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INFINITELY MANY HOMOCLINIC ORBITS
FOR SUPERLINEAR HAMILTONIAN SYSTEMS

Jun Wang — Junxiang Xu — Fubao Zhang

Abstract. In this paper we study the first order nonautonomous Hamil-
tonian system

ż = JHz(t, z),

where H(t, z) depends periodically on t. By using a generalized linking
theorem for strongly indefinite functionals, we prove that the system has

infinitely many homoclinic orbits for weak superlinear cases.

1. Introduction and main results

In this paper we are interested in the existence of homoclinic orbits of the
Hamiltonian system

(HS) ż = JHz(t, z),

where z = (p, q) ∈ RN × RN = R2N , J =
(

0 IN

−IN 0

)
and H ∈ C1(R × R2N ,R)

is of the form

(1.1) H(t, z) =
1
2
B(t)z · z +R(t, z),
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with B(t) ∈ C(R,R4N2
) being a 2N × 2N symmetric matrix valued function,

and R ∈ C1(R×R2N ,R) is superlinear in z. Here by a homoclinic orbit of (HS)
we mean a solution of the equation satisfying z(t) 6≡ 0 and z(t) → 0 as |t| → ∞.

Establishing the existence of homoclinic orbits for system like (HS) is a classi-
cal problem. Up to the year of 1990, there are few isolated results. In very recent
years, many authors considered the existence of homoclinic orbits for Hamilton-
ian systems via critical point theory. For example, see [1], [8], [9], [12], [21], [22]
for the second order systems, and [3], [7], [10], [13]–[16], [18], [23]–[27], [29] for
the first order systems. Usually, for superlinear problem, one needs the following
condition due to Ambrosetti–Rabinowitz [2];

(1.2) ∃ ν > 2, 0 < νR(t, z) ≤ Rz(t, z)z, ∀z 6= 0.

Generally speaking, the role of (1.2) is to ensure the boundedness of all (PS)c-
sequences for the corresponding functional. Without (1.2), it is very difficulty
to get the boundedness of (PS)c-sequences. However, it is easy to see that (1.2)
does not include some superlinear nonlinearities like

(1.3) R(t, z) = a(t)
(
|z|ν + (ν − 2)|z|ν−ε sin2

(
|z|ε

ε

))
,

ν > 2, 0 < ε < min{ν − 2, ν − ν∗},

where a(t) > 0 is 1-periodic in t and ν∗ := ν(ν − 2)/(ν − 1). In this paper, we
shall study the existence of infinitely many homoclinic orbits for the system (HS)
under some superlinear conditions which cover the cases like (1.3).

Let A := −(J (d/dt)+B(t)) be the selfadjoint operator acting in L2(R,R2N )
and σ(A) denote the spectrum of A. As we all know, the information of σ(A)
are very important in finding the homoclinic orbits for the system (HS). For
example, if 0 is in the essential spectrum of the operator A, then the operator
A can not lead the behavior at 0 of the equation, which brings difficulty in the
usual variational arguments. So in the early results [3], [7], [18], [24], [25], [27],
they assume

(R) B(t) ≡ B̃ is independent of t such that sp(J B̃) ∩ iR = ∅,

where sp(J B̃) denotes the set of all eigenvalues of J B̃. Clearly, the condition
(R) means that there exists ζ > 0 such that σ(A)∩ (−ζ, ζ) = ∅. That is, 0 is not
in the spectrum of A, which is important for variational arguments. Recently,
the above condition (R) was relaxed by Ding and Willem [3], they handled the
case when 0 may be in the essential spectrum of A, and assumed that

(R0) B(t) depends periodically on t with period 1, and there is α > 0 such
that σ(A) ∩ (0, α) = ∅.

Under the superlinear condition (1.2) and some additional conditions, [16]
showed that the system (HS) has at least one homoclinic orbit. Here we point
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out that in the present case, 0 may be in the essential spectrum of A which
brings difficulty in handing such case by variational methods. To overcome
this difficulty, the authors proved an embedding theorem as a compensation
(see the following Lemma 2.1). Later, under the superlinear condition (1.2),
[13] also considered the case when 0 may be in the essential spectrum of A.
If H(t, z) is even in z, the authors proved that the system (HS) has infinitely
many homoclinic orbits. In [16], [13], the condition (1.2) is important for them
to get the boundedness of the (PS)c-sequences. We emphasize that under the
condition (R0), the superlinear case without (1.2) is quite different and tough to
be dealt with. Nearly, under the condition (R0), [29] considered the superlinear
case without (1.2). The authors obtained that (HS) has at least one homoclinic
orbit. Motivated by present works of [16], [13], [29], in the present, we continue
our work of [29] to prove that the system (HS) has infinitely many homoclinic
orbits for the superlinear case. In order to state our main results, we assume
that R(t, z) satisfies the following conditions.

(R1) R(t, z) ∈ C1(R × R2N ,R) is 1-periodic in t, and there exist positive
constants c1, c2 and ν > 2 such that

c1|z|ν ≤ Rz(t, z)z ≤ |Rz(t, z)||z| ≤ c2|z|ν , for all (t, z) ∈ R× R2N .

(R2) Rz(t, z)z − 2R(t, z) > 0 for all t ∈ R and z ∈ R2N \ {0}.
(R3) There exists µ0 > 2 such that

lim inf
z→0

Rz(t, z)z
R(t, z)

≥ µ0

uniformly for t∈ R.
(R4) There exists c0 > 0 such that

lim inf
|z|→∞

Rz(t, z)z − 2R(t, z)
|z|β

≥ c0

uniformly for t ∈ R, where ν > β > ν∗ = ν(ν − 2)/(ν − 1).
(R5) There exist c3 and δ > 0 such that for all (t, z) and v ∈ R2N with |v| ≤ δ

|Rz(t, z + v)−Rz(t, z)| ≤ c3(|v|ν−1 + |z|ν−2|v|+ |v|ν−2|z|).

(R6) R(t,−z) = R(t, z) for all (t, z) ∈ R× R2N .

Remark 1.1. In [31], [32], the conditions (R2)–(R5) have been used to
weaken the Ambrosetti–Rabinowitz superlinear growth condition (1.2) for Schrö-
dinger equations.

Remark 1.2. Let µ0 = ν and β = ν − ε. It is easy to see that the
nonlinearity (1.3) satisfies (R1)–(R6). However, similar to [31]. Let zn =
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(ε(nπ + 3π/4))1/εL2N , where L2N = (1, 0, . . . , 0). For any γ > 2, one has

Rz(t, zn)zn − γR(t, zn)

= a(t)
[
(ν − γ)|zn|ν + (ν − 2)(ν − ε− γ)|zn|ν−ε sin2

(
|zn|ε

ε

)
+ (ν − 2)|zn|ν sin 2

(
|zn|ε

ε

)]
= a(t)|zn|ν

[
2− γ +

(ν − 2)(ν − ε− γ) sin2(|zn|ε/ε)
|zn|ε

]
→ −∞

as n → ∞. Thus, we know that the nonlinearity (1.3) can not satisfy the
Ambrostti–Rabinowitz condition (1.2) for γ > 2.

Recall that, based on the periodicity condition, if z is a homoclinic orbit then
for any ι ∈ Z, ι∗z := z( ·+ι) is also a homoclinic orbit. Let O(z) := {ι∗z; ι ∈ Z}
denote the orbit of z with respect to the Z-action ∗, two homoclinic orbits z1
and z2 of (HS) are said to be geometrically distinct if O(z1) 6= O(z1).

Now we have the following result.

Theorem 1.3. Let (R0)–(R6) be satisfied. Then (HS) has infinitely many
geometrically distinct homoclinic orbits.

Remark 1.4. If there exists α > 0 such that (−α, 0) ∩ σ(A) = ∅ and
R(t, z) := −R(t, z) satisfies the the assumptions (R1)–(R6), then the same con-
clusion of Theorem 1.1 remains valid.

Throughout the paper we shall denote by c > 0 various positive constants
which may vary from lines to lines and are not essential to the problem.

2. The embedding theorem

In order to establish a variational setting for the system (HS), in this section
we shall study the spectrum of a Hamiltonian operator.

Recall that A := −(J (d/dt) +B(t)) is a self-adjoint operator in L2(R,R2N )
with domain D(A) = H1(R,R2N ). Let σd(A) and σess(A) be, respectively, the
discrete spectrum of A and the essential spectrum of A. By Proposition 2.2
of [16], at most 0 is in the continuous spectrum of A, so we only need to consider
the case 0 ∈ σess(A). Let | · |q denote the usual Lq-norm, and ( · , · )2 be the usual
L2-inner product. Set H := L2.

Let {E(λ) : λ ∈ R} be the spectral family of A. We have A = U |A|, called
the polar decomposition, where U = I−E(0)−E(−0). Clearly, H has orthogonal
decomposition

H = H+ ⊕H−,
where H± = {z ∈ H; Uz = ±z}. For each z ∈ H, we will write z = z− + z+,
where z± ∈ H±.
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Let E be the completion space of D(|A|1/2) under the norm

‖z‖E = ||A|1/2z|2.

E is a Hilbert space with the inner product

(z1, z2)E := (|A|1/2z1, |A|1/2z2)2.

By Lemma 6.3 in Appendix, we have that for all z ∈ D(|A|1/2),

(2.1) c1‖z‖H1/2 ≤ ‖z‖E + a|z|2 ≤ c2‖z‖H1/2 + 2a|z|2,

where c1, c2 > 0 and a > 4 supt∈R |B(t)|.
Let E+ := H+∩D(|A|1/2). Since the spectrum of A on E+ is bounded away

from 0, thus we have

‖u‖2E = (Au, u)2 =
∫ ∞

α

λd(E(λ)u, u)2 ≥ α|u|22, for all u ∈ E+.

Thus, it follows from (2.1) that E+ is a closed set and

(2.2) ‖ · ‖E ∼ ‖ · ‖H1/2 on E+,

where the notation “∼” denotes the equivalence. Then E has an orthogonal
decomposition

E = E+ ⊕ E−,

with

(2.3) E− ⊇ H− ∩D(|A|1/2).

However, since 0 may belong to a spectrum of A, then ‖·‖E may not be equivalent
to H1/2-norm on E−. Therefore, in the following we use the spectrum family
of A to sperate σ(A) ∩ (−∞, 0] into two segments. That is, for any ε > 0, set

H−ε := E(−ε)H,

and E−ε = H−ε ∩D(|A|1/2) = H−ε ∩E−. Let Ĥ−ε := H−∩ (clH(
⋃

λ<−εE(λ)H))⊥,
where clH(B) denotes the closure of the set B in H. Similarly to E+, since the
spectrum of A restrict to E−ε is bounded away from 0. Thus,

(2.4) ‖ · ‖E ∼ ‖ · ‖H1/2 on E−ε .

However, Ĥ−ε is not complete with respect to the norm ‖·‖E , thus it is reasonable
to introduce a new norm. Define

(2.5) ‖z‖ν = (||A|1/2z|22 + |z|2ν)1/2.

Let E−ε,ν be the completion of Ĥ−ε under the norm ‖ · ‖ν .
Now let E−ν denote the completion of D(A) ∩ H− with respect to the norm

‖·‖ν . Since H1/2 is continuously embedded in Lp for any p ∈ [2,∞), by (2.4), E−ε
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is a closed subspace of E−ν . Moreover, noting that E−ε,ν ⊂ E−, it is orthogonal
to E−ε with respect to ( · , · )E , we have

(2.6) E−ν = E−ε ⊕ E−ε,ν .

Lemma 2.1. E−ε,ν ⊂ H1
loc(R) and is embedded compactly in L∞loc, and contin-

uously in Lp for all ν ≤ p ≤ ∞.

Proof. The proof was actually given in [16], we state it here for reader’s
convenience. By the spectral theory of self-adjoint operators, Ĥ−ε ⊂ D(A) = H1.
Let {zn} ⊂ Ĥ−ε be Cauchy sequence with respect to ‖ · ‖ν . Then

(2.7) |A(zn − zm)|22 =
∫ 0

−ε

λ2d|E(λ)(zn − zm)|22

≤ −ε
∫ 0

−ε

λd|E(λ)(zn − zm)|22 = ε||A|1/2(zn − zm)|22 → 0,

as n,m→∞. For any finite interval I ⊂ R, one has∫
I

|zn − zm|2 dt ≤ |I|1−2/ν |zn − zm|2ν → 0.

Together with (2.7), we have∫
I

|żn − żm|2 dt =
∫

I

|A(zn − zm) +B(t)(zn − zm)|2 dt

≤ 2|A(zn − zm)|22 + 2
∫

I

|B(t)(zn − zm)|2 dt→ 0,

as n,m → ∞. Therefore the limit z of {zn} with respect to ‖ · ‖ν belongs to
H1

loc(R). Moreover, since H1(I) is compactly embedded in L∞(I) for any finite
interval I, one sees that E−ε,ν is compactly embedded in L∞(I).

By (2.7), {Azn} is a Cauchy sequence in L2. Hence Azn → w in L2. Since
Azn → Az in L2

loc, w = Az, i.e. Az ∈ L2. Note that for any finite interval I ⊂ R∫
I

|ż|2 dt =
∫

I

|Az +Bz|2 dt ≤ 2
∫

I

(|Az|2 + |Bz|2) dt(2.8)

≤ c
( ∫

I

|Az|2 + |I|1−2/ν

( ∫
I

|z|ν
)2/ν)

.

Obviously, we have

z(τ) = z(t) +
∫ τ

t

ż(s) ds, for τ ∈ R.

Integrating from τ − 1/2 to τ + 1/2 in the above equality, one has

(2.9) |z(τ)| ≤
( ∫ τ+1/2

τ−1/2

|z|ν dt
)1/ν

+
( ∫ τ+1/2

τ−1/2

|ż|2 dt
)1/2

.
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Since z ∈ H and Az ∈ H, (2.8) and (2.9) show that

|z(τ)| → 0 as |τ | → ∞.

That is, z ∈ L∞. Therefore z ∈ Lν ∩L∞ and so z ∈ Lp for any p ≥ ν. Replacing
z by zn−z in (2.8) and (2.9) one sees that E−ε,ν is continuously embedded in L∞

and so is in Lp for any p ≥ ν. �

Let Eν denote the completion of the set D(A) under the norm ‖ · ‖ν . It
follows from (2.2), (2.4), (2.6) and Lemma 2.1 that E−ν and E+ are closed sets.
Moreover, since Eν ⊂ E, and using the decomposition of E, it is easy to check
that E−ν ∩ E+ = {0}, and so

(2.10) Eν = E−ν ⊕ E+.

We now come to the following embedding theorem.

Theorem 2.2. Suppose (J1) is satisfied, and Eν is defined in (2.10). Then
Eν is embedded continuously in Lp for all p ≥ ν and compactly in Lq

loc for any
q ≥ 2.

Proof. By (2.2), (2.4), (2.10) and Lemma 2.1, one can easily get the desired
conclusion. �

3. The abstract critical point theorems

Let (E, ‖ · ‖) be a Banach space and Φ(z) ∈ C1(E,R). In order to study
the critical points of Φ(z), we now recall some abstract critical point theory
developed recently in [5], see also [19], [4], [31] for earlier results on that direction.

Assume that E has direct sum decomposition E = X ⊕ Y , let PX and PY

denote projections from E onto X and Y , respectively. For a functional Φ(z),
we write Φa := {z ∈ E : Φ(z) ≥ a}, Φb := {z ∈ E : Φ(z) ≤ b} and Φb

a = Φa ∩Φb.
Next, let’s us recall some definitions:

(i) Φ is said to be weakly sequentially upper semi-continuous if zn ⇀ z in
E implies Φ(z) ≥ lim infn→∞Φ(zn);

(ii) Φ′ is said to be weakly sequentially continuous if zn ⇀ z in E implies
limn→∞Φ′(zn)w = Φ′(z)w for each w ∈ E;

(iii) A sequence {zn} ⊂ E is said to be a (C)c-sequence if Φ(zn) → c and
(1 + ‖zn‖)Φ′(zn) → 0. Φ is said to satisfy the (C)c-condition if any
(C)c-sequence has a convergent subsequence.

In what follows, a set B ⊂ E is said to be a (C)c-attractor if for any ε, δ > 0
and any (C)c-sequence {zn} one has, along a subsequence zn ∈ Uε(B ∩ Φc+δ

c−δ).
Here (and in the sequel), Uε(K) := {z ∈ E : ‖z −K‖ < ε} for any subset K ⊂ E.
For any interval I ⊂ R, a set B is called a (C)I -attractor if it is a (C)c-attractor
for any c ∈ I (cf. [11], [5], [4]).
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From now on we assume that X is separable and reflexive subspace. For
a countable dense subset B ⊂ X∗ and b ∈ B, we define a semi-norm on E by

Pb: E = X ⊕ Y → R, Pb(x+ y) = qb(x) + ‖y‖, for x+ y ∈ X ⊕ Y,

where qb(x) = |(x, b)X,X∗ | = |b(x)|. We denote by TB the induced topology. Let
w∗ denote the weak∗-topology on E∗.

Assume:

(A0) For any c ∈ R, Φc is TB-closed, and Φ′ : (Φc, TB) → (E∗, w∗) is contin-
uous.

(A1) There exists % > 0 with κ := inf Φ(S%Y ) > 0 where S%Y := {z ∈ Y :
‖z‖ = %}.

(A2) There exists an increasing sequences of finite dimensional subspace Yn ⊂
Y and Rn > % such that supΦ(X×Yn) <∞ and supΦ(X×Yn \Kn) <
γ := inf Φ({z ∈ X : ‖z‖ ≤ %}), where Kn := {z ∈ X × Yn : ‖z‖ ≤ Rn}.

(A3) Φ has a (C)I -attractor F with PY F ⊂ Y \ {0} bounded and such that

µ := inf{‖PY u− PY v : u, v ∈ F , PY u 6= PY v‖} > 0

and there exists β̃ > 0 with

‖z‖ ≤ β̃‖PY z‖, for all u ∈ Φb
a,

where I := [a, b] and a, b ∈ R.

Then we have the following theorem:

Theorem 3.1. If Φ satisfies (A0)–(A2) and (A3) for any compact interval
I ⊂ (0,∞), then Φ has unbounded sequence of critical values.

The proof was given in Theorem 4.8 of [5] (see also [11]).

4. Some preliminary works

4.1. Properties of the functional. Set E := Eν = E−ν ⊕ E+, where
Y = E+, X = E−ν . Let

Ψ(z) =
∫

R
R(t, z(t)) dt.

By assumptions and Theorem 2.2, Ψ(z) ∈ C1(Eν ,R) and

Ψ′(z)v =
∫

R
Rz(t, z(t))v(t) dt, for all z, v ∈ Eν .

Now, let us consider the functional

Φ(z) :=
1
2
‖z+‖2E −

1
2
‖z−‖2E −Ψ(z), for z = z− + z+ ∈ Eν .
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Then Φ ∈ C1(Eν ,R). Moreover, for ψ ∈ C∞0 (R)

Φ′(z)ψ =
∫

R
(−J ż −Bz −Rz(t, z), ψ) dt.

It follows that critical points of Φ(z) are solutions of (HS). Moreover, if z is
a solution of (HS), by Theorem 2.2, Rz(t, z) ∈ Ls(R,R2N ) for any s ∈ [2,∞).
Thus Rz(t, z) ∈ H. A standard argument shows that z is also a homoclinic orbit
of (HS) (see [16]). So we have

Proposition 4.1.1. Assume that the conditions (R0)–(R6) hold. If z(t) 6= 0
is a solution of (HS), then z is a homoclinic orbit of (HS).

In the following we will study the linking structure of Φ.

Lemma 4.1.2. Let (R0)–(R1) be satisfied. Then there exists % > 0 such that
κ := inf Φ(S+

% ) > 0, where S+
% := {z ∈ E+ : ‖z‖ν = %}.

Proof. For all z ∈ E+, by the Theorem 2.2 and (R1), we have

Φ(z) =
1
2
‖z‖2E −

∫
R
R(t, z)dt ≥ 1

2
‖z‖2E − c|z|νν ≥

1
2
‖z‖2E − c‖z‖ν

E . �

Now we obtain the desired results.

Lemma 4.1.3. Let (R0)–(R1) be satisfied. Then, for any finite dimen-
sional subspace W ⊂ E+, there exists RW > % such that supΦ(EW) < ∞
and supΦ(EW \ BW) < γ := inf Φ({z ∈ E−ν : ‖z‖ν ≤ %}), where BW := {z ∈
EW : ‖z‖ν ≤ RW} and EW := E−ν ⊕W.

Proof. It suffices to show that Φ(z) → −∞ as z ∈ EW and ‖z‖ν → ∞.
For z ∈ EW , let z = z+

W + z−, where z+
W ∈ W and z− ∈ E−ν . By Theorem 6.4

in Appendix, there exists a continuous projection from the closure of EW in
Lν to W. Thus |z+

W |ν ≤ c|z+
W + z−|ν . Moreover, since W is finite dimensional

subspace, and from (R1), we have

Φ(z) =
1
2
‖z+
W‖

2
E −

1
2
‖z−‖2E −

∫
R
R(t, z) dt

≤ c1|z+
W |

2
ν −

1
2
‖z−‖2E − c3|z− + z+

W |
ν
ν

≤ c2|z− + z+
W |

2
ν −

1
2
‖z−‖2E − c3|z− + z+

W |
ν
ν ,

where ci > 0 (i = 1, 2, 3). It follows that Φ(z) → −∞ as ‖z‖ν →∞. �

4.2. The (C)c-sequences. In this section we discuss the Cerami-sequences
for the functional Φ.
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Lemma 4.2.1. Let conditions (R0)–(R6) be satisfied. Then any (C)c-se-
quence is bounded.

Proof. Let zn ∈ Eν be such that

(4.1) Φ(zn) → c and (1 + ‖zn‖ν)Φ′(zn) → 0.

By (R1) and (4.1), one sees

o(1) = Φ′(zn)zn = ‖z+
n ‖2E − ‖z−n ‖2E −

∫
R
Rz(t, zn)zn dt.

Thus

(4.2) o(1) + ‖z+
n ‖2E − ‖z−n ‖2E =

∫
R
Rz(t, zn)zn dt ≥ c|zn|νν .

Therefore, ‖z−n ‖2E ≤ ‖z+
n ‖2E+o(1), |zn|νν ≤ c‖z+

n ‖2E+o(1), |zn|ν ≤ c‖z+
n ‖

2/ν
E +o(1).

Clearly, it suffices to prove the boundedness of ‖z+
n ‖2E .

By (R3) and (R4), let ε0 > 0 such that µ0 − ε0 > 2, then there exist
R1 ≥ R0 > 0 such that

(4.3) Rz(t, z)z ≥ (µ0 − ε0)R(t, z), for all t ∈ R, |z| ≤ R0,

and
Rz(t, z)z − 2R(t, z) ≥ c0|z|β , for all t ∈ R, |z| ≥ R1.

Furthermore, by (R2), we can choose ε > 0 small enough such that

(4.4) Rz(t, z)z − 2R(t, z) ≥ ε|z|β , for all t ∈ R, |z| ≥ R0.

By (4.1), there exists d > 0 such that

d ≥ Φ(zn)− 1
µ0 − ε0

Φ′(zn)zn =
(

1
2
− 1
µ0 − ε0

)
(‖z+

n ‖2E − ‖z−n ‖2E)

+
∫

R

(
1

µ0 − ε0
Rz(t, zn)zn −R(t, zn)

)
dt.

Hence, by (4.3) and (R1)–(R2), we get that

(4.5) ‖z+
n ‖2E − ‖z−n ‖2E ≤ c+ c

∫
R

(
R(t, zn)− 1

µ0 − ε0
Rz(t, zn)zn

)
dt

= c+ c

( ∫
|zn|≥R0

+
∫
|zn|≤R0

)(
R(t, zn)− 1

µ0 − ε0
Rz(t, zn)zn

)
dt

≤ c+ c

∫
|zn|≥R0

(
R(t, zn)− 1

µ0 − ε0
Rz(t, zn)zn

)
dt

≤ c+ c

(
1
2
− 1
µ0 − ε0

) ∫
|zn|≥R0

Rz(t, zn)zn dt

≤ c+ c

∫
|zn|≥R0

|zn|ν dt.
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Moreover, by (4.1), there exists d1 > 0 such that Φ(zn) − (1/2)Φ′(zn)zn ≤ d1.
(R2) and (4.4) imply that

(4.6) c ≥
∫

R

(
1
2
Rz(t, zn)zn −R(t, zn)

)
≥ ε

2

∫
|zn|≥R0

|zn|β dt.

Choose t ∈ ((ν − 2)/β(ν − 1), 1/ν) ⊂ (0, 1), since ν(ν − 2)/(ν − 1) = ν∗ < β <

ν, then by (4.6), Höder inequality and Theorem 2.2, we have

(4.7)
∫
|zn|≥R0

|zn|ν dt =
∫
|zn|≥R0

|zn|βtν |zn|(1−βt)ν dt

≤
( ∫

|zn|≥R0

|zn|β dt
)tν( ∫

|zn|≥R0

|zn|(1−tβ)ν/(1−tν) dt

)1−tν

≤ c|zn|(1−tβ)ν
p∗ ≤ c‖zn‖(1−tβ)ν

ν

≤ c(‖z+
n ‖E + ‖z−n ‖E + |zn|ν)(1−tβ)ν

≤ c‖z+
n ‖

(1−tβ)ν
E + c‖z+

n ‖
2(1−tβ)
E + o(1),

where p∗ = (1− tβ)ν/(1− tν) > ν. Consequently, (4.2), (4.5) and (4.6) imply
that

c

∫
R
|zn|ν dt ≤ ‖z+

n ‖2E − ‖z−n ‖2E + o(1) ≤ c+ c

∫
|zn|≥R0

|zn|ν dt+ o(1)

≤ c+ c‖z+
n ‖

(1−tβ)ν
E + c‖z+

n ‖
2(1−tβ)
E + o(1),

that is, |zn|ν ≤ c + c‖z+
n ‖

(1−tβ)
E + c‖z+

n ‖
(2/ν)(1−tβ)
E + o(1). On the other hand,

(4.1) and (R1) imply that

o(1) + ‖z+
n ‖2E =

∫
R
Rz(t, zn)z+

n dt ≤ c

∫
R
|zn|ν−1|z+

n | dt

≤ c|zn|ν−1
ν |z+

n |ν ≤ c(c+ c‖z+
n ‖

1−tβ
E + c‖z+

n ‖
(2/ν)(1−tβ)
E + o(1))ν−1‖z+

n ‖E

≤ c‖z+
n ‖E + c‖z+

n ‖
(1−tβ)(ν−1)+1
E + c‖z+

n ‖
(2(ν−1)/ν)(1−tβ)+1
E + o(1)‖z+

n ‖E .

Since (1− tβ)(ν − 1) + 1 < 2, we have that ‖z+
n ‖E <∞. �

Let {zn} be an arbitrary (C)c-sequence. By Lemma 4.2.1 it is bounded,
hence, we may assume without loss of generality that zn ⇀ z in Eν , zn → z in
Lq

loc for q ≥ 2 and zn(t) → z(t) almost everywhere in t. Clearly, z is a critical
point of Φ. Set z1

n := zn − z.

Lemma 4.2.2. Under the assumptions of Theorem 1.1, along a subsequence:

(a) Φ(z1
n) → c− Φ(z);

(b) Φ′(z1
n) → 0.

Proof. Similar to the proof of Lemma 4.6 in [13], we sketch it here for
reader’s convenience.
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(a) Observe that

lim
n→∞

Φ(z1
n) = lim

n→∞
Φ(zn)− Φ(z) + lim

n→∞

∫
R
(R(t, zn)−R(t, z1

n)−R(t, z)) dt.

It suffices to check that

lim
n→∞

∫
R
(R(t, zn)−R(t, z1

n)−R(t, z)) dt = 0.

Since z is a critical point of Φ, it follows from Proposition 4.1.1 that for any
ε ∈ (0, δ), where δ > 0 is given in (R5), choose R > 0 such that, letting JR :=
[−R,R] and Jc

R = R \ JR,

(4.8) |z|L∞(Jc
R) < ε, |z|Lν(Jc

R) < ε.

Then by (R1), ∫
Jc

R

R(t, z) dt < cε,

by mean value theorem and (R1)∣∣∣∣ ∫
Jc

R

(R(t, z1
n + z)−R(t, z1

n) dt
∣∣∣∣ ≤ c

∫
Jc

R

|z|(|z1
n|ν−1 + |z|ν−1) dt ≤ cε.

Since z1
n → 0 in Lp(JR) (p ≥ ν), we have∣∣∣∣ ∫

JR

(R(t, zn)−R(t, z1
n)−R(t, z)) dt

∣∣∣∣ ≤ ε,

for n large. Hence∫
R
(R(t, zn)−R(t, z1

n)−R(t, z))dt→ 0 as n→∞.

(b) Let ϕ ∈ Eν with ‖ϕ‖ν ≤ 1. Using the equation (4.8) and (R1), we deduce
that ∣∣∣∣ ∫

Jc
R

Rz(t, z)ϕdt
∣∣∣∣ ≤ c|z|ν−1

Lν(Jc
R)‖ϕ‖

ν
ν ≤ cε,

and, by (R5),∣∣∣∣ ∫
Jc

R

(Rz(t, z1
n + z)−Rz(t, z1

n))ϕdt
∣∣∣∣

≤ c

∫
Jc

R

|z|(|z1
n|ν−2 + |z|ν−2 + |z|ν−2|z1

n|)|ϕ| dt ≤ cε.

That is, ∣∣∣∣ ∫
Jc

R

(Rz(t, z1
n + z)−Rz(t, z1

n)−Rz(t, z))ϕdt
∣∣∣∣ ≤ cε.

On the other hand, since z1
n → 0 and zn → z in Lp(JR) (p ≥ ν),

(4.9)
∣∣∣∣ ∫

JR

(Rz(t, z1
n + z)−Rz(t, z1

n)−Rz(t, z))ϕdt
∣∣∣∣ ≤ cε,
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for n large. So

sup
‖ϕ‖ν≤1

∣∣∣∣ ∫
R
(Rz(t, z1

n + z)−Rz(t, z1
n)−Rz(t, z))ϕdt

∣∣∣∣ → 0 as n→∞.

Therefore, the conclusion (b) follows from

Φ′(z1
n)ϕ = Φ′(zn)ϕ+

∫
R
(Rz(t, z1

n + z)−Rz(t, z1
n)−Rz(t, z))ϕdt

and (4.9). �

5. Infinite number of homoclinics

In this section we are going to show that if the function Φ is even, then
(HS) has infinitely many geometrically distinct homoclinic orbits. Let K :=
{z ∈ Eν : Φ′(z) = 0} and F := K/Z, the set F consisting of arbitrarily chosen
representative of the orbits of K. By (R6), we may assume that F = −F . In
view of the invariance of Φ under the shift ∗,

O(z1) 6= O(z1) if z1, z2 ∈ K with Φ(z1) 6= Φ(z2).

By virtue of (R2),

Φ(z) = Φ(z)− 1
2
Φ′(z)z =

∫
R

(
1
2
Rz(t, z)z −R(t, z)

)
dt > 0,

for all z ∈ F \ {0}. Theorem 1.1 will be proved by showing that F is an infinite
set. That is, K is an infinite set. To this purpose, arguing by contradiction, we
suppose that

(A∗) F \ {0} is a finite set.

Then there are α̂, β̂ > 0 such that

(5.1) α̂ < min
F\{0}

Φ = min
K\{0}

Φ ≤ max
F\{0}

Φ = max
K\{0}

Φ < β̂.

In the following we are going to apply Theorem 3.1 to Φ.

Definition 5.1. Let {zn} ⊂ Eν be a bounded sequence. Then, up to a sub-
sequence, either

(a) there exist γ > 0, R > 0 and yn ∈ R such that

lim
n→∞

∫ yn+R

yn−R

|zn|2 dt ≥ γ > 0,

or

(b) for all 0 < R <∞

lim
n→∞

sup
y∈R

∫ y+R

y−R

|zn|2 dt = 0.
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In the first case we say that {zn} is non-vanishing, and in the second case that
it is vanishing (see [26]).

Lemma 5.2. Let a > 0 and {zn} ⊂ H1/2 be bounded. If

(5.2) sup
y∈R

∫
B(y,a)

|zn|2 → 0, n→∞,

where B(y, a) is the interval (y− a, y+ a), then zn → 0 in Lt(R) for 2 < t <∞.
Particularly, if {zn} ⊂ E+ is bounded and satisfies (5.2), then zn → 0 in Lt(R)
for 2 < t <∞.

Proof. Usually, this lemma is stated for zn ⊂ H1 (see [30], [20]). However,
a simple modification of the argument of Lemma 1.21 in [30] shows that the
conclusion remains valid inH1/2. Since the norms ‖·‖ν and ‖·‖H1/2 are equivalent
in E+, one sees that the second conclusion follows. �

Lemma 5.3. Suppose that F is a finite set, and the conditions of Theorem 1.1
are satisfied. Let {zn} ⊂ Eν be a (C)c-sequence. Then either

(a) zn → 0 (corresponding to c = 0), or
(b) c ≥ α̂ and there exists a positive integer ` ≤ [c/α̂], points z1, . . . , z` ∈

F \{0} (not necessarily distinct), a subsequence of denote again by {zn}
and sequence {ki

n} ⊂ Z (i = 1, . . . , `) such that

∥∥∥∥zn −
∑̀
i=1

ki
n ∗ zi

∥∥∥∥
ν

→ 0, |ki
n − kj

n| → ∞ (i 6= j), as n→∞,

and ∑̀
i=1

Φ(zi) = c.

Proof. From Lemma 4.2.1, we know that the sequence is bounded. It
follows from (4.4) that

(5.3) Φ(zn)− 1
2
Φ′(zn)zn =

∫
R

(
1
2
Rz(t, zn)zn −R(t, zn)

)
dt

≥ ε

2

∫
|zn|≥R0

|zn|β dt ≥ 0.

Thus c ≥ 0. Moreover, we infer from

Φ(zn) =
1
2
‖z+

n ‖2E −
1
2
‖z−n ‖2E −

∫
R
R(t, zn) dt ≤ ‖zn‖2ν
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that c = 0 if zn → 0. Conversely, if c = 0, using the arguments as in the proof
Lemma 4.2.1, one can easily get that

(5.4) c|zn|νν ≤ o(1) + ‖z+
n ‖2E − ‖z−n ‖2E ≤ o(1) + c

∫
|zn|≥R0

|zn|ν dt

≤
( ∫

|zn|≥R0

|zn|β dt
)tν( ∫

|zn|≥R0

|zn|(1−tβ)ν/(1−tν) dt

)1−tν

+ o(1)

≤ c

( ∫
|zn|≥R0

|zn|β dt
)tν

+ o(1),

where (1− tβ)ν/(1− tν) > ν. On the other hand, by (5.3), we know that∫
|zn|≥R0

|zn|β dt → 0 as n → ∞. Thus, it follows from (5.4) that |zn|ν → 0 as
n→∞. Since Φ′(zn)(1 + ‖zn‖ν) → 0, then

‖z+
n ‖2E =

∫
R
Rz(t, zn)z+

n dt+ o(1)

≤ c|zn|ν−1
ν |z+

n |ν + o(1) ≤ c|zn|ν−1
ν + o(1) → 0

as n→∞. Furthermore, by (4.2), one has

c|zn|νν + ‖z−n ‖2E ≤ ‖z+
n ‖2E + o(1) → 0

as n→∞. That is, ‖zn‖ν → 0 as n→∞. It follows that zn → 0 if and only if
c = 0.

If c > 0 and z+
n is vanishing, that is,

lim
n→∞

sup
y∈R

∫
B(y,a)

|z+
n |2 dt = 0.

Then, by Lemma 5.2, we have z+
n → 0 in Lt(R) for t > 2. Therefore, by (R1)

and Hölder inequality, one has∣∣∣∣ ∫
R
Rz(t, zn)z+

n dt

∣∣∣∣ ≤ c

∫
R
|zn|ν−1|z+

n | dt ≤ c|z+
n |ν |zn|ν−1

ν → 0.

Since Φ′(zn)z+
n → 0 and Φ′(zn)z+

n = ‖z+
n ‖2E −

∫
R Rz(t, zn)z+

n dt, we know that
‖z+

n ‖E → 0 and
Φ(zn) ≤ ‖z+

n ‖E → 0,

a contradiction. Thus z+
n is non-vanishing, that is, there exist γ > 0, ι > 0 and

ŷn ∈ R such that

lim
n→∞

∫
byn+ι

byn−ι

|z+
n |2 dt ≥ γ > 0.

Hence we can find kn ∈ Z such that, setting un := kn ∗ zn(t) = zn(t+ kn),

(5.5) lim
n→∞

∫ ι+1

−ι−1

|u+
n |2 dt ≥ γ > 0,
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where u±n := z±n (t + kn). Since ‖zn‖ν = ‖un‖ν and Φ(zn) = Φ(un), then {un}
is still bounded, so a subsequence of {un} (still denoted by the same symbol)
converges weakly to some z1 ∈ Eν . That is, there exists {k1

n} ⊂ Z such that
un = k1

n ∗ zn(t) ⇀ z1. By (5.5), we know that z1 ∈ K \ {0}. Let z1 be the
representative in which z1 lies, and let k1 ∈ Z be such that k1 ∗ z1 = z1. Set
k

1

n := k1+k1
n and z1

n := k
1

n∗zn−z1. By Z-invariance of Φ (i.e. Φ(k
1

n∗zn) = Φ(zn))
and Lemma 4.2.2, {z1

n} is Cerami sequence at level c − Φ(z1). By (5.1), (5.3),
α̂ < Φ(z1) ≤ c. There are two possibilities: c = Φ(z1) or c > Φ(z1).

If c = Φ(z1), repeating the arguments for the proof of the conclusion (a), we
have that z1

n → 0 in Eν . Consequently, the conclusions of this lemma hold with
` = 1 and k1

n = −k1

n.
If c > Φ(z1), then we argue again as in above with {zn} and c replaced by

{z1
n} and c−Φ(z1), respectively, and obtain z2 ∈ F with α̂ < Φ(z2) ≤ c−Φ(z1).

So, after at most [c/α̂] steps, we get the desired results. �

Given ` ∈ N and a finite set N ⊂ Eν , let

[N , l] :=
{ j∑

n=1

(kn ∗ zn) : 1 ≤ j ≤ `, kn ∈ Z, zn ∈ N
}
.

Lemma 5.4. For any ` ∈ N,

(5.6) inf{‖z − z′‖ν : z, z′ ∈ [N , l], z 6= z′} > 0.

The proof was given in Proposition 1.55 of [8] (see also [7]).
In view of Lemma 5.3, we have:

Corollary 5.5. If {zn} is a (C)c-sequence, c ≥ α̂, then one has

‖zn − [F , `]‖ν → 0

provided that ` ≥ [c/α̂].

Lemma 5.6. Φ satisfies (A3).

Proof. Recall that F is a finite set. Since Φ′ is odd, then we may assume
F is symmetric. For any compact interval I ⊂ (0,∞), denote I := [a, b], set
` = [b/α̂] and take B = [F , `]. Then, P+B = [P+F , `], where P+ stands for the
projector onto E+. By (A∗), P+F is finite set and

‖z‖ν ≤ `max{‖z‖ν , z ∈ F} for all z ∈ B,

which implies that B is bounded. In addition, By Corollary 5.5, B is a (C)I -
attractor, and by (5.5),

inf{‖z+ − v+‖ν : z, v ∈ B, z+ 6= v+}
= inf{‖z′ − v′‖ν : z′, v′ ∈ P+B, z′ 6= v′} > 0.
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For each z ∈ Φb
a, one has

0 < a ≤ Φ(z) =
1
2
‖z+‖2E −

1
2
‖z−‖2E −

∫
R
R(t, z) dt.

Then
1
2
‖z−‖2E + |z|νν ≤

1
2
‖z+‖2E .

It follows that ‖z‖ν ≤ β̃‖z+‖E for some β̃ > 0. Then Φ satisfies (A3) for I = [a, b]
and a > 0. �

Lemma 5.7. Φ satisfies (A0).

Proof. Let a ∈ R. Assume that zm ∈ Φa with zm → z in τ . Then
a ≤ (1/2)‖z+

m‖2E−((1/2)‖z−m‖2E+Ψ(z)). Since z+
m → z+, then ‖z+

m‖E is bounded.
It follows from ‖z−m‖2E ≤ ‖z+

m‖2E − 2a that ‖z−m‖E is bounded. By (R1) one see
further that |zm|νν is bounded and so is ‖zm‖ν . Therefore, zm ⇀ z in Eν , which
implies zm → z in Lq

loc (q ≥ 2) and along a subsequence zm(t) → z(t) for almost
every t ∈ R. Consequently, by the weakly semi-continuous of norm and Fatou’s
lemma we get a ≤ Φ(z). Now let zm → z in τ(in Φa). Similar to above arguments
shows that ‖zm‖ν is bounded, and so zm ⇀ z in Eν . Then zm → z in Lp

loc and
Rz(t, zm) → Rz(t, z) in Lp/(p−1)

loc (p ≥ 2). Hence Φ′(zm)ψ → Φ′(z)ψ for ψ ∈ Eν .
It follows that the condition of (A0) is satisfied. �

Proof of Theorem 1.1. Assume that F is finite set, i.e., (A∗) holds.
According to Lemmas 4.1.2–4.1.3 and Lemmas 5.6–5.7, we know that Φ satisfies
the assumptions of Theorem 3.1. Therefore Φ possesses a sequence of critical
values, cn →∞, a contradiction. The proof is completed. �

Corollary 5.8. Let H(t, z) be the form of (1.1). Assume that A=−(J d/dt
+B(t)) satisfies the conditions of Remark 1.2. Then (HS) has infinitely many
geometrically distinct homoclinic orbits.

It follows from the Remark 1.2 and Theorem 1.1. �

6. Appendix

Recalling that A = −(J d/dt + B(t)) is a self-adjoint operator in H. By
(J1), we have D(|A|1/2) = H1/2, where |A|1/2 denotes the square root of |A|.
In this Appendix, we mainly refer to the paper [16]. For reader’s convenience,
some of the results, together with the proofs, will be provided here. Set W 1,s :=
W 1,s(R,R2N ) for s ≥ 1, H1 := W 1,2 and H1/2 := H1/2(R,R2N ). For a self-
adjoint operator A in H, we denote by |A| its absolute value.

Definition 6.1. Let S(t) ∈ C(R; R4N2
) be a symmetric matrix valued func-

tion, and let F (t) be the fundamental matrix with F (0) = I for the equation

ẋ(t) = J S(t)x,
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S(t) is said to have an exponential dichotomy if there is a projector P and
positive constants K, ξ such that

(6.1)

{
|F (t)PF−1(s)| ≤ Ke−ξ(t−s) if s ≤ t,

|F (t)(I − P )F−1(s)| ≤ Ke−ξ(s−t) if s ≥ t,

see [6].

Proposition 6.2. Suppose that S(t) has an exponential dichotomy and s≥1.
Then the following conclusions hold:

(a) The operator

Bs:Ls ⊃W 1,s → Ls, u 7→ −
(
J d

dt
+ S(t)

)
u,

has a bounded inverse B−1
s satisfying with some d = d(s, σ) > 0

|B−1
s z|σ ≤ d|z|s, for all z ∈ Ls,

for all σ ≥ s;
(b) B := B2 is s self-adjoint, and there are b > 0, b1 > 0, b2 > 0 such that

σ(B) ∩ [−b, b] = ∅ and

b1‖z‖H1 ≤ |Bz|2 ≤ b2‖z‖H1 for all z ∈ H1;

(c) D(|B|1/2) = H1/2, and there are d1, d2 > 0 such that

d1‖z‖H1/2 ≤ ||B|1/2z|2 ≤ d2‖z‖H1/2 for all z ∈ H1/2.

Proof. For any z ∈ Ls, s ≥ 1, there is a unique u ∈W 1,s satisfying

−
(
J d

dt
+ S

)
u = z

given by

u(t) =
∫ t

−∞
F (t)PF−1(s)J z ds−

∫ ∞

t

F (t)(I − P )F−1(s)J z ds.

Set

λ+(s) = λ−(−s) =

{
1 if s ≥ 0,

0 if s < 0.
Then

u(t) =
∫

R
F (t)PF−1(s)λ+(t− s)J z ds

−
∫

R
F (t)(I − P )F−1(s)λ−(t− s)J z ds := u1(t) + u2(t),
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and by (6.1)

|u1(t)| ≤ K

∫
R
e−ξ(t−s)λ+(t− s)|z| ds,

|u2(t)| ≤ K

∫
R
e−ξ(s−t)λ−(t− s)|z| ds.

Setting f+(τ) = e−ξτλ+(τ) and f−(τ) = eξτλ−(τ), one has

|u1(t)| ≤ K(f+ ∗ |z|)(t) and |u2(t)| ≤ K(f− ∗ |z|)(t),

where ∗ denotes the convolution. Observe that∫
R
|f+|σ =

∫
R
|f−|σ =

1
ξσ

for all σ ≥ 1 and |f±|∞ = 1.

By the convolution inequality, for any ϑ ≥ 1 satisfying 1/ϑ = 1/s+ 1/σ − 1,

|uj |ϑ ≤ K(ξσ)−1/σ|z|s, j = 1, 2

and for 1/s+ 1/s′ = 1, s > 1

|uj |∞ ≤ K(ξs′)−1/s′ |z|s, j = 1, 2.

and also
|uj |∞ ≤ K|z|1, if s = 1, j = 1, 2.

Therefore,

(6.2) |u|ϑ ≤ K(ξσ)−1/σ|z|s, ϑ, s, σ ≥ 1 and
1
ϑ

=
1
s

+
1
σ
− 1.

Now the conclusion (a) follows from equation (6.2).
It is easy to verify that B = B2 is self-adjoint. Note that if there is a se-

quence of positive numbers bn → 0 such that σ(B) ∩ [−bn, bn] = ∅, then there
is a sequence {zn} ⊂ D(A) with |zn|2 = 1 and |Bzn|2 → 0, contradicting (6.2).
That is, 0 6∈ σ(B). The inequality of (b) is clear by (6.2).

We now verify (c). Let Γ := −d2/dt2. Then D(Γ) = H2. By an interpolation
theory (see [16, p. 764] or [23, Section 2.5.2])

(D(Γ0),D(Γ))θ,2 = (H,H2)θ,2 = H2θ, 0 < θ < 1.

On the other hand (see [16, p. 764]) or [23, Theorem 1.18.10])

(D(Γ0),D(Γ))θ,2 = D(Γθ).

Consequently,
D(Γθ) = H2θ

equipped with the norm

‖z‖2D(Γθ) =
∫ ∞

0

(1 + λ2θ) d|Eλz|22 = |z|22 + |Γθz|22,
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where {Eλ;−∞ < λ <∞} is the spectral family of Γ. In particular, let θ = 1/4,

H1/2 = D(Γ1/4), ‖u‖2H1/2 ≤ |z|22 + |Γ1/4z|22.

Since |Γ1/2z|2 = |ż|2 ≤ c1|Bz|2 for z ∈ H1 by (b), one has (Γ1/2z, z)2 ≤
c2(|B|z, z)2 (see [8, Theorem 4.12]), and so |Γ1/4z|2 ≤ c2||B|1/2z|2. Together
with equation (6.2), it follows that the first inequality of (c) holds. Similarly,
considering the operator Γ̃ := d2/dt2 + 1, one can check the second one of (c).�

Lemma 6.3. Under the assumption of (J1), we have

c1‖z‖H1/2 ≤ ||A|1/2z|2 + a|z|2 ≤ c2‖z‖H1/2 + 2a|z|2, for z ∈ H1/2,

where ci > 0, (i = 1, 2) and a > 4 supt∈R |B(t)|.

Proof. Now we consider the matrix Ba := B(t) + aB̃, where a > 0, B(t)
satisfies (J1) and B̃ =

(
0 1

1 0

)
. Clearly aJ B̃ has the eigenvalues λ1 = . . . =

λN = a and λN+1 = . . . = λ2N = −a, and its fundamental matrix is Fa =
exp

(
at

(
−1 0

0 1

))
. Therefore aB̃ has an exponential dichotomy. By the roughness

of the exponential dichotomy, for any

(6.3) a > 4 sup
t∈R

|B(t)|,

Ba also have an exponential dichotomy(see [6]). In (6.2), we fix an a. Consider
the self-adjoint operator

Aa = −
(
J d

dt
+Ba

)
= A− aB̃.

Since for z ∈ D(A)

|Aaz|2 = |(A− aB̃)z|2 ≤ |Az|2 + a|z|2,

by Proposition 6.2,

c1‖z‖2H1/2 ≤ (|Aa|z, z)2 ≤ (|A|z, z)2 + a|z|22 ≤ c2‖z‖2H1/2 + a|z|22.

By Proposition III 8.12 of [17], we have

c1‖z‖H1/2 ≤ ||A|1/2z|2 + a|z|2 ≤ c2‖z‖H1/2 + 2a|z|2,

for all z ∈ H1/2 = D(|A|1/2), where ci > 0, (i = 1, 2). �

Theorem 6.4. Suppose that (X, ‖ · ‖) is a Banach space with X = X1⊕X2,
where X1 and X2 are close subset. Set |||x||| := ‖x1‖ + ‖x2‖. Then for x =
x1 + x2 ∈ X, xi ∈ Xi (i = 1, 2) we have that

(a) ||| · ||| and ‖ · ‖ are equivalent norms;
(b) The projector P :X → X1 is continuous.
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Proof. (a) Since ||| · ||| is also a complete norm on the X, and for each
x ∈ X

‖x‖ ≤ c1|||x|||,
where c1 > 0. From Functional Analysis, we know that the result of (a) holds.

(b) For each x = x1 + x2 ∈ X, by (a)

‖Px‖ = ‖x1‖ ≤ c2|||x||| ≤ c3‖x‖,

where c2, c3 are positive constants. Since P is a linear operator, we know that
the conclusion (b) of this lemma follows. �
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