X the set InvN is the biggest invariant subset
of N .

Definition 3.5. A compact set N ⊆ X is called an isolating neighbour-
hood for S if S = InvN and S ⊆ int(N). Then we call the set S an isolated
invariant set.

Fix S – an isolated invariant set for S and N – its isolating neighbourhood.

Definition 3.6. A pair P = (P1, P2) of compact subsets of N is called an
index pair for S in N , if the following conditions are satisfied:

(a) S = InvN ⊆ int(P1 \ P2),
(b) x ∈ Pi, t > 0, x · [0, t] ⊆ N ⇒ x · [0, t] ⊆ Pi (i = 1, 2),
(c) x ∈ P1, t > 0, x · t 	∈ N ⇒ ∃ t′ ∈ [0, t] : x · t′ ∈ P2, x · [0, t′] ⊆ N .

The set of all index pairs for S in N will be denoted by IP(S,N).
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For an index pair P ∈ IP(S,N) we may define maps σP , τP :P1 → [0,∞]

σP (x) =

{
sup{t ≥ 0 : x · [0, t] ⊆ clP1 \ P2} if x ∈ clP1 \ P2,
0 otherwise,

τP (x) =

{
sup{t ≥ 0 : x · [0, t] ⊆ P1 \ P2} if x ∈ P1 \ P2,
0 otherwise.

Definition 3.7. A pair P ∈ IP(S,N) is called regular, if σP = τP .

The set of all regular index pairs for S in N will be denoted by RIP(S,N).

The following theorem and remark come from [5]:

Theorem 3.8. RIP(S,N) 	= ∅.

Remark 3.9. If ρ is a flow and P ∈ RIP(S,N) then τP is continuous.

Now recall the notion of an isolating block defined, for example, in [6].

Definition 3.10. Let Σ ⊂ X . If for some δ > 0 the map

ρδ: Σ× (−δ, δ) � (x, t) �→ x · t ∈ X

is a homeomorphism onto image, then Σ is called a local δ-section.

Definition 3.11. Let B be a closure of an open set in X , Σ+ and Σ− be
two disjoint local δ-sections satisfying:

(a) [(cl Σ±) \ Σ±] ∩B = ∅.
(b) Σ+ · (−δ, δ) ∩B = (Σ+ ∩B) · [0, δ).
(c) Σ− · (−δ, δ) ∩B = (Σ− ∩B) · (−δ, 0].
(d) If x ∈ (bdB) \ (Σ− ∪ Σ+), then there exist ε1, ε2 > 0 such that x ·
[−ε1, ε2] ⊂ bdB and x · −ε1 ∈ Σ+, x · ε2 ∈ Σ−.

A set B satisfying the above conditions is called an isolating block for a flow ρ.
Any number δ satysfying the above conditions is called a collar size of block B.

Remark 3.12. An isolating block B is an isolating neighbourhood for S :=
InvB.

The set of all isolating blocks for S will be denoted by IB(S).

The following theorem is proved in [6]:

Theorem 3.13. For every isolated invariant set S and its neighbourhood V
there exists an isolating block B ∈ IB(S) contained in V .
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Definition 3.14. For an isolating block B and y ∈ Y ⊆ B we define the
sets:

B± :=B ∩ Σ± (the sets of entrance and exit points),

A(B) := Inv+B ∪ Inv−B,
a±(B) :=bdB ∩ Inv±B,
O(y,B) := the component of (y ·R) ∩B containing y,
O(Y,B) :=

⋃
y∈Y
O(y,B).

From [1] and Remark 3.9 we get

Remark 3.15. If B ∈ IB(S), then (B,B−) ∈ RIP(S,B). In particular,
functions:

σ−B :B � y �→ sup{t ≥ 0 : y · [0, t] ⊂ B} ∈ [0,+∞],
σ+B :B � y �→ sup{t ≥ 0 : y · [−t, 0] ⊂ B} ∈ [0,+∞]

are continuous.

As a consequence of the definition of an isolating block we have:

Remark 3.16. Let U± be open neighbourhoods of a±(B) contained in B±.
Then there exist open neighbourhoods V ± of sets B±\U± in Σ± and continuous
maps ε∓: clΣ±V ± → R+, equal to σ±B on the intersection of their domains such
that

x ∈ clΣ+V + ⇒ x · ε−(x) ∈ Σ−,
x ∈ clΣ−V − ⇒ x · −ε+(x) ∈ Σ+,

x ∈ B+ ∩ clΣ+V + ⇒ x · [0, ε−(x)] ⊂ B,
x ∈ B− ∩ clΣ−V − ⇒ x · [−ε+(x), 0] ⊂ B.

Finally, recall the definition of continuation of isolated invariant sets.

Definition 3.17. Let ρ1, ρ2:X ×R→ X be two flows S1 and S2 – isolated
invariant sets for ρ1 and ρ2, respectively. We say that there is a continuation
between (ρ1, S1) and (ρ2, S2), if there exists Λ ⊆ R – a compact interval, ρ:X ×
Λ × R → X × Λ – a flow such that ρ(x, λ, t) = (ρλ(x, t), λ) ∈ X × Λ, for each
x ∈ X , t ∈ R and λ ∈ Λ, S – an isolated invariant set for ρ and a, b ∈ Λ such
that ρ1 = ρa, ρ2 = ρb, S1 = Sa and S2 = Sb.

3.2. The discrete case. In this subsection we recall the basic concepts
from the theory of isolated invariant sets for discrete semidynamical systems;
cf. [3], [4] and [11].
Let X be a locally compact metric space, f :X → X – a continuous map.
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Figure 4. Two isolated invariant sets S1 and S2 related by continuation.
A, B denote fixed points for a flow ρ1 (top line), C, D denote fixed points
for a flow ρ2 (bottom line), S1(S2) is an interval between A and B (C
and D), S is an isolated invariant set for an extended flow on X × Λ.

Definition 3.18. For a set N ⊆ X we define an invariant part of N :

InvN = {x ∈ N : ∃ : {xk}k∈Z ⊆ N x0 = x and f(xk) = xk+1 for k ∈ Z}.

Definition 3.19. A set N ⊆ X is called an invariant set when N = InvN .
Definition 3.20. A compact set N ⊆ X is called an isolating neighborhood

for S := InvN if S ⊆ int(N). The set S is called an isolated invariant set.
Fix S – an isolated invariant set.

Definition 3.21. A pair P = (P1, P2) of compact subsets of X , is called an
index pair for S if and only if

(a) S = Inv cl(P1 \ P2) ⊆ int(P1 \ P2),
(b) f(P2) ∩ P1 ⊆ P2,
(c) f(P1 \ P2) ⊆ P1.

The set of all index pairs for S will be denoted by IP(S).
Assume Λ ⊆ R is a compact interval and f :X × Λ→ X × Λ is a continuous

map such that f(X ×{λ}) ⊆ X ×{λ}, for all λ ∈ Λ. For λ ∈ Λ we define a map
fλ:X → X satisfying f(x, λ) = fλ(x), for all x ∈ X and λ ∈ Λ.
The following remark is a part of Proposition 5.2 from [11].

Remark 3.22. If λ ∈ Λ, S is an isolated invariant set for f and P is an
index pair for S, then Sλ is an isolated invariant set for fλ and Pλ = (P1λ, P2λ)
is an index pair for Sλ.

The remark is directly related to the definition of continuation of isolated
invariant sets.

Definition 3.23. Assume f1, f2:X → X are continuous maps, S1 and
S2 are isolated invariant set for f1 and f2, respectively. We say that there is
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a continuation between (f1, S1) and (f2, S2), if there exists Λ ⊆ R – a com-
pact interval, f :X × Λ → X × Λ – a discrete semidynamical system such that
f(x, λ) = (fλ(x), λ) ∈ X × Λ, for all x ∈ X and λ ∈ Λ, S – an isolated invariant
set for f and a, b ∈ Λ such that f1 = fa, f2 = fb, S1 = Sa and S2 = Sb.
Recall Theorem 1 from [4]:

Theorem 3.24. If ρ:X × R → X is a flow, ρT is a time-T -map (ρT =
ρ( · , T )) where T ∈ R, S ⊆ X is a compact set then the following conditions are
equivalent:

(a) S is an isolated invariant set for ρ.
(b) S is an isolated invariant set for ρT .
(c) S is an isolated invariant set for ρt for all t > 0.

From Theorem 3.24 and definitions of continuation of isolated invariant sets
in a continuous and a discrete case one may easily prove the following lemma:

Lemma 3.25. If ρ, ρ′:X × R → X are flows, T ∈ R, ρT = ρ( · , T ), ρ′T =
ρ′( · , T ′), S, S′ ⊆ X are isolated invariant sets for ρ and ρ′, then continuation
between (ρ, S) and (ρ′, S′) imples continuation between (ρT , S) and (ρ′T , S

′).

As we have the same isolated invariant set for a flow and its discretization,
we may ask if there exists a common index pair and how it relates to isolating
blocks. The answer is given by the following theorem:

Theorem 3.26. If ρ:X × R → X is a flow, S – an isolated invariant set
for ρ and B – an isolating block for S, then there exists T0 > 0 such that for all
T ∈ (0, T0] a pair P = (P1, P2) := (B ∪B− · [0, T0], B− · [0, T0]) is an index pair
for S (in P1) both with respect to ρ and to ρT = ρ( · , T ). Moreover, the pair is
regular with respect to ρ.

Proof. If δ is a collar size of block B, then we may choose T0 to be an
arbitrary number from the interval (0, δ). Now take T ∈ (0, T0].
First, notice that

InvP1 = InvB = S ⊆ int cl(B \B−) = int cl(P1 \ P2) ⊆ intP1.
Thus, P1 is an isolating neighbourhood for S and condition (a) from Defini-
tions 3.6 and 3.21 is satisfied.
In order to get condition (b) of both Definitions take x ∈ P2. There exists y ∈

B− and t0 ∈ [0, T0] such that x = y · t0. Now if x · [0, t] = y · [t0, t+ t0] ⊆ P1, then
[t0, t+t0] ⊆ [0, T0] and x·[0, t] ⊆ P2. Similarly, if ρT (x) = x·T = y ·(T+t0) ∈ P1,
then T + t0 ∈ [0, T0] and ρT (x) ∈ P2.
Finally, take x ∈ P1 \ P2 = B \ B−. If for some t > 0, x · t 	∈ P1, then from

the definition of an isolating block there exists t′ ∈ [0, t] such that x′ := x · t′ ∈
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B− ⊆ P2 and x · [0, t′] ⊆ B ⊆ P1. We have x′ · [0, T0] ⊆ P1, so t > t′ + T0 > T .
Thus, ρT (x) 	∈ P1 would mean a contradiction T > T . Therefore, condition (c)
from Definition 3.6 and 3.21 is also satisfied and P ∈ IP(S, P1) ∩ IP(S).
Regularity of P follows from regularity of B (see Remark 3.15). �

4. The Conley index over a phase space and its properties

4.1. The Conley index – a continuous case. Consider a flow ρ:X×R→
X , an isolated invariant set S, an isolating neighbourhood N for S and an index
pair P ∈ IP (S,N) for S in N .
The classical Conley index h(S, ρ) for S was defined in [2] as the homotopy

class of a space P1/P2 = (P1\P2)∪[P2]. This homotopy invariant is quite simple,
however, it does not detect some important features of S such as its position in
a phase space.

This is why a new homotopy invariant, namely the Conley index over a base,
was defined in [5]. Let us recall that definition in the most general case of a base
equal to a phase space X and a gluing map idX .

Define a space U(P ) and maps sP :X → U(P ) and rP :U(P ) → X as in
Example 2.3. The triple (U(P ), rP , sP ) will be called an index space overX . The
fiberwise deforming homotopy class of (U(P ), rP , sP ) is independent on a choice
of an isolating neighbourhood N and of a regular index pair P ∈ RIP(S,N) and
is called the Conley index of S over a base X . It will be denoted by hidX (S, ρ).

It appears that using the notion of the fiberwise moving homotopy type one
may define an alternative Conley index over base X .

To that end, take an isolating block B with its exit set B− and using the
construction from the Example 2.3 define a block space (U(B), rB , sB).

In order to prove the correctness of the definition of the Conley index over
a base the authors of [5] use Proposition 4.3 several times. The following remark
is its equivalent:

Remark 4.1. If P ∈ IP(S, P1), Q ∈ IP(S,Q1) and P1 \ P2 = Q1 \Q2, then
(U(P ), rP , sP ) and (U(Q), rQ, sQ) have the same fiberwise moving homotopy
class over X .

Proof. The desired maps Φ:U(P )→U(Q), Ψ:U(Q)→U(P ), ϕ, ψ:X→X
from Definition 2.10 are given by trivial formulas:

Φ([u, q]P ) = [u, q]Q, Ψ([u, q]Q) = [u, q]P , ϕ(u) = ψ(u) = u. �

Now recall two operations defined in [6] which are performed on isolating
blocks: “shaving” and “squeezing”.

Fix an isolating block B and S = InvB.
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Let U be an open set in Σ+ such that a+(B) ⊂ U ⊂ B+. Take Y := B+\ clU .
The set

B1 := B \O(Y,B)
created by “shaving” B is also an isolating block for S.

Lemma 4.2. (U(B1), rB1 , sB1) and (U(B), rB , sB) have the same fiberwise
moving homotopy types over X.

Proof. Notice that P := (B1 ∪ B−, B−) is an index pair for S. We also
have

P1 \ P2 = (B1 ∪B−) \B− = B1 \B−1
and by the Remark 4.1 it follows that (U(P ), rP , sP ) and (U(B1), rB1 , sB1) have
the same fiberwise moving homotopy types.
We have a+(B1) ⊂ intΣ+B+1 ⊂ B+1 ⊂ B+ hence, by the Remark 3.16 there

exists an open neighbourhood V of B+ \ intΣ+B+1 in Σ+ and a continuous
function ε−: clΣ+V → R+ such that if x ∈ clΣ+V then x · ε−(x) ∈ Σ− and if
x ∈ B+ ∩ clΣ+V then x · [0, ε−(x)] ⊂ B.
The Urysohn lemma implies that there exists a continuous function v: Σ+ →

[0, 1] such that v|Σ+\V ≡ 0 and v|B+\ intΣ+B+1 ≡ 1.
Take δ > 0 – the collar size of block B and a number δ′ ∈ (0, δ). Define two

sets

W := {y · τ : y ∈ clΣ+V, τ ∈ [0, v(y)ε−(y)]},
Z := {y · −τ : y ∈ clΣ+V, τ ∈ [0, v(y)δ′]}.

Now we define maps

Φ:U(B)→ U(P ), Ψ:U(P )→ U(B), ϕ, ψ:X → X
by formulas:

Φ([x, q]B) =



[y · (v(y)ε−(y)), q]P if x = y · τ ∈ W,[
y · (v(y)ε−(y)− ε

−(y) + δ′

δ′
τ), 0
]
P

if x = y · −τ ∈ Z,
q = 0,

[x, q]P if x 	∈ W ∪ Z,
Ψ([x, q]P ) = [x, q]B ,

ϕ(x) =


y · (v(y)ε−(y)) if x = y · τ ∈W ,
y ·
(
v(y)ε−(y)− ε

−(y) + δ′

δ′
τ

)
if x = y · −τ ∈ Z,

x if x 	∈W ∪ Z.
ψ(x) =x.
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One can easily check that the above maps are well-defined and continuous. More-
over, they satisfy the following:

(Φ, ϕ) ∈MorSB(X)((U(B), rB , sB), (U(P ), rP , sP )),
(Ψ, ψ) ∈MorSB(X)((U(P ), rP , sP ), (U(B), rB , sB)).

In order to check the condition (2.5) define auxiliary maps:

k:W × I � (y · τ, t) �→ (1 − t)v(y)ε−(y) + tτ ∈ R,

l:Z × I � (y · −τ, t) �→ (1 − t)
(
v(y)ε−(y)− ε

−(y) + δ′

δ′
τ

)
− tτ ∈ R.

Now define

H :U(B)× I→ U(B), H ′:U(P )× I→ U(P ), h:X × I→ X,
by formulas:

H([x, q]B, t) =


[y · k(y · τ, t), q]B if x = y · τ ∈W ,
[y · l(y · −τ, t), 0]B if x = y · −τ ∈ Z, q = 0,
[x, q]B if x 	∈W ∪ Z,

H ′([x, q]P , t) =


[y · k(y · τ, t), q]P if x = y · τ ∈W ,
[y · l(y · −τ, t), 0]P if x = y · −τ ∈ Z, q = 0,
[x, q]P if x 	∈W ∪ Z,

h(x, t) =


y · k(y · τ, t) if x = y · τ ∈W ,
y · l(y · −τ, t) if x = y · −τ ∈ Z,
x if x 	∈W .

Notice that for all t ∈ I we have: if x = y·τ ∈ W∩B then and if x = y·τ ∈W∩B1
then k(x, t) ∈ B1, so the above maps are well-defined and continuous. Homotopy
h joins ϕ with idX , so ϕ  idX  ψ. Finally, (H,h) and (H ′, h) are homotopies
joining (Ψ ◦ Φ, ψ ◦ ϕ) with (idU(B), idX) and (Φ ◦ Ψ, ϕ ◦ ψ) with (idU(P ), idX).
As a consequence, (U(B), rB , sB) has the same fiberwise moving homotopy type
as (U(P ), rP , sP ) and (U(B1), rB1 , sB1). �

If x ∈ B \A(B), then x · −σ+B(x) ∈ Σ+, x · σ−B (x) ∈ Σ−. Put

σB(x) :=

{
σ−B(x) + σ

+
B(x) if x ∈ B \A(B),

+∞ if x ∈ A(B).
and

T := inf{σB(x) : x ∈ B}.
Take T ′ ∈ (0, T ). Now the set B2 := B \ (B− · (−T ′, 0]) created by “squeezing”
B is also an isolating block for S.
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Lemma 4.3. (U(B2), rB2 , sB2) and (U(B), rB , sB) have the same fiberwise
moving homotopy types over X.

Proof. Take T ′′ ∈ (T ′, T ). We have a−(B) ⊂ intΣ− : B− so, by the Re-
mark 3.16, there exists an open neighbourhood V of bd Σ−B− in Σ− and a con-
tinuous function ε+: clΣ−V → R+ such that if x ∈ clΣ−V then x · −ε+(x) ∈ Σ+
and if x ∈ B− ∩ clΣ−V then x · [−ε+(x), 0] ⊂ B. Moreover, making V smaller, if
necessary, we may assume that the values of ε+ on clΣ−V are greater than T ′′.
By the Urysohn lemma there exists a continuous function v: Σ− → [0, 1] such

that v|Σ−\(V ∪B−) ≡ 0 and v|B− ≡ 1. Define the set

W := {y · −τ : y ∈ clΣ−V \ intΣ−B−, τ ∈ [0, v(y)ε+(y)]}.

Notice that B \ Inv+B = {y · −τ : y ∈ B−, τ ∈ [0, ε+(y)]}.
Let β:W ∪ (B \ Inv+B)→ R be a continuous function given by formula:

β(y · −τ) :=


0 if 0 ≤ τ ≤ v(y)T ′,
T ′′

T ′′ − T ′ (τ − v(y)T
′) if v(y)T ′ ≤ τ ≤ v(y)T ′′,

τ if τ ≥ v(y)T ′′.
Now we define maps

Φ:U(B2)→ U(B), Ψ:U(B)→ U(B2), ϕ, ψ:X → X

by formulas:

Φ([x, q]B2 ) =

{
[y · (−β(y · −τ)), q]B if x = y · −τ ∈ W ∪ (B \ Inv+B),
[x, q]B if x 	∈W ∪B or x ∈ Inv+B,

Ψ([x, q]B) = [x, q]B2 ,

ϕ(x) =

{
y · (−β(y · −τ)) if x = y · −τ ∈W ∪ (B \ Inv+B),
x if x 	∈ W ∪B or x ∈ Inv+B,

ψ(x) = x.

One can easily check that the above maps are well-defined and continuous. More-
over, they satisfy the following:

(Φ, ϕ) ∈MorSB(X)((U(B2), rB2 , sB2), (U(B), rB , sB))
(Ψ, ψ) ∈MorSB(X)((U(B), rB , sB), (U(B2), rB2 , sB2)).

In order to check condition (2.5) define an auxiliary map

k:W ∪ (B \ Inv+B)× I→ R
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by formula:

k(y · −τ, t) :=


tτ if 0 ≤ τ ≤ v(y)T ′,
T ′′ − tT ′
T ′′ − T ′ (τ − v(y)T

′) + tv(y)T ′ if v(y)T ′ ≤ τ ≤ v(y)T ′′,
τ if τ ≥ v(y)T ′′.

Now define

H :U(B2)× I→ U(B2), H ′:U(B)× I→ U(B), h:X × I→ X

by formulas:

H([x, q]B2 , t) =

{
[y · (−k(y · −τ, t)), q]B2 if x = y · −τ ∈W ∪ (B \ Inv+B),
[x, q]B2 if x 	∈W ∪B lub x ∈ Inv+B,

H ′([x, q]B , t) =

{
[y · (−k(y · −τ, t)), q]B if x = y · −τ ∈W ∪ (B \ Inv+B),
[x, q]B if x 	∈ W ∪B lub x ∈ Inv+B,

h(x, t) =

{
y · (−k(y · −τ, t)) if x = y · −τ ∈ W ∪ (B \ Inv+B),
x if x 	∈W ∪B or x ∈ Inv+B.

The above maps are well-defined and continuous. The homotopy h joins ϕ
with idX , so ϕ  idX  ψ. Finally, (H,h) and (H ′, h) are homotopies joining
(Ψ ◦Φ, ψ ◦ ϕ) with (idU(B2), idX) and (Φ ◦Ψ, ϕ ◦ ψ) with (idU(B), idX). Hence,
(U(B), rB , sB) and (U(B2), rB2 , sB2) have the same fiberwise moving homotopy
types. �

The following theorem enables us to define a new index:

Theorem 4.4. For any two isolating blocks B, C of S the fiberwise moving
homotopy types of (U(B), rB , sB) and (U(C), rC , sC) over X are equal.

Proof. The proof is an exact repetition of the proof of Theorem 22.29
from [6], where the operations of “shaving” and “squeezing” are used. The
only difference is that we use Lemmas 4.2 and (4.3) instead of the fact that the
quotient spaces B1/B−1 and B2/B

−
2 have the same homotopy type as B/B

−.
Therefore, we omit the proof. �

Now we may define an alternative Conley index of S over a phase space X :

Definition 4.5. The Conley mh-index of an isolated invariant set S over
a phase space X is the fiberwise moving homotopy type of a block space (U(B),
rB, sB) over X , for any isolating block B ∈ IB(S).
The index will be denoted by ĥ(S, ρ).
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4.2. The Conley index – a discrete case. Let X be a fixed locally
compact metric space, f :X → X – a continuous map, S – an isolated invariant
set for f , P = (P1, P2) ∈ IP(S) – an index pair for S.
Let us briefly recall the definition and the continuation property of the Conley

index over a phase space for discrete semidynamical systems from [7] and [8].
The definition is based on the notions of M -equivalence, of the index space

and of the index map.
Consider (U, r, s) and (U ′, r′, s′) two objects in SB(X) and two morphisms

(F, f)∈MorSB(X)((U, r, s), (U, r, s)), (F ′, f ′)∈MorSB(X)((U ′, r′, s′), (U ′, r′, s′)).
Definition 4.6. Two pairs ((U, r, s), (F, f)) and ((U ′, r′, s′), (F ′, f ′)) are

M -equivalent over a base X , if f  f ′ and there exist m,n ∈ N, (Φ, ϕ) ∈
MorSB(X)((U, r, s), (U ′, r′, s′)) and (Ψ, ψ) ∈ MorSB(X)((U ′, r′, s′), (U, r, s)) such
that ϕ  fm, ψ  f ′n and there exists k ∈ N such that

(Φ, ϕ) ◦ (F, f) ∗ (F ′, f ′) ◦ (Φ, ϕ),
(Ψ, ψ) ◦ (F ′, f ′) ∗ (F, f) ◦ (Ψ, ψ),

(Ψ, ψ) ◦ (Φ, ϕ) ◦ (F, f)k ∗ (F, f)m+n+k,
(Φ, ϕ) ◦ (Ψ, ψ) ◦ (F ′, f ′)k ∗ (F ′, f ′)m+n+k.

The class of M -equivalence ((U, r, s), (F, f)) over X will be denoted by
[((U, r, s), (F, f))]X .

Remark 4.7. M -equivalence over a given base is an equivalence relation.

A close relation between M -equivalence over a base and a fiberwise moving
homotopy type over a base is illustrated by the following lemma:

Lemma 4.8. If (U, r, s), (U ′, r′, s′) ∈ Ob(SB(X)), then
[(U, r, s), (idU , idX)]X = [(U ′, r′, s′), (idU ′ , idX)]X ,

�
[U, r, s]X = [U ′, r′, s′]X .

Proof. The lemma follows easily from definitions of both homotopy types.�

The index space over X is a triple (U(P ), rP , sP ) constructed according to
the Example 2.3. The index map fP :U(P )→ U(P ) is defined by formula:

fP ([x, q]P ) :=

{
[f(x), 1]P if q = 1, x, f(x) ∈ P1 \ P2,
[f(x), 0]P otherwise.

Recall the main theorem of [8]:

Theorem 4.9. For any P, P ′ ∈ IP(S) pairs ((U(P ), rP , sP ), (fP , f)) and
((U(P ′), rP ′ , sP ′), (fP ′ , f)) are M -equivalent over a phase space X.
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Definition 4.10. The ConleyM -index over a phase space ĥd(S, f) of an iso-
lated invariant set S is anM -equivalence class of ((U(P ), rP , sP ), (fP , f)) overX ,
for any index pair P ∈ IP(S):

ĥd(S, f) = [((U(P ), rP , sP ), (fP , f))]X .

Recall the Theorem 5.1 from [10]:

Theorem 4.11 (The continuation property of the discrete index). If Λ ⊆ R

is a compact interval and S is an isolated invariant set for a continuous map
f :X × Λ→ X × Λ satisfying f(x, λ) = (fλ(x), λ) ⊆ X × Λ, for each x ∈ X and
λ ∈ Λ, then for any λ, ν ∈ Λ,

ĥd(Sλ, fλ) = ĥd(Sν , fν).

Thus, indices ĥd(Sλ, fλ) do not depend on the choice of λ.

4.3. The comparison of indices. At first, we will show that the Conley
mh-index over a phase space is more general than the classical Conley index
defined in [2].

Theorem 4.12. Assume ρ, ρ′:X × R → X are flows S, S′ are isolated
invariant sets, respectively for ρ and ρ′. Then

ĥ(S, ρ) = ĥ(S′, ρ′)⇒ h(S, ρ) = h(S′, ρ′).

Proof. Let B and B′ be isolating blocks for S and S′, respectively. There
exist (Φ, ϕ) ∈ MorSB(X)((U(B), rB , sB), (U(B′), rB′ , sB′)), (Ψ, ψ) ∈ MorSB(X)
((U(B′), rB′ , sB′), (U(B), rB , sB)) satisfying (2.5).
Define maps ϕ̂:B/B− → B′/B′− and ψ̂:B′/B′− → B/B− by formulas:

ϕ̂(x) :=

{
ϕ(x) if x ∈ B \B−, Φ([x, 1]) ∈ U(B′) \ sB′(X),
[B′−] otherwise.

ψ̂(x) :=

{
ψ(x) if x ∈ B′ \B′−, Ψ([x, 1]) ∈ U(B) \ sB(X),
[B−] otherwise.

The composition ψ̂ ◦ ϕ̂ is given by formula

ψ̂ ◦ ϕ̂(x) :=
{
(ψ ◦ ϕ)(x) if x ∈ B \B−, Ψ(Φ([x, 1])) ∈ U(B) \ sB(X),
[B−] otherwise.

Let (H,h) be a homotopy joining (Ψ◦Φ, ψ ◦ϕ) with (idU(B), idX). Define a map
ĥ:B/B− × [0, 1]→ B/B− by formula:

ĥ(x, t) :=

{
h(x, t) if x ∈ B \B−, H([x, 1]), t) ∈ U(B) \ sB(X),
[B−] otherwise.
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One can easily verify that ĥ is a well-defined continuous homotopy joining ψ̂ ◦ ϕ̂
with idB/B− .

Similarly one can define a homotopy joining ϕ̂ ◦ ψ̂ with idB′/B′− . Thus, ϕ̂
and ψ̂ are mutually inverse homotopy equivalences, so B/B− and B′/B′− have
the same homotopy type. �

The following very simple example shows that the inverse implication in
Theorem 4.12 is false.

Example 4.13. Consider the spaceX = R\{0} and two flows ρ, ρ′:X×R→
X induced by differential equations

x′ = x · (1− x) and x′ = x · (1 + x).

�◦ •0 1

�◦• 0−1

Figure 5. Phase spaces of the flows ρ and ρ′.

One can easily notice that S = {1} and S′ = {−1} are attracting fixed
points which are isolated invariant sets respectively for ρ and ρ′. There is no
continuation between (ρ, S) and (ρ′, S′). The classical Conley index for both
sets is the same because ρ and ρ′ behave the same way in the neighbourhood of
their fixed points. If we choose B = [1/2, 2] an isolating block for (ρ, S), then
B′ = {x ∈ X : −x ∈ B} = [−2,−1/2], will be an isolating block for (ρ′, S′). In
both cases the exit set is empty.

We define continuous maps

Φ:B/∅ � [x] �→ [−x] ∈ B′/∅, Ψ:B′/∅ � [x] �→ [−x] ∈ B/∅,

which are mutually inverse homotopy equivalences.

We will show that (U(B), rB , sB) and (U(B′), rB′ , sB′) have different fiber-
wise moving homotopy types over X . Assume the opposite. Then there would
exist morphisms (Φ, ϕ) and (Ψ, ψ) satisfying (2.4) and (2.5). One can eas-
ily see that Φ(U(B) \ sB(X)) would have to be contained in U(B′) \ sB′(X),
so (rB′ ◦ Φ)(U(B) \ sB(X)) ⊆ (−∞; 0). On the other hand, ϕ  idX , so
(ϕ ◦ rB)(U(B) \ sB(X)) ⊆ (0;+∞). This would be, however, impossible be-
cause rB′ ◦ Φ = ϕ ◦ rB . Thus, ĥ(S, ρ) 	= ĥ(S′, ρ′).
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Example 4.20 illustrates a nontrivial application of the Conleymh-index over
a phase space to prove the lack of continuation between two isolated invariant
sets, whose classical Conley indices coincide.
Now we are going to compare The Conley mh-index over a phase space for

a flow and the Conley M -index for its discretization.
Let ρ:X × R → X be a flow with an isolated invariant set S. From Theo-

rem 3.24 we know that S is also an isolated invariant set for each discretization
ρt = ρ( · , t), where t > 0. By Theorems 3.13 and 3.26 we can find an isolating
block B and a regular index pair P for ρ, which is also an index pair for ρT , if
T > 0 is small. The block B and the pair P satisfy B \B− = P1 \ P2, so, up to
natural identifications, U(B) = U(P ). We also have the following lemma:

Lemma 4.14.

∃T0 > 0 ∀T ∈ (0, T0] (fP , f) ∗ (idU(P ), idX) = (idU(B), idX),
where f = ρT and fP denotes its index map.

Proof. The desired homotopies H :U(P ) × I → U(P ) and h:X × I → X
are given by formulas:

H([u, q]P , t) =

{
[u · tT, 1]P if q = 1, u · [0, tT ] ⊂ P1 \ P2,
[u · tT, 0]P otherwise,

h(u, t) =u · tT.
P is an index pair for all maps ρtT , so H is well-defined and continuous and
(H,h) is a homotopy joining (fP , f) with (idU(P ), idX). �

The above lemma and Lemma 4.8 imply

Corollary 4.15. Let ρ, ρ′:X × R → X be two flows, S, S′ – isolated
invariant sets for ρ and ρ′ (thus, for their discretizations as well). Then there
exists T0 > 0 such that for all T, T ′ ∈ (0, T0]

ĥ(S, ρ) = ĥ(S′, ρ′) ⇔ ĥd(S, ρT ) = ĥd(S′, ρ′T ′).
For a given flow ρ with an isolated invariant set S and positive numbers T1

and T2, there is a continuation between (ρT1 , S) and (ρT2 , S) (homotopy along
trajectories), hence, from the continuation property of a discrete ConleyM -index
over a phase space, in the above corollary we can easily ignore the assumption
that T and T ′ should be small.

Theorem 4.16. Let ρ, ρ′:X×R→ X be two flows, S, S′ – isolated invariant
sets for ρ and ρ′ (thus, for their discretizations as well). Then, for all T, T ′ > 0,

ĥ(S, ρ) = ĥ(S′, ρ′) ⇔ ĥd(S, ρT ) = ĥd(S′, ρ′T ′).
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A natural question that one can ask is: what is the relation between the
Conley mh-index over a phase space and the Conley index over a base defined
in [5]?
Examples 2.12 and 2.13 show that there is no relation between fiberwise

deforming and moving homotopy types over a phase space, even if we consider
objects (U(P ), rP , sP ), where P =(P1, P2) is a pair of compact sets P2⊂P1⊂X .
These examples, however, do not answer our question, as the pairs P and

Q are neither isolating blocks nor index pairs for any flow. It appears that
the answer in general is not that easy. Assuming that the exit sets for isolating
blocks are empty and taking a phase space as a base we can easily prove a relation
between the Conley mh-index and the Conley index over a base:

Remark 4.17. Let ρ, ρ′:X×R→ X be two flows with isolated invariant sets
S and S′. If there exist B ∈ IB(S) and B′ ∈ IB(S′) such that B− = B′− = ∅,
then

ĥ(S, ρ) = ĥ(S′, ρ′)⇒ hidX (S, ρ) = hidX (S′, ρ′).
Proof. ĥ(S, ρ) = ĥ(S′, ρ′), so there exist continuous maps

Φ:U(B)→ U(B′), Ψ:U(B′)→ U(B), ϕ, ψ:X → X
such that ϕ  idX  ψ and

rB′ ◦ Φ = ϕ ◦ rB  rB, rB ◦Ψ = ψ ◦ rB′  rB′ ,
Ψ ◦ Φ  idU(B), Φ ◦Ψ  idU(B′).

Define maps Φ̃:U(B)→ U(B′) and Ψ̃:U(B′)→ U(B) by formulas:

Φ̃([u, q]B) =

{
Φ([u, q]B) if q = 1,

[u, 0]B′ if q = 0,

Ψ̃([u, q]B′) =

{
Ψ([u, q]B′) if q = 1,

[u, 0]B if q = 0.

B− = B′− = ∅, so the above maps are well-defined and continuous and satisfy
conditions (2.1)–(2.3), hence hidX (S, ρ) = hidX (S

′, ρ′). �
It is quite surprising that even under so restrictive assumption the reverse

implication is not obvious.
The main problem which appears when one wants to compare these indices

is the lack of relation between homotopies in (2.2) and (2.3) and homotopies
in (2.4) and (2.5). Anyway, it is an interesting problem to solve.

4.4. Properties of the index. The fiberwise moving homotopy type of
(X, idX , idX) over X will be called a trivial Conley mh-index over a phase space
and will be denoted by [0]X .
It is obvious that ∅ is an isolating block for an empty set, so
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Theorem 4.18 (TheWażewski property). If ĥ(S, ρ) is nontrivial, then S 	=∅.
Theorem 4.19 (The continuation property). If Λ ⊆ R is a compact interval

and S is an isolated invariant set for a flow ρ:X × Λ × R → X × Λ such that
ρ(x, λ, t) = (ρλ(x, t), λ) ⊆ X × Λ, for all x ∈ X, t ∈ R and λ ∈ Λ, then for any
λ, ν ∈ Λ,

ĥ(Sλ, ρλ) = ĥ(Sν , ρν).

Proof. Sλ, Sν are isolated invariant sets respectively for ρλ and ρν . There
is a continuation between (Sλ, ρλ) and (Sν , ρν), so from Theorem 3.24 and
Lemma 3.25 we know that Sλ, Sν are also isolated invariant sets respectively
for ρλT and ρνT , for any T ∈ R. Moreover, there is a continuation between
(Sλ, ρλT ) and (Sν , ρνT ). From the continuation property of the discrete index
we get

ĥd(Sλ, ρλT ) = ĥd(Sν , ρνT ).

Thus, from Theorem 4.16 we get the thesis. �

Example 4.20. Consider the space X = R
3\Oz, where Oz = {(0, 0, z) : z ∈

R} and two flows ρ, ρ′:X ×R→ X , for which there exists a hyperbolic periodic
orbit winding once and twice around Oz. Periodic orbits S, S′ in both cases are
isolated invariant sets, while thin cylinders B and B′ containing these orbits are
isolating blocks for S and S′.
The homotopy types of B/B− and B′/B′− do not depend on the number of

rotations the periodic orbits make, so h(S, ρ) = h(S′, ρ′).
Example 5.17 and Theorem 5.6 in [9] show that ĥd(S, ρT ) 	= ĥd(S′, ρ′T ′) for

any T, T ′ > 0. Theorems 4.16 and 4.19 imply the lack of continuation between
(ρ, S) and (ρ′, S′).
The example may be easily generalized by considering two hyperbolic peri-

odic orbits winding p and q times (p 	= q) around any line.
The same example was considered in [5], where the above result was obtained

by means of the Conley index over a base.

The following example illustrates potential applications of the mh-index in
studying dynamical systems on noncontractible manifolds.

Example 4.21. Consider a torus X = [−1, 1]× [−1, 1]/≡, where (x,−1) ≡
(x, 1), for all x ∈ [−1, 1] and (−1, y) ≡ (1, y), for all y ∈ [−1, 1]. Define two flows
on X :

ρ1 given by

{
x′ = 0,

y′ = y3 − y, ρ2 given by

{
x′ = x3 − x,
y′ = 0.

As one can easily notice S1 := {[x, 0] ∈ X} is an isolated invariant set of
fixed points for ρ1 and S2 := {[0, y] ∈ X} is an isolated invariant set of fixed
points for ρ2.
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Figure 6. Two flows on torus

Take B1 := {[x, y] ∈ X : x ∈ [−1, 1], y ∈ [−1/2, 1/2]} and B2 := {[x, y] ∈
X : x ∈ [−1/2, 1/2], y ∈ [−1, 1]} as the isolating blocks for S1 and S2. Exit sets
in both cases are empty. Obviously, the classical Conley indices in both cases
are the same.
If it were the case, as far as the mh-indices are concerned, there would exist

morphisms (Φ, ϕ) and (Ψ, ψ) satisfying (2.4) and (2.5). This would imply that

Φ(U(B1) \ sB1(X)) ∼= U(B2) \ sB2(X),

so

(rB2 ◦ Φ)(U(B1) \ sB1(X)) ∼= B2
(C ∼= D denotes C and D have the same homotopy type in X). On the other
hand, ϕ  idX , so

(ϕ ◦ rB1)(U(B1) \ sB1(X)) ∼= B1.
This would contradict the fact that (Φ, ϕ) is a morphism. Thus, ĥ(S1, ρ1) 	=
ĥ(S2, ρ2) and there is no continuation between these sets.
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