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DYNAMICS OF SHEAR HOMEOMORPHISMS
OF TORI AND THE BESTVINA–HANDEL ALGORITHM

Tali Pinsky — Bronis law Wajnryb

Abstract. Sharkovskĭı proved that the existence of a periodic orbit of

period which is not a power of 2 in a one-dimensional dynamical system

implies existence of infinitely many periodic orbits. We obtain an analog of
Sharkovskĭı’s theorem for periodic orbits of shear homeomorphisms of the

torus. This is done by obtaining a dynamical order relation on the set of

simple orbits and simple pairs. We then use this order relation for a global
analysis of a quantum chaotic physical system called the kicked accelerated

particle.

1. Introduction

Given a dynamical system (X, f), a key question is which periodic orbits
exist for this system. Since periodic orbits are in general difficult to compute,
we would like to have the means to deduce their existence without having to
actually compute them.

Sharkovskĭı addressed the dynamics of continuous maps on the real line. He
defined an order C on the natural numbers, Sharkovskĭı’s order (see [14]), and
proved that the existence of a periodic orbit of a certain period p implies the
existence of an orbit of any period q C p. We say the q orbit is forced by the
p orbit. This offers the means of showing the existence of many orbits if one
can find a single orbit of “large” period. For a dynamical system depending
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on a single parameter, if periodic orbits appear when we change the parameter,
they must appear according to the Sharkovskĭı’s order. Hence, Sharkovskĭı’s
theorem gives the global structure of the appearance of periodic orbits for one
dimensional systems. Ever since the eighties there has been interest in obtaining
analogs for Sharkovskĭı’s theorem for two dimensional systems (see [4] and [16]).

A homeomorphism of a torus is said here to be of shear type if it is isotopic
to one Dehn twist along a single closed curve. Let h be a shear homeomorphism,
and let x be a periodic orbit of h. We can then define the rotation number of x,
see discussion in Section 2. Thus, a rational number in the unit interval [0, 1) is
associated to each orbit.

We consider orbits up to conjugation: orbits (x, f) and (y, g) are similar (of
the same type) if there exists a homeomorphism h of the torus T 2 such that h is
isotopic to the identity, h takes orbit x onto orbit y and hfh−1 is isotopic to g

rel y. We define below a specific family of periodic orbits we call simple orbits.
In this family there is a unique element up to similarity corresponding to each
rotation number; hence they can be specified by their rotation numbers. We
emphasize it is not true in general that an orbit of a shear homeomorphism is
characterized by its rotation number.

Simple orbits are analyzed in Section 2. As it turns out (see Remark in
Section 2), one simple orbit is indeed simple and does not force the existence of
any other orbit. More generally a periodic orbit is of twist type if it does not
force the existence of any orbit of different type with the same rotation number.
It is tempting to conjecture that the simple orbits are the only orbits of twist
type, but Lemma 2.4 shows that this is false. We give there an example of an
orbit of twist type which is not simple. This example also shows that a periodic
orbit with a given rotation number does not necessarily force a simple orbit of
the same rotation number.

We turn in Section 3 to analyze pairs of orbits. Two coexisting simple peri-
odic orbits can form a simple pair and these are considered. The pairs do force
some more interesting dynamics, as follows. We denote the integers by letters p,
q and the rational numbers by r, s, t possibly with indices. For a pair of sim-
ple orbits of rotation numbers q1/p1 and q2/p2 to constitute a simple pair, it is
necessary that the rotation numbers be Farey neighbours, i.e. |p2q1 − p1q2| = 1.
We denote such a pair of rational numbers by q1/p1 ∨ q2/p2.

We now define an order relation on the following set P of rational numbers
and pairs in the unit interval,

P = {r | r ∈ Q ∩ [0, 1)} ∪ {r ∨ s | r, s ∈ Q ∩ [0, 1)}.

Define the order relation on P to be

r ∨ s < t ⇔ t ∈ [r, s] and r1 ∨ r2 < s1 ∨ s2 ⇔ s1, s2 ∈ [r1, r2].
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where we denote by [r1, r2] the interval between r1 and r2, regardless of their
order.

Theorem 1.1. The order relation < on P describes the dynamical forcing of
simple periodic orbits. Namely, the existence of a simple pair of periodic orbits
with rotation numbers r ∨ s in P implies the existence of all simple orbits and
simple orbit pairs of rotation numbers smaller than r ∨ s according to this order
relation.

This is the main result of this paper and the proof is completed in Section 4.
The idea of the proof is as follows. Consider the torus punctured on one or
more periodic orbits of a homeomorphism h. Then h induces an action on this
punctured torus, and on its (free) fundamental group. Now apply the Bestvina–
Handel algorithm to this dynamical system. The idea of using the Bestvina–
Handel algorithm was used by Boyland in [6] and he describes the general ap-
proach in [5]. In our case, after puncturing out a simple pair of orbits, applying
the algorithm yields an isotopic homeomorphism which is pseudo-Anosov. The
algorithm also offers a Markov partition for this system and we use the resulting
symbolic representation to find that there are periodic orbits of each rotation
number between the pair of numbers we started with. Then we directly analyze
the structure of the pseudo-Anosov representative to show that all these orbits
are in fact simple orbits. Furthermore any two of them corresponding to rotation
numbers which are Farey neighbours form a simple pair. Finally we establish
the isotopy stability of these orbits using results of Asimov and Franks [2] and
Hall [11]. Thus, the orbits exist for any homeomorphism for which the simple
pair exists, and are forced by it.

One should compare this result with a very strong theorem of Doeff (see
Theorem 3.6), where existence of two periodic orbits of different periods for
a given shear homeomorphism h implies existence of periodic orbit of every
intermediate rotation number. However an explicit description of these orbits
is not given, while our stronger assumptions imply existence of simple periodic
orbits and simple pairs of orbits. It may be true that the existence of any two
periodic orbits with different rotation numbers implies the existence of a simple
orbit with any given intermediate rotation number, but we feel that the evidence
is not strong enough to make a conjecture either way, in particular in view of
Lemma 2.4. Even more difficult question is to determine whether there exists
a simple pair of periodic orbits in the situation of Doeff Theorem. First one
should try to find a pair of simple orbits which is not a simple pair while the
rotation numbers are Farey neighbours, but it is very difficult to understand the
geometry of the pseudo-Anosov homeomorphism which arises in this situation.

This research was originally motivated by a question we were asked by Pro-
fessor Shmuel Fishman: Is there a topological explanation for the structure of
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appearance of accelerator modes in the kicked particle system. In Section 5 we
give a description of the kicked particle system. This system turns out to be
described precisely by a family of shear homeomorphisms of the torus. The ex-
istence of accelerator modes is equivalent to existence of periodic orbits. The
global structure of this system is given by the order relation in Theorem 1.1,
while it cannot be directly computed due to the complexity of the system.

The authors would like to thank Professor Shmuel Fishman for offering valu-
able insights, Professor Italo Guannieri for some critical advice, and Professor
Philip Boyland for many indispensable conversations.

2. Simple orbits

Let {x1, . . . , xN} be a set of points belonging to one or more periodic or-
bits for a homeomorphism f of a surface S. The dynamical properties of
this set of orbits are captured by the induced action of f on the complement
S0 = S \ {x1, . . . , xN} in a sense that will shortly become clear. Choose any
graph G which is a deformation retract of the punctured surface S0. A home-
omorphism of S0 then induces a map on G. The converse is also true: a given
map of G determines a homeomorphism of S0 up to isotopy. Therefore we spec-
ify the periodic orbits we analyze in terms of the action on a graph which is
a deformation retract of the surface after puncturing out the orbit.

Denote by GN the graph obtained by attaching N small loops to the standard
unit circle at the points exp(2πji/N), j = 0, . . . , N − 1.

Definition 2.1. We call a periodic orbit x = {x1, . . . , xN} for a shear home-
omorphism f on the two-torus a simple orbit if the following hold:

(1) There can be found a graph G which is a deformation retract of T0 = T2\x
as on Figure 1 such that G is homeomorphic to GN .

Figure 1. A standard graph for a simple orbit.

We call the loop in G corresponding to the unit circle the horizontal loop and
the loops attached to it the vertical loops.
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(2) There exists a homeomorphism f̃ of T0 isotopic to f rel x (i.e. the isotopy
is fixed on x) so that a neighbourhood of G is invariant under f̃ and the induced
action on G satisfies:

(a) There exists a fixed number k ∈ {0, . . . , N − 1} such that each vertical
loop is mapped k loops forwards (clockwise along the unit circle) to
another vertical loop.

(b) The horizontal loop is mapped to itself with one twist around one of
the vertical loops.

Figure 2. The action on a standard graph for a simple orbit.

Remark 2.2. A homeomorphism h for which we are given a simple periodic
orbit must be of shear type as we can deduce from the action on the homology
of the non-punctured torus.

For a shear homeomorphism there exists a basis for the first homology for
which the induced map is represented by the matrix

(
1 0

1 1

)
. From here on we refer

to any two axes given by an homology basis that gives us the above representation
as standard axes. The horizontal loop and one of the vertical loops in a graph
for a simple orbits constitute a standard basis.

Definition 2.3. Let h be a shear homeomorphism, and let ĥ be a lift of h to
the universal cover (a plane). For any periodic point x of h of period p, ĥp maps
any lift x̂ of x the same integer number q along the horizontal axis away from
x̂, in a standard choice of axis (and x̂ is possibly mapped some integer number
along the vertical axis as well). We can then define the rotation number of x to
be ρ(x) = q/p mod 1. The rotation number does not depend on the lift ĥ of h.

(The rotation number is often define relative to the given lifting of the home-
omorphism h and is not computed modulo 1, but we want it to depend only on
the orbit and not on the lifting. In particular we want a simple orbit to have
well defined rotation number independent of the lifting of h.)
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Remark 2.4. In the case of a homeomorphism isotopic to a Dehn twist on
a torus, which is our interest here, it can be easily shown that the abelian Nielsen
type equals exactly the rotation number defined above.

There exists a simple orbit for any given rational rotation number r ∈ [0, 1),
and it is unique up to similarity. Denote the similarity class by r̂. In the following
we use the word vertical to describe the y axis, in a standard choice of axis for
f (the direction along which the twist is made).

Lemma 2.5. Let x be a periodic orbit for a shear-type homeomorphism f of
T2 for which there exists a family of vertical loops such that they bound a set of
annuli each containing one point of the periodic orbit, and this family is invariant
under a homeomorphism f̃ isotopic to f rel x. Then x is a simple orbit.

Proof. Choose a vertical loop l of the invariant family. f is orientation
preserving, and so is f̃ . The first loop to the right of l is therefore mapped to the
first loop to the right of f̃(l). Hence, the vertical loops in the invariant family
are all mapped the same number of loops to the right.

Now we have to find a horizontal line with the desired image. We write
the invariant family of loops as {li}p

i=1, where p = period(x), ordered along
the horizontal axis. We choose another family of vertical loops {mi}p

i=1, such
that mi is contained in the annulus between li and li+1 (lp+1 = l1), and passes
through the periodic point xi also contained in this annulus. Choose a point
a1 6= x1 on m1. f can be adjusted in such a way that the new homeomorphism
f̃ leaves both families of vertical loops invariant, and in addition, so that a1 be
a periodic point of f̃ with period p. We denote the orbit of a1 by {ai}p

i=1 where
ai ∈ mi for 1 ≤ i ≤ p.

Choose a line segment n1 connecting a1 to a2, so it crosses the annulus
between m1 and m2 from side to side. We choose nj+1 to be the line segment
f̃ j(n1) for 1 ≤ j ≤ p− 2. The boundary points of nj and nk coincide whenever
they lie on the same vertical loop.

Now, we look at the horizontal loop n =
⋃p

j=1 nj . Each segment of n is
mapped exactly to the next segment, except np−1 which is mapped into the
annulus between m1 and m2. Since the mapping class group of an annulus is
generated by a twist with respect to any loop going once around the annulus we
may assume, that np is mapped to n1 plus a number of twists along such a loop.
On the other hand we know that f(n) is homotopic to itself plus one twist in the
negative direction (on the closed torus), so f̃ maps n to itself plus one negative
twist along this loop. By further adjustment of f̃ we may assume the twist is
made along l2. Thus the union of the vertical family {li} with n chosen as above
constitute a graph showing x to be a simple orbit. �
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The Thurston–Nielsen classification theorem, see [7], states that any homeo-
morphism f on a closed connected oriented surface of negative Euler character-
istic is isotopic to a homeomorphism f̃ which is

• pseudo Anosov, or
• of finite order, or
• reducible,

where a homeomorphism φ is called of finite order if there exists a natural number
n such that φn = id. A homeomorphism φ is called pseudo-Anosov if there exists
a real number λ > 0 and a pair of transverse measured foliations (Fu, µu) and
(Fs, µs) with φ(Fu, µu) = (Fu, λµu) and φ(Fs, µs) = (Fs, (1/λ)µs). A home-
omorphism φ on a surface M is called reducible if there exists a collection of
pairwise disjoint simple closed curves Γ = {Γ1, . . . , Γk} in int(M) such that
φ(Γ) = Γ and each component of M \Γ has a negative Euler characteristic. The
representative f̃ in the isotopy class of f which is of one of the three forms above
is called the Thurston–Nielsen canonical form of f .

When the surface has a finite number of punctures and φ permutes the punc-
tures then the same is true except that in the case of pseudo-Anosov map we
treat the punctures as distinguished points (there is a unique way to extend
a homeomorphism to the distinguished points) and we allow an additional type
of singularities of the measured foliations, the 1-prong singularities at the dis-
tingushed points (see [11], and Section 0.2 of [3]).

Of course homeomorphism f is reducible with respect to a simple orbit since
it contains an invariant family of loops {li} and the complement of the invariant
family consists of punctured annuli (which have negative Euler characteristic).

Remark 2.6. A homeomorphism f with a simple orbit x can be constructed
in such a way that x is the only periodic orbit of f . The invariant set of vertical
loops is evenly spaced with the distance between the consecutive loops equal
to 1/p. The loops are moved by q/p to the right and by fixed irrational number
downward. Punctures (the points of the periodic orbit) are also evenly spaced
and have the same height. The vertical lines containing punctures are moved by
q/p to the right. The punctures keep their height and all other points of the loop
move a little downwards. Every other vertical line is moved to another vertical
line by a little more than q/p to the right (not all lines by the same distance).

Example 2.7. Not every periodic orbit for a shear homeomorphism is re-
ducible. Consider the homeomorphism h described on Figure 3. It takes the
graph on the left of Figure 3 to the graph on the right and is a shear homeomor-
phism. It has a periodic orbit of order 2, shown on the pictures, with rotation
number 1/2 and it is pseudo-Anosov in the complement of the orbit.
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Figure 3

Lemma 2.8. There exists an orbit of twist type for a shear homeomorphism
of the torus which is not simple.

Proof. We construct an example of an orbit of length 4 with the rotation
number 1/2. It cannot be a simple orbit and yet we prove it does not force the
existence of any periodic orbit not similar to itself, and is thus of twist type.
Such examples may be known, possibly considered for a different phenomena.
We include it here in order to show the independence of our results.

1 2 3 4 5 6 7

t t

Figure 4. Some vertical lines in U2.

We represent the torus as the unit square with the opposite sides identified.
The points A1, . . . , A4 of the orbit are spaced evenly on the horizontal middle
line with the x-coordinate 1/8, 3/8, 5/8, 7/8. We split the square into 2 equal
parts U1 and U2 by the vertical line x = 1/2. Homeomorphism h translates U1

to the right to U2. Vertical lines go to vertical lines, lines x = 0 and x = 1/2
move downward by an irrational number α < 1/40 and the movement is damped
out to the horizontal translation for t < α and t > 1/2−α, so the other vertical
lines are translated horizontally by 1/2. In particular A1 moves to A3 and A2

moves to A4.
The restriction of h to U2 is defined in two steps. The second step simply

translates U2 horizontally by 1/2 to the right (which is the same as the translation
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Figure 5. The foliation in U2 realizing a non-simple orbit of twist type.

by 1/2 to the left). The first step is isotopic to the half-twist along the segment
connecting A3 and A4, followed by the Dehn twist with respect to the right side
(right boundary of the cylinder). In particular it switches A3 and A4. We shall
prove that we can construct such h for which h2 has no fixed points and therefore
h has no periodic orbit of length 2 and in particular no simple orbit with the
rotation number 1/2.

We describe the first step of h restricted to U2. Figure 4 shows some vertical
lines in U2, the big dots show the points A3 and A4 of the periodic orbit. Figure 5
shows their images under the first step. In these pictures U2 is represented as
a square, to make more space, but in the reality the base has length 1/2 and the
height is equal to 1. Line x = 1/2 is mapped to itself and moves downward by
α. The near by vertical lines (for t < 1/2 + 1/30) are moved to the vertical lines
and to the right where line x = 1/2 + 1/30 is moved to the line x = 1/2 + 1/20.
For t ∈ (1/2 + 1/30, 1 − 1/20) the line x = t is moved to a curve Lt and for
t ∈ (1 − 1/20, 1) the line x = t moves to a vertical line to the right of it and
downward, to get the full Dehn twist plus a movement downward by α when we
get to the line x = 1. For t ∈ (1/2 + 1/30, 1 − 1/20) curve Lt starts at a point
on the top side to the right of x = t, it moves to the left, then to the right, then
to the left again and ends at the bottom side (exactly below its starting point).
In particular each vertical line meets Lt in at most two points. Some lines Lt

are shown on Figure 5.
We may arrange it in such a way that there exist t0, t1 such that 1/2 < t0 <

t1 < 1 and the line x = t:

• is disjoint from Lt, and lies on the left side of Lt when t < t0;
• meets Lt at one point for t = t0;
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• meets Lt at two points when t0 < t < t1;
• meets Lt at one point for t = t1;
• is disjoint from Lt and lies on the left side of Lt when t1 < t < 1.

We get a new trivial foliation of the annulus U2. In step 1 we map the
vertical foliation onto the new foliation Lt. We can further change the first step
moving each leave Lt along itself to reach the following goal. Let Pt, Qt denote
the intersection points of x = t with Lt, Pt lies below Qt (the points coincide
for t0 and t1). For t = t0 the line x = t meets Lt in one point Pt. We may
assume that the image of Pt in Lt lies in the part below Pt. Then for the nearby
leaves the images of both points Pt and Qt lie in the lower part of Lt below
the point Pt (see the small dots on the first curve in Figure 5). The images of
Pt and Qt lie further away from each other when we move to the right (see the
small dots on the second curve). The third line passes through A3, its image
Lt passes through A4 and the images of Pt and Qt lie on different sides of A4

along the third curve. Next the upper point Qt moves backwards along Lt and
when we reach the fourth line of Figure 4 (also shown on Figure 5) it coincides
with the point Pt on Lt. Next the image of Qt lies inside the arc of Lt between
the points Pt and Qt and when we reach the fifth line on Figure 4, which passes
through the point A4, then the curve Lt passes through A3 and the image of Qt

on Lt lies above A3 (see Figure 5). When we move further to the right the image
of the point Qt moves again forward towards the image of Pt and at the line
number 6 on Figure 4 the image of Qt again coincides with Pt at the intersection
of x = t with Lt. Next the images of Pt and Qt move further down and gets
close together and when t = t1 we have one intersection point Pt and its image
lie below Pt along Lt. Step 1 has no fixed points. Step 2 translates U2 to U1.

We now consider the homeomorphism h2. We start with U1. Any point on
x = 0 and x = 1/2 moves down by 2α. Any point with x ∈ [0, 1/30] moves
to a point with a bigger x-coordinate. Any point with x ∈ [1/30, 9/20] moves
horizontaly by 1/2 then we apply step 1, which has no fixed points, and then
the point moves again horizontaly by 1/2 so it comes to a new point. Any point
with x ∈ [9/20, 1/2] moves to a point with a bigger x-coordinate.

For points in U2 the situation is similar. Any point with x ∈ (1/2, 16/30]
moves to a point with a bigger x-coordinate. Any point with x ∈ [16/30, 19/20]
moves under the first step to a new point with the x-coordinate in [11/20, 29/30]
and then moves horizontaly twice by 1/2. Finally any point with x ∈ [19/20, 1]
moves to a point with a bigger x-coordinate. Homeomorphism h2 has no fixed
points and h has no periodic points of order 2.

We now show that there exists a homeomorphism f isotopic to h in the
complement of the orbit A1, . . . , A4, which has only periodic orbits similar to
this orbit and periodic orbits of order 2. We consider parts U1 and U2 as before.
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The restriction of f to U1 translates it horizontaly by 1/2. In U2 we choose two
circles with center (3/4, 1/2) and radius 1/7 and 1/6, respectively. We rotate the
interior of the smaller circle by 180 degrees. The rotation is damped out to the
identity at the outer circle and the intermediate circles are moving out towards
the outer circle. The exterior of the outer circle with x < 19/20 is pointwise fixed.
The lines with x > 19/20 move to the right and down to get the full Dehn twist
when we get to the line x = 1. The second step of f restricted to U2 translates it
horizontally by 1/2. Now each point inside the smaller circle, different from its
center (which has period 2), belongs to an orbit similar to A1, . . . , A4. Points
between the circles and points with x ∈ (19/20, 1) are not periodic and other
points in U2 have period 2 and the same is true for the corresponding points
in U1.

Therefore the orbit A1, . . . , A4 does not force any periodic orbit not similar
to itself. �

3. Simple orbit pairs

Let x and y be two coexisting simple periodic orbits, for a homeomorphism
f of T2 (f must be of shear type), with rotation numbers q1/p1 and q2/p2

respectively. Assume p1 > p2, i.e. y has lesser period than x.

Definition 3.1. We call the pair of orbits a simple pair if:
(a) We can find an embedded graph G in their complement homeomorphic

to Gp1 as on Figure 6.

Figure 6

Each component in the complement of the graph is a topological rectangle
which contains exactly one point of orbit x and at most one point of orbit y.

(b) The homeomorphism f acts on this graph in the following way: each
vertical loop except one moves to another vertical loop, there is one vertical loop
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denoted l such that f(l) is a vertical loop m plus a small loop around one point
of the (shorter) y orbit, in a rectangle adjacent to line m on the right (as on
Figure 7) or on the left, and the horizontal line is mapped to itself plus a twist
in the negative direction around f(l), as on Figure 7.

Figure 7

The graph which appears in Definition 3.1 divides the torus T2 into p1 rect-
angles. The homeomorphism f moves each vertical loop the same distance, say
k rectangles, to the right except for the small additional loop for line l. Let
R0 be the rectangle adjacent to m in which the small loop in the image of the
graph occurs. R0 must contain exactly one point of each orbit. We denote these
points x0 and y0 respectively. Under p1 iterations of f the point x0 runs q1 times
around the whole torus, that is q1p1 rectangles to the right. So, p1k = q1p1 and
k = q1.

The point y0 is mapped to itself after p2 iterations. Under each iteration the
image of y0 is mapped k (= q1) rectangles to the right, except the last iteration
under which it is moved an additional rectangle to the right or left. Altogether
it has moved p2q1 ± 1 rectangles. At the same time, it is mapped around the
torus q2 times, hence q2p1 rectangles. This means p2q1 ± 1 = q2p1. Thus for
a simple pair of periodic orbits the rotation numbers q1/p1 and q2/p2 are Farey
neighbours and the additional loop is on the right (as on Figure 7) if and only if
q2/p2 > q1/p1. Denote by r̂∨ ŝ the similarity class of a simple pair corresponding
to a pair of Farey neighbours r ∨ s.

Consider again the points x0 and y0 in the rectangle R0. Continue the
notation to all the points of x and y by xi = f i(x0) and yi = f i(y0). We draw
a small loop around each of the points of y. The union of these loops will be the
peripheral subgraph P for the Bestvina–Handel algorithm, since we may assume
the union of these loops to be f -invariant. Now we consider separately two cases.
Case 1 will be the case in which m is the left boundary curve of R0, while in
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case 2 it is the right boundary (in other words in the first case q1/p1 < q2/p2

and in the second case q1/p1 > q2/p2). Choose some point on the loop around
y0 and connect it, by a curve l0, to a point on the section of the horizontal line
in R0, in case 1 from below the segment and in case 2 from above.

Figure 8

Then f(l0) is a curve connecting the loop around y1 and the corresponding
horizontal segment. We denote it by l1, and do the same for each yi. After
adding the above edges to the graph case 1 is topologically as in Figure 8.

Figure 9

The inclusion G ↪→ S0 is a homotopy equivalence (where S0 is the punctured
torus). We know the action of f on all edges of G except for the curve lq1−1

connecting yq1−1 and the horizontal segment in the corresponding rectangle. It’s
image is a curve connecting the horizontal segment in the rectangle adjacent to
m which is not R0 to the loop around y0. This image might wind around a disk
containing y0 and xq1−1 as in Figure 9.

The graph and its image for case 2 are exactly the same except that the
loops are connected to the horizontal segments from above. We shall prove in



132 T. Pinsky — B. Wajnryb

Proposition 3.2 that we may assume that the image of the segment lq1−1 has
no winding. Hence we draw from now on the graph images without winding,
and we may assume that the graphs given in Figure 10 also have an invariant
neighbourhood by a further isotopy of f .

Figure 10. The standard graph for a simple pair, case 1 on the left and

case 2 on the right.

The action of f (up to isotopy) on this graph is given by one of the actions
on Figure 11, drawn in some regular neighbourhood of the graph, where each
vertical loop moves q1 loops to the right.

Figure 11. The action on a standard graph for a simple pair, for both

cases respectively.

Proposition 3.2. Let {x, y} be a simple pair with the graph as on Figure 8
and with windings as on Figure 9. Then there may be chosen a different invariant
graph, which also makes {x, y} a simple pair, whose image is without winding.

Proof. To simplify the picture we prove the proposition for rotation num-
bers 1/3 and 1/2 . The general proof proceeds in the same way. We start by
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looking at a simple pair {x, y} of rotation numbers 1/3 and 1/2 for a homeomor-
phism f with the corresponding invariant graph G given so that the action on it
is without any twists, as on the left side of Figures 10 and 11. We now choose
a different system of curves (a different graph), in a small neighbourhood of G

as in Figure 12, which will serve as a new graph for the pair.

Figure 12

Solid lines are the new vertical loops and dashed lines are the new diagonal
segments like in Figure 10. The horizontal loop consists of the dashed lines and
the long pieces of the solid lines. To move from left to right along the horizontal
line, move along a dashed line and turn to the left when meeting a solid line.
Continue up along a vertical loop and then along the next dashed line. We add
to this graph the peripheral subgraph and the connecting segments and get the
graph H as on Figure 13. It is clear that topologically the graph H has the same
form as the graph on Figure 10 and that it has an invariant neighbourhood.

Figure 13
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The reader can check (using the precise knowledge of the image of each edge
of the original graph) that the action of f on the graph H has the properties
required from a simple pair. Each vertical loop is mapped onto another vertical
loop except for one loop l for which f(l) is equal to a loop m plus a loop around
the next periodic point yp of the shorter orbit. The horizontal loop is mapped
onto itself plus a negative Dehn twist along f(l). Consider the image s of the
segment which connects the horizontal loop to the periodic point yp−1. When the
action has no twist then s moves along the horizontal loop in its positive direction
until it meets the original segment connecting to yp and then it follows along
the segment. However in our case s goes first backwards along the horizontal
loop than moves in the counterclockwise direction along the boundary of the
“rectangle” adjacent to the vertical loop m and finally follows the horizontal
loop and the segment to yp. This means that the action f on the graph H has
one positive twist.

We proved that a simple pair for a shear homeomorphism with a given graph
and a given action without twists can be given another graph which also describes
it as a simple pair and the action on the new graph has one positive twist. This
process is reversible. Therefore, by induction, we can add or remove any number
of twists using a suitable graph. This implies Proposition 3.2. �

Hence for a simple pair the action on a spine is given by Figures 10 and 11. We
can now apply the Bestvina–Handel algorithm (see [3]), endowing a neighbour-
hood of G with a fibered structure in the natural way. The algorithm specifies
a finite number of steps which we apply to the graph G, altering G together
with the induced action on it, but without changing the isotopy class of f on
T2 \ (x ∪ y). When the algorithm terminates, it gives a new homeomorphism f̃

which is the Thurston Nielsen canonical form of f .

For simple pairs, the action in each of the two cases above is easily seen to
be tight, as no edge backtracks and for every vertex there are two edges whose
images emanate in different directions. The action has no invariant non-trivial
forest or nontrivial invariant subgraph and the graphs have no valence 1 or
2 vertices. This is the definition in [3] for an irreducible map on a graph.

Definition 3.3. Assuming g, the induced map on the graph itself, does not
collapse any edges, there is an induced map Dg, the derivative of g, defined on

L :=
∐
{(v, e) | v is a vertex of G, e is an oriented edge emanating from v}

by Dg(v, a) = (g(v), b) where b is the first edge in the edge path g(a) which
emanates from g(v).
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Definition 3.4. We say two elements (v, a) and (v, b) in L corresponding to
the same vertex v are equivalent if they are mapped to the same element under
D(gn) for some natural n. The equivalence classes are called gates.

The gates in each of the cases above are given by Figure 14, indicated there
by small arcs.

Figure 14

There is no edge which g sends to an edge path which passes through one of
the gates – enters the junction through one arm of the gate and exits through
the other. Such an irreducible map is efficient. i.e. this is an end point of the
algorithm. Now, since there are edges mapped to an edge path longer than one
edge, we arrive at our next theorem.

Theorem 3.5. A homeomorphism f of the two torus for which a simple pair
of periodic orbits exists is isotopic to a pseudo-Anosov homeomorphism relative
to this pair of orbits.

Let f be a shear type homeomorphism of the torus, and fix a lift f̃ of f .
Define the lift rotation number of a point x ∈ T2 to be

ρ(x, f̃) = lim
n→∞

(f̃n(x̂)− x̂)1
n

,

for any lift x̂ of x, when the limit exists, where the subscript 1 denotes the
projection to the horizontal axis. Define the rotation set ρ(f̃) of f̃ to be the set
of accumulation points of{

(f̃n(x̂)− x̂)1
n

∣∣∣∣ x̂ ∈ R2 and n ∈ N
}

.

Then, the above theorem follows from the following much more general theorem
by Doeff, see [9] and [10].
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Theorem 3.6 (Doeff). Let h be a shear type homeomorphism of T2, and fix
a lift h̃ of h. If h has two periodic points x and y with ρ(x, h̃) 6= ρ(y, h̃) then h

is pseudo-Anosov relative to x and y. Furthermore, the closure of the rotation
set is a compact interval, and any rational point r in the interior of this interval
corresponds to a periodic point x ∈ T2 with ρ(x, h̃) = r.

In particular, Doeff proves existence of two periodic orbits of different ro-
tation numbers implies existence of an orbit for any rational rotation number
between these two. But he does not give any characterization of these orbits.
Example 2.7 shows two different orbits, both with rotation number equal to 1/2,
one of which is pseudo-Anosov, and the other reducible. Thus the rotation num-
ber does not give much information about the orbit and in this sense this theorem
does not give a satisfactory dynamical understanding of what is happening in
regions of coexistence of orbits. In contrast with Doeff’s general theorem, we
get results for a very specific family of periodic orbits, but for this family we are
able to give exactly the orbits forced by others, as we show in Section 4.

In our case the canonical form f̃ of f we get by applying the Bestvina–
Handel algorithm is a pseudo Anosov homeomorphism. When this is the case,
the algorithm gives a canonical way of endowing a regular neighbourhood S0 of G

with a rectangle decomposition {R1, . . . , RN}. The decomposition is a Markov
partition for the homeomorphism f̃ .

A Markov partition for a dynamical system offers a symbolic representation
for the system in the following way. Let ΣN be the subset of the full N -shift
(the set of bi-infinite series on N symbols), where N is the number of rectangles
in the decomposition. Let Σ be a subset of ΣN defined by

Σ = {s = (. . . , sn, sn+1, . . . ) : Rsn
∩ f̃−1Rsn+1 6= ∅}.

On Σ we naturally define a dynamical system with the operator of the right
shift denoted by σ, and (Σ, σ) is called the subshift corresponding to the dynam-
ical system. Σ can be completely described by stating which transitions k → m

for k, m ∈ {1, . . . , N} are allowed (i.e. for which k, m, f̃−1Rm∩Rk 6= ∅). See [1]
for the definitions and for a proof that in this case we can define a map π: Σ → S0

by

π: s 7→
∞⋂

n=0

f̃nRs−n
∩ . . . ∩ f̃−nRsn

which satisfies the following properties:

• πσ = f̃π,
• π is continuous,
• π is onto.
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We take here the set of sequences with the Tichonoff topology. Thus a pe-
riodic point in the symbolic dynamical system which is just a periodic sequence
corresponds to a periodic point in the original dynamical system.

To obtain the Markov partition in our case as in [3], we thicken the edges
of the graph to rectangles. In particular, the rectangles can be glued directly to
each other without any junctions. This can be done in a smooth way, endowing
S0 with a compact metric space structure by giving a length and width to each
rectangle, consistently. Each edge of the standard graph for the pair (Figure 10)
corresponds to one rectangle, except the edge which is mapped to the loop around
y0. This edge we divide in two (this is necessary to avoid having a rectangle
intersecting twice an inverse image of another rectangle). Now we have edges
of seven different types on the graph. The vertical loops of the graph consist of
long edges we denote as A edges, and short edges we call B edges. The loops
around the points of the y orbit and vertical segments connecting the loops to
the diagonal edges we call C’s and D’s, respectively. In rectangles which contain
two punctures and therefore two diagonal edges we call the upper ones L edges
and the lower ones K edges in the first case, and the lower ones L edges, upper
ones K edges, in the second case. The last type of edges are diagonals of once
punctured rectangles, these we call M edges.

A A A

B B

C

D

LL

D

C

KK
M

Figure 15

Next, we label the rectangles in order to have explicitly the transition rules:

• For 0 ≤ i ≤ p2 − 1 denote the rectangle corresponding to the D edge
connecting the loop around yi to the diagonal by ri+1. Denote the
rectangle corresponding to the C edge which is the loop around yi by
rp2+i+1.
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• For 1 ≤ i ≤ p2, denote the rectangles corresponding to the L and K

edges connected to ri by r2p2+i and r3p2+i, respectively.
• Denote the rectangle corresponding to the A edge belonging to the ver-

tical line we referred to as m by r4p2+1 and the B edge which is part of
the same line m as r4p2+p1+1.

• For the vertical line f i(m) denote it’s A and B rectangles by r4p2+1+i

and r4p2+p1+1+i, respectively, for all 1 ≤ i ≤ p1 − 2.
• For the vertical line fp1−1(m), denote it’s A edge as by r4p2+p1 . There

are two rectangles corresponding to the B edge as explained above,
denote the lower one by r4p2+2p1 and the upper one by r4p2+2p1+1.

• Label the p1−p2 remaining rectangles corresponding to the M edges by
starting with the first of these to the right of m, and then continuing by
the order along the horizontal axis, denoting them by r4p2+2p1+2, . . . ,
r3p1+3p2+1.

Finally, we can look at the diagram in Figure 16, showing the set of rectangles
and transitions in this Markov partition which we now use.

A periodic symbolic sequence of allowed transitions gives as explained a pe-
riodic point in the original dynamical system. Therefore by this diagram we
can easily find other periodic orbits on the torus that must exist for f . We
will later prove that these orbits are in fact simple, but this will require some
more work. Hence, by this diagram we prove only existence of orbits with spec-
ified rotation numbers. For every pair (n, m) of natural numbers, n, m 6= 0,
by starting from rp1+4p2+1, going n times around the first loop in the dia-
gram {rp1+4p2+1, . . . , r2p1+4p2}, then going m− 1 times around the second loop
{r1, . . . , rp2} (and skipping it if m = 1) and then returning through the final
sequence {r2p2+1, . . . , r3p2} to rp1+4p2+1, we get a periodic symbolic allowed se-
quence, and so a new periodic orbit we denote On,m. These symbolic sequences
are all different and hence so are the periodic orbits. We look at a point p ∈ On,m

such that p is in the rectangle rp1+4p2+1. For the first n · p1 iterations of p, cor-
responding to each time the upper loop in the diagram appears in the symbolic
sequence of p, the images are contained in the B edges. The vertical loops
are mapped under f retaining the same “horizontal distance” from the periodic
points from the x orbit to their left. So, p is mapped a total distance of n · q1

along the horizontal axis under fn·p1 .

Similarly, point fnp1(p), which lies in the rectangle r1 corresponding to D

edge, is mapped a distance q2 along the horizontal axis under each iteration of
fp2 , for every occurrence of the second loop in the symbolic sequence of p. This
is because the D edges retain their distance from the y orbit points below them.
The final sequence in the symbolic representation of p until the return to the
first loop also corresponds to the horizontal distance q1. These last points of



Dynamics of Shear Homeomorphisms 139
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Figure 16. Some of the rectangles in the Markov partition, where the

arrows denote allowed transitions between them.

the periodic orbit lie in rectangles corresponding to L edges. So p is mapped
a horizontal distance of nq1 + mq2 under fnp1+mp2 . Hence, the new orbit On,m

has rotation number (nq1 + mq2)/(np1 + mp2).

See [12] for a proof that any two Farey neighbours span this way all rational
numbers between them, that is all rationals between q1/p1 and q2/p2 are of the
form (nq1 + mq2)/(np1 + mp2). So we found a periodic orbit of any rational
number between the two original rotation numbers q1/p1 and q2/p2.

Note we have found these simple periodic orbits for the Thurston–Nielsen
canonical form of the homeomorphism f we started with. It remains to relate
these periodic orbits to the periodic orbits of f itself. Recall the following defi-
nition from [2].

A periodic point x0 ∈ S of period p for homeomorphism f0 is called unre-
movable if for each given homomorphism f1 with ft: f0 ' f1 there is a periodic
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point x1 of period p for f1and an arc γ: [0, 1] → S with γ(0) = x0, γ(1) = x1

and γ(t) is a periodic point of period p for ft.
It was proven by Asimov and Franks in [2] that every periodic orbit of

a pseudo-Anosov diffeomorphism is unremovable. Thus orbits found for the
pseudo-Anosov representative exist for any other homeomorphism in its isotopy
class. This yields all these periodic orbits exist for the original homeomorphism
f as well. Thus we get Theorem 3.6 for our specific case:

Theorem 3.7. If there exists a simple pair of orbits for a homeomorphism
f of the torus of abelian Nielsen types s and t which are Farey neighbours, there
exists a periodic orbit for f with abelian Nielsen type equal to r for every rational
number r between s and t.

4. The order relation

For any simple pair q̂1/p1∨q̂2/p2, the orbit O1,1 out of the family of new orbits
we constructed above has rotation number equal exactly to (q1 + q2)/(p1 + p2).
This orbit corresponds to the symbolic sequence rp1+4p2+1 → rp1+4p2+2 → · · · →
r2p1+4p2 → r2p2+1 → · · · → r3p2 → rp1+4p2+1 as in the diagram in Figure 16. So
we have a list of rectangles, each containing exactly one periodic point from the
new orbit O1,1. We denote the point of O1,1 that lies in the rectangle rj by oj .
Graphically, assuming the first case map, when we draw the rectangle decompo-
sition corresponding to the standard graph as in Figure 10 we get Figure 17.

Figure 17. The intermediate orbit denoted by black circles. The gray
areas are junction, which can be deleted, and the rectangles can be glued
directly to one another.

We will now show that for any simple pair q̂1/p1 ∨ q̂2/p2 the orbit O1,1 is
a simple orbit, and forms a simple pair with each periodic orbit of the pair, that is
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with q̂1/p1 and q̂2/p2. For the first assertion, we define a family of vertical loops
as follows: we choose a vertical loop that crosses both rectangles corresponding
to the m line and passes to the right of the periodic point op1+4p2+1. Denote
this loop by A. It is shown graphically in Figure 18. All its images under f

until the p1st iteration are exactly of the same form, as the rectangles are simply
mapped to the right without changing their forms. Its p1st image is the first
time it returns to the same rectangles, and is determined by the images of the
corresponding vertical edges of the graph. These images are shown in Figure 11.
We use the fact f preserves orientation to determine the relation between the
image of the curve and the points of O1,1. We denote this image by B. It is
shown in Figure 18.

A

B

C

Figure 18. The intermediate orbit with the family of vertical loops.

By similar considerations, knowing the rectangles containing B in the orig-
inal picture (Figures 10 and 11) the rectangle adjacent to fp1−1(m) on the left
contains a point of the y-orbit and therefore contains a rectangle of type L of
Markov partition. This rectangle contains the point o3p2 of the new orbit. Line
A lies to the right of m and of op1+4p2+1 therefore fp1−1(A) lies to the right of
o3p2 and to the right of o2p1+4p2 . It follows that the line B = fp1(A) lies to the
right of op1+4p2+1 and to the right of o2p2+1, as shown on Figure 18. Also B

can be isotoped to the right of A relative to the points of the new periodic orbit.
Next p2 − 1 iterations of f translate A and B and whole rectangle adjacent to
m on the right to the right. We arrive at the rectangle adjacent to l on the left
containing point o3p2 of the new orbit. The point o2p1+4p2 lies in a rectangle on
the line l. The loop fp2−1(B) lies to the right of o3p2 and to the left of o2p1+4p2

therefore the loop C = fp2(B) lies to the right of op1+4p2+1 and to the left of
o2p2+1, as shown on Figure 18. Also p2 iterations of f take line m to a distance
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p2q1 = p1q2 − 1 rectangles to the right, which means one rectangle to the left
of line m. Since A and B are to the right of the point op1+4p2+1 in line m and
since this point moves to the leftmost point in the new periodic orbit shown on
Figure 18, loop C must be to the right of it, as in Figure 18. The point o2p1+1

may be above or below the loop C but this does not change the discussion bellow.
Note that if we disregard the orbits x and y of the original pair we can isotop

C to A relative the points of the new orbit. This shows that the new orbit is
a simple periodic orbit of length p1 + p2, by Lemma 2.5. Now we fill in the x

orbit (the longer orbit) and consider a torus punctured at the y orbit and the
new orbit together. We have the family of vertical loops f i(A) and the action on
it is exactly as in the condition for a simple pair as the loop C can be isotoped
to A plus a loop around y0. We choose a horizontal loop as the loop D on
Figure 19. Then its image D′ is as shown on Figure 19. The image has the
required properties. The orbit y together with the new orbit form a simple pair
for the homeomorphism f .

D’

D

Figure 19

Next we fill in the y orbit and leave punctures at the x orbit and the new
orbit. We choose the initial vertical loop A differently, as in Figure 20. This
loop A is one rectangle to the right of m plus a loop on the left. After k = p2−1
iterations of f it will move to line l which is q1 rectangles to the left of m. Indeed
it will move to q1(p2−1)+1 = p1q2−q1 rectangles to the right of m which means
q1 rectangles to the left. The loop fk(A) looks like the loop A and lies to the left
of the point r3p2 and to the left of the point o2p1+4p2 . Next iteration of f takes
it to a curve which looks like f(l) but lies to the left of op1+4p2+1 and to the left
of o2p2+1. Since we filled the point y0 we can isotop this loop to a vertical loop
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A

BC x0

Figure 20

near m, which passes to the left of op1+4P2+1. Subsequent iterations translate it
to the right and fp1(A) is equal to curve B on Figure 20.

Next p2 − 1 iterations will take B to the loop near l which lies to the left of
o2p1+4p2 . Next iteration of f takes this loop to a loop similar to f(l), but lies
to the left of o2p2+1. Since the points of y-orbit are filled we can isotop it to
the loop C on Figure 20. It can be further isotoped, relative to the x-orbit and
the new orbit, to the loop A plus a small loop around x0 to the left of A. If we
choose the same horizontal loop as in the previous case , with the same image as
before, we get the required action of f for a simple pair consisting of the x-orbit
and the new orbit.

Now we can continue by the same analysis for each of these two simple pairs,
finding their Farey intermediate to be a simple orbit as well that forms a simple
pair with each of them, and so on. It remains to prove the persistence of all these
simple pairs under isotopies. For this, recall the following theorem from [11].

Theorem 4.1 (Hall). Let S be a closed surface and let A be a finite sub-
set of S. Let f be a homeomorphism of S which leaves A invariant. Let
p = x1, . . . , xk be a finite collection of periodic points for f which are essen-
tial, uncollapsible, mutually non-equivalent and non-equivalent to points of A.
Then the collection p is unremovable, which means that for every homeomor-
phism g isotopic to f rel A there exists an isotopy ft rel A and paths xi(t) in
S such that f0 = f , f1 = g, xi(0) = xi, xi(t) is a periodic point of ft of period
equal exactly to the period of xi.

(This theorem is a generalization of the main result of Asimov and Franks
in [2] to several periodic orbits. In fact this generalization was mentioned in [2]
as a remark with a hint of a proof.)
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Recall also that if f is pseudo-Anosov in the complement of A then it is
condensed and by [6] Lemma 1 and Theorem 2.4 each periodic point is uncol-
lapsible and essential and points from different orbits are non-equivalent and
points disjoint from A are not equivalent to points of A.

Corollary 4.2. Let T be a torus and let A be a finite subset of T . Let f

be a shear-type homeomorphism of T which is pseudo-Anosov in the complement
of A. Let g be a homeomorphism of T isotopic to f in the complement of A. If
x is a simple periodic orbit for f then there exists a simple periodic orbit z for
g with ρ(z) = ρ(x). If x, y is a simple pair of periodic orbits for f , one or both
disjoint from A, then there exists a simple pair of periodic orbits z, w for g with
ρ(z) = ρ(x) and ρ(w) = ρ(y).

Proof. Chose points x1 and y1 from the orbits x and y. By Theorem 4.1
there exists an isotopy ft and paths x1(t) and y1(t) such that x1(0) = x1, y1(0) =
y1, x1(t) is a periodic point of ft of a fixed order p for all t and y1(t) is a periodic
point of ft of a fixed order q for all t and y1(t) = y1(0) for all t if y(0) ∈ A. For
a given t all points in the orbits of x1(t) and y1(t) for f are distinct, they form
a braid with p + q strands. They move when t changes and their movement can
be extended to an ambient isotopy ht which is fixed on A. Then ht(f i(x1(0)) =
f i

t (x1(0)) and ht(f i(y1(0)) = f i
t (y1(0)). Consider isotopy Ft = h−1

t ftht. We have
Ft(f i(x1(0)) = f i+1(x1(0)) and Ft(f i(y1(0)) = f i+1(y1(0)) so Ft is fixed on the
orbits x and y. In particular x and y form a simple pair of periodic orbits for F1

(or x forms a simple periodic orbit for F1 if there is no y). But F1 = h−1
1 gh1 so

h1(x) and h1(y) form a simple pair of periodic orbits for g. �

This concludes the proof of Theorem 1.1.

5. Global analysis of the kicked accelerated particle system

The physical system called the kicked accelerated particle consists of particles
that do not interact with one another. They are subject to gravitation and
so fall downwards, and are kicked by an electro-magnetic field, i.e. the electro
magnetic field is turned on for a very short time once in a fixed time interval.
This electromagnetic field is a sine function of the height of the particle, hence
the particles are kicked upwards or downwards by different amounts, depending
on their position at the time of a kick. For a short review of the results for
this system see [8]. Experiments of this system were conducted by the Oxford
group, see [17], and the system was found to show a phenomena that is now
called “quantum accelerator modes”: as opposed to the natural expectation that
particles fall with more or less the gravitational acceleration, it was found that
a finite fraction of the particles fall with constant nonzero acceleration relative
to gravity, as can be seen in Figure 21.
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Figure 21. Accelerator modes. Experimental data (taken from Obertha-

ler, Godun, d’Arcy, Summy and Burnett, see [17]) showing the number of
atoms with specified momentum relative to the free falling frame as the

system develops in time (the numbers on the y axis represents time by the

number of kicks, while the z coordinate is proportional to the number of
atoms).

This is a truly quantum phenomenon having no counterpart in the classical
dynamics. A theoretical explanation for this phenomenon was given by Fishman,
Guanieri and Rebuzzini in [13], and it establishes a correspondence between
accelerator modes of the physical system, and periodic orbits of the classical
map

(5.1) f :
(

J

θ

)
7→

(
J + k̃sin(θ + J) + Ω

θ + J

)
mod 2π

where the J coordinate corresponds to the particles momentum, and θ to its
coordinate. This map is of shear type, and the acceleration for a periodic orbit
with rotation number q/p is given by

(5.2) α =
2πq

p
− Ω

Hence, by analyzing the structure of existence of periodic orbits for the classi-
cal map above, we would be able to find which modes should be expected for
which values of the parameters k and Ω. We remark that actual experimental
observation also requires stability of the periodic orbits. It is important to stress
here that since these parameters correspond to the kick strength and the time
interval between kicks they can be controlled in the experiments as we wish, so
results obtained for this system can be tested experimentally. When one plots
the numerical results describing which periods exist for different values of k and
Ω one gets an extremely complicated figure, see Figure 22.
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Figure 22. Tongues of periodic orbits.

An exact mathematical analysis of this system is extremely complicated.
Perturbative methods have been used in [13] to analyze the existence of these
“tongues” of periodic orbits in the region where k → 0, as well as giving estimates
on their widths.

Look at the map f given by (5.1) in regions where Ω is equal (q/p)2π for
some rational number q/p in the unit interval, and small k. For a small enough
k it can be seen both from the numerical results shown graphically in Figure 22
and from perturbative arguments that in the above region a periodic orbit with
period p exists.

For small k the periodic points of this orbit must be pretty much equally
spaced along the J axis, and we can choose (for k small enough) a family of
vertical loops that are equally spaced at distance exactly Ω apart, and each is
at distance at least, say, 3k from any of the periodic points.

The image of a loop parameterized by Γ1(θ) =
(

J0

θ

)
is given by(

J0 + ksin(J0 + θ) + Ω
J0 + θ

)
=

(
J0 + ksin(θ′) + Ω

θ′

)
and so is very close (for small k) to another loop of the chosen family. It follows
that there exists a map f̃ isotopic to f rel the orbit which keeps this family of
curves invariant, and so, by Lemma 2.5, all the periodic orbits seen in the tips
of the tongues in Figure 22 are simple orbits.

Note the rotation number of each of these orbits is equal exactly to the value
of Ω in the tip of the tongue (k = 0) as for very small k the J coordinate



Dynamics of Shear Homeomorphisms 147

increases by an almost fixed value, close as we wish to Ω. And, by equation
(5.2) the rotation number q/p is related to the acceleration of the corresponding
acceleration mode by

α =
q

p
2π − Ω

So the topological meaningful numbers here are in fact also the ones with physical
significance. While Ω changes through the region in which this periodic orbit
exists, q/p is of course a topological invariant and therefore fixed. Hence the
acceleration vanishes on the line with fixed Ω in the middle of each tongue, and
changes signs when one crosses this line. This was measured experimentally
in [15].

For any other point higher in the tongue which we can reach by an isotopy
along which the periodic orbit exists, we also have the orbit is a simple orbit.
We will assume, as is very natural and was checked numerically for many cases,
that the orbits remain simple throughout the region of each tongue.

In some of the cases for which we drew a portrait of the phase space, we
found that the fact the homeomorphism is isotopic to one which is reducible rel
the periodic orbit is realized by the physical map itself, as seen in Figure 23.

Figure 23. Phase portrait for a two-orbit. Drawn for k = 2π/15 and

Ω = π, the two-orbit which is clearly seen is a stable orbit with two stable

neighbourhoods drawn. There is another two-orbit present, at which the
arrows point, and it is the stable and unstable manifolds for this unstable

orbit which divide the phase space into non intersecting regions which do
not mix
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Here the phase space is truly divided into pieces. Each of the annuli in
this decomposition is mapped to another, and returns to itself with one twist
after p iterations of f . Therefore every periodic orbit must have a period which is
a multiple of p. On the other hand, when an annulus is mapped to itself with one
twist under an area preserving map (here under fp), every rotation number in the
unit interval exists for it (here we mean the standard annulus rotation number
measuring the rotations around the annulus), and so every period exists, as for
every rational number n/m there is a periodic point of order m which rotates
n times around the annulus before it returns to itself. This yields that for such
a point in the parameter space, exactly all periods that are multiples of p exist.
It is our belief that this situation is typical for the center of each tongue, that
is for Ω = 2πq/p. At other points, namely in all point we have numerically
checked outside the center of the tongue, orbits of coprime lengths may exist
simultaneously. We believe that the coexisting orbits whose rotation numbers
are Farey neighbours form a simple pair together, as in the example on Figure 24,
which shows a simple pair of orbits with rotation numbers 1/3 and 1/2 found in
the physical system.

Figure 24. A pair of coexisting orbits in the physical system. Drawn

with a collection of curves on the torus and their images, which show this
is a simple pair.
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This coexistence happens at a point in Figure 22 for which two tongues
intersect. We assume that the same orbit persists throughout the tongue, and
therefore we have at such a point two coexisting simple orbits. We believe that in
all points of intersecting tongues coming from k = 0 and Ω1 = q1/p1, Ω2 = q2/p2

which are Farey neighbours, p1 > p2, the coexisting orbits form a simple pair.
Theorem 3.7 therefore implies that there are infinitely many periodic orbits

for the parameters at a region of intersection of two such tongues, with rotation
numbers equal to all rational numbers between the ones of these two tongues. If
we assume all these simple orbits present also come from tongues, this yields that
each rational tongue between q1/p1 and q2/p2 intersects each of these two tongues
lower (along the k axis) than they intersect each other. In other words, following
a path from a tip of a tongue upwards in the tongue, if it intersects a Farey
neighbour tongue we know it intersects earlier all tongues of rational numbers
between them. This determines the global structure appearing in Figure 22 of all
accelerator modes in the physical system, as Sharkovskĭı’s theorem determines
it for one dimensional systems.
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