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ON NONCOERCIVE PERIODIC
SYSTEMS WITH VECTOR p-LAPLACIAN

Petru Jebelean — Nikolaos S. Papageorgiou

Abstract. We consider nonlinear periodic systems driven by the vector
p-Laplacian. An existence and a multiplicity theorem are proved. In the

existence theorem the potential function is p-superlinear, but in general

does not satisfy the AR-condition. In the multiplicity theorem the problem
is strongly resonant with respect to the principal eigenvalue λ0 = 0. In both

of the cases the Euler–Lagrange functional is noncoercive and the method
is variational.

1. Introduction

In this paper we consider the following nonlinear periodic system driven by
the p-Laplacian operator:

(1.1)

{
−(|x′(t)|p−2x′(t))′ = ∇F (t, x(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b) 1 < p < ∞.

Here | · | stands for the Euclidean norm on RN and F :T × RN → R is a
Carathéodory mapping such that F (t, · ) is of class C1 for almost every t ∈ T .

Periodic systems were studied primarily within the context of semilinear
equations (i.e. p = 2) and most of the works prove existence but not multiplicity
results. In this direction we mention the works of M. S. Berger and M. Schecter [3]
and C. L. Tang and X. P. Wu [25], who impose an anticoercivity condition
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on the potential F (t, · ) which makes their Euler–Lagrange functional coercive.
I. Ekeland and N. Ghoussoub [5] and N. Ghoussoub [10] employ the well-known
Ambrosetti–Rabinowitz condition (AR-condition for short), which implies that
the potential F (t, · ) is superquadratic. On the other hand, C. L. Tang [24]
considers second order systems with a subquadratic potential and uses minimax
techniques, in particular the saddle point theorem. Finally, J. Mawhin and
M. Willem [19] with a bounded potential function and F. Zhao and X. P. Wu [27]
use the least action principle, while J. Mawhin [17] assumes that F (t, · ) is convex
and employs the dual action principle.

In contrast, the study of periodic systems driven by the vector p-Laplacian
is in some sense lagging behind. We mention the works of R. P. Agarwal,
H. Lü and D. O’Regan [1], G. Dincǎ and P. Jebelean [4], L. Gasinski [7],
P. Jebelean [11], P. Jebelean and G. Moroşanu [13], [14], R. Manasevich and
J. Mawhin [16], J. Mawhin [18], E. Papageorgiou and N. S. Papageorgiou [20]–
[22], F. Papalini [23] and K. M. Teng and X. P. Wu [26]. In R. P. Agarwal,
H. Lü and D. O’Regan [1] the authors deal with certain eigenvalue problems and
prove multiplicity results valid for certain values of the parameter. L. Gasin-
ski [7] proves multiplicity of solutions for systems with a coercive Euler–Lagrange
functional. P. Jebelean [11] and P. Jebelean and G. Moroşanu [14] deal with
problems with nonlinear boundary conditions and prove existence results using
Szulkin’s critical point theory (see, for example [8]). Also, such type of problems,
but with nonpotential right hand term, are studied in G. Dincǎ and P. Jebe-
lean [4] by the a priori estimates method. R. Manasevich and J. Mawhin [16]
and J. Mawhin [18] obtain existence results by degree theoretic methods. The
approach in E. Papageorgiou and N. S. Papageorgiou [21] is based on the the-
ory of nonlinear operators of monotone type and they deal with problems which
may have unilateral constraints, while in [20], [22] they prove multiplicity re-
sults using minimax techniques. Part of the results from [8], [20] and [22] were
extended in F. Papalini [23]. Finally, K. M. Teng and X. P. Wu [26] obtain
existence and multiplicity of solutions for p ≥ 2. In [13], [20], [22], [23] and [26]
the potential function is locally Lipschitz and in general nonsmooth. So, the
method of proof relies on the nonsmooth critical point theory (see L. Gasinski
and N. S. Papageorgiou [8]).

Here we prove an existence result and a multiplicity result for problem (1.1).
In the existence theorem we assume that the potential F (t, · ) is p-superlinear,
but need not to satisfy the usual in such cases AR-condition. The multiplicity
theorem concerns systems which are strongly resonant with respect to the prin-
cipal eigenvalue λ0 = 0. Such problems exhibit a partial lack of compactness, in
the sense that the PS-condition is not globally satisfied.
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2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space which admits a direct sum decomposition
X = Y ⊕ V and let ϕ ∈ C1(X). We say that ϕ has a local linking at the origin
(with respect to the decomposition (Y, V )) if there exists an r > 0 such that{

ϕ(y) ≤ 0 for all y ∈ Y with ‖y‖ ≤ r,

ϕ(v) ≥ 0 for all v ∈ V with ‖v‖ ≤ r.

It is easy to see that if ϕ has a local linking at the origin, then x = 0 is a
critical point of ϕ.

We say that ϕ satisfies the Palais–Smale condition at the level c ∈ R (the
PSc-condition for short) if every sequence {xn}n≥1 ⊂ X such that

ϕ(xn) → c and ϕ′(xn) → 0 in X∗, as n →∞,

has a strongly convergent subsequence. If ϕ satisfies the PSc-condition at every
level c ∈ R, then we say that ϕ satisfies the PS-condition. Sometimes we need to
use a weaker compactness-type condition on the functional ϕ. So, we say that
ϕ satisfies the Cerami condition at the level c ∈ R (the Cc-condition for short)
if every sequence {xn}n≥1 ⊂ X such that

ϕ(xn) → c and (1 + ‖xn‖)ϕ′(xn) → 0 in X∗, as n →∞,

has a strongly convergent subsequence. If ϕ satisfies the Cc-condition at every
level c ∈ R, then we say that ϕ satisfies the C-condition.

The next result is essentially du to S. J. Li and M. Willem [15]. In their
formulation of the result they use a gradient version of the PS-condition. Not-
ing that the deformation theorem remains true if the functional ϕ satisfies the
C-condition instead of the PS-condition (see P. Bartolo, V. Benci and D. For-
tunato [2]), we can state the following version of Theorem 2 in S. J. Li and
M. Willem [15].

Theorem 2.1. If X is a Banach space, X = Y ⊕ V with dim Y < ∞ and
ϕ ∈ C1(X) satisfies:

(a) ϕ has a local linking at the origin;
(b) ϕ satisfies the C-condition;
(c) ϕ maps bounded sets into bounded sets;
(d) for every E ⊂ V finite dimensional subspace, ϕ|Y⊕E is anticoercive (i.e.

ϕ(x) → −∞ as ‖x‖ → ∞, x ∈ Y ⊕ E),

then ϕ admits at least one nontrivial critical point.

In the proof of the multiplicity result we shall use the second deformation
theorem (see L. Gasinski and N. S. Papageorgiou [9, p. 628]). Let K be the
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critical set of ϕ, i.e. K = {x ∈ X | ϕ′(x) = 0}. We introduce the following sets:

ϕc = {x ∈ X | ϕ(x) ≤ c} (the sublevel set of ϕ at c ∈ R)

and
Kc = {x ∈ K | ϕ(x) = c} (the critical set of ϕ at the level c).

In the next theorem we allow c = +∞, in which case ϕc \Kc = X.

Theorem 2.2. If X is a Banach space, ϕ ∈ C1(X), a ∈ R, a < c ≤ +∞, ϕ

satisfies the PSr-condition for every r ∈ [a, c), ϕ−1(a, c)∩K = ∅ and ϕ−1(a)∩K

is finite, then there exists a homotopy h: [0, 1]× (ϕc \Kc) → ϕc such that

(a) h(1, ϕc \Kc) ⊂ ϕa;
(b) h(t, x) = x for all (t, x) ∈ [0, 1]× ϕa;
(c) ϕ(h(t, x)) ≤ ϕ(h(s, x)) for all t, s ∈ [0, 1], s ≤ t and all x ∈ ϕc \Kc (i.e.

the homotopy h is ϕ-decreasing).

According to Theorem 2.2 (the second deformation theorem), the set ϕa is a
strong deformation retract of ϕc \Kc.

Next, we present the functional framework and some basic results which are
needed in the analysis of problem (1.1).

The Sobolev space

W 1,p
per(T ) := {x ∈ W 1,p(T ; RN ) | x(0) = x(b)}

is endowed with the norm

‖x‖ = (‖x′‖p
p + ‖x‖p

p)
1/p,

where ‖·‖p stands for the usual norm on Lp(T ; RN ). Note that since W 1,p(T ; RN )
is embedded continuously (in fact compactly) in C(T ; RN ), the evaluations at
t = 0 and t = b in the definition of W 1,p

per(T ) make sense.
Let 〈 · , · 〉 denote the duality brackets for the pair (W 1,p

per(T )∗,W 1,p
per(T )) and

consider the nonlinear operator A:W 1,p
per(T ) → W 1,p

per(T )∗ defined by

〈A(x), y〉 =
∫ b

0

|x′(t)|p−2(x′(t), y′(t)) dt for all x, y ∈ W 1,p
per(T ).

Here ( · , · ) stands for the usual inner product in RN . It is a standard matter
that A is monotone and continuous, hence it is maximal monotone. Also, the
following result is known; however, for the sake of the completeness, we include
a short proof.

Proposition 2.3. The operator A is of type (S)+.

Proof. Let xn
w−→ x in W 1,p

per(T ) and assume that

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0.
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We need to show that xn → x in W 1,p
per(T ). From

0 ≤〈A(xn)−A(x), xn − x〉 = 〈A(xn), xn − x〉 − 〈A(x), xn − x〉
≤ sup

k≥n
〈A(xk), xk − x〉 − 〈A(x), xn − x〉

it follows 〈A(xn)−A(x), xn − x〉 → 0 as n →∞. Then, the inequality

0 ≤ (‖x′n‖p−1
p − ‖x′‖p−1

p )(‖x′n‖p − ‖x′‖p) ≤ 〈A(xn)−A(x), xn − x〉

yields ‖x′n‖p → ‖x′‖p as n →∞.
We know that x′n

w−→ x′ in Lp(T ; RN ). The space Lp(T ; RN ) being uniformly
convex, it has the Kadec–Klee property, which implies x′n → x′ in Lp(T ; RN ).
We also have xn → x in C(T ; RN ) (by the compactness of the embedding of
W 1,p

per(T ) into C(T ; RN )). Therefore, we conclude that xn → x in W 1,p
per(T ). �

3. Existence of nontrivial solutions

In this section we prove an existence theorem for problem (1.1) under the
hypothesis that the potential F (t, · ) exhibiths p-superlinear growth near infinity,
but need not to satisfy the AR-condition. The precise hypotheses on F are the
following:

(H1) F :T × RN → R is a function such that

(i) for all x ∈ RN , t 7→ F (t, x) is measurable;
(ii) for almost all t ∈ T , x 7→ F (t, x) is C1 and F (t, 0) = 0;
(iii) for almost all t ∈ T and all x ∈ RN

|∇F (t, x)| ≤ a(t) + c|x|r−1

with a ∈ L1(T )+, c > 0 and p < r < ∞;
(iv) lim|x|→∞(F (t, x)/|x|p) = +∞ uniformly for almost all t ∈ T and there

exists µ > r − p such that

(3.1) lim inf
|x|→∞

(∇F (t, x), x)− pF (t, x)
|x|µ

> 0 uniformly for a.a. t ∈ T ;

(v) lim supx→0(pF (t, x)/|x|p) < 1/bp uniformly for almost all t ∈ T and
there exists δ > 0 such that F (t, x) ≥ 0 for almost all t ∈ T and all
x ∈ RN with |x| ≤ δ.

Remark 3.1. Hypothesis (H1) implies that F (t, · ) is p-superlinear. How-
ever, we do not assume the AR-condition, very common in such cases. We recall
that the AR-condition says that there exist β > p and M > 0 such that

(3.2) 0 < βF (t, x) ≤ (∇F (t, x), x) for a.a. t ∈ T and all |x| ≥ M.
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Integrating (3.2) we get

(3.3) c1|x|β ≤ F (t, x) for a.a. t ∈ T, all |x| ≥ M, for some c1 > 0.

Clearly, (3.3) is stronger than the condition

lim
|x|→∞

F (t, x)
|x|p

= +∞ uniformly for a.a. t ∈ T .

Here, instead of (3.2) we use the weaker condition (3.1). Note that (3.1) was used
earlier in the frame of semilinear (i.e. p = 2) Hamiltonian systems by G. Fei [6].
The following example provides a function F which satisfies (3.1) but not (3.2).

Example 3.2. Consider the function F : RN → R (for the sake of simplicity
we drop the t-dependence), defined by

F (x) =
1
p
|x|p ln(1 + |x|α)

with α > 1. Then F satisfies hypothesis (H1) (with r = p + ε, ε ∈ (0, p) and
µ = p), but it does not satisfy the AR-condition (see (3.2)).

The Euler–Lagrange functional for problem (1.1) is defined by

ϕ(x) =
1
p
‖x′‖p

p −
∫ b

0

F (t, x(t)) dt for all x ∈ W 1,p
per(T ).

It is known that ϕ ∈ C1(W 1,p
per(T ), R). Also, we shall consider the direct sum

decomposition
W 1,p

per(T ) = RN ⊕ V,

with V = {x ∈ W 1,p
per(T ) |

∫ b

0
x(t) dt = 0}.

Proposition 3.3. If hypotheses (H1) hold, then ϕ satisfies the C-condition.

Proof. Let {xn}n≥1 ⊂ W 1,p
per(T ) be a sequence such that

(3.4) |ϕ(xn)| ≤ M1 for some M1 > 0 and all n ≥ 1,

and

(3.5) (1 + ‖xn‖)ϕ′(xn) → 0 in W 1,p
per(T )∗, as n →∞.

We know that

(3.6) ϕ′(xn) = A(xn)−N(xn)

with N(u)( · ) = ∇F ( · , u( · )) for all u ∈ W 1,p
per(T ) (see, for example P. Jebe-

lean [12]).

Claim. {xn}n≥1 is bounded in W 1,p
per(T ).
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Suppose that the Claim is not true. By passing to a suitable subsequence if
necessary, we may assume that ‖xn‖ → ∞. From (3.5) and (3.6) we have

(3.7)
∣∣∣∣〈A(xn), u〉 −

∫ b

0

(∇F (t, xn), u) dt

∣∣∣∣ ≤ εn

1 + ‖xn‖
‖u‖ for all u ∈ W 1,p

per(T ),

with εn → 0+. From (3.7), with u = xn, it follows

(3.8) −‖x′n‖p
p +

∫ b

0

(∇F (t, xn), xn) dt ≤ εn for all n ≥ 1.

Also, from (3.4) we have

(3.9) ‖x′n‖p
p −

∫ b

0

pF (t, xn) dt ≤ pM1 for all n ≥ 1.

Adding (3.8) and (3.9), we obtain

(3.10)
∫ b

0

[(∇F (t, xn), xn)− pF (t, xn)] dt ≤ M2 for some M2 > 0, all n ≥ 1.

By virtue of hypothesis (H1)(iv) we can find β > 0 and M3 = M3(β) with

(3.11) 0 < β|x|µ ≤ (∇F (t, x), x)− pF (t, x) for a.a. t ∈ T and all |x| ≥ M3.

Since F (t, 0) = 0, hypothesis (H1)(iii) implies that there is some M4 ∈ L1(T )+
such that

(3.12) |(∇F (t, x), x)− pF (t, x)| ≤ M4(t) for a.a. t ∈ T and all |x| < M3.

Combining (3.11) and (3.12), we infer that

(3.13) β|x|µ − c1(t) ≤ (∇F (t, x), x)− pF (t, x) for a.a. t ∈ T, all x ∈ RN ,

where c1(t) = M4(t) + βMµ
3 .

We return to (3.10) and use (3.13). Then

(3.14) β‖xn‖µ
µ ≤ M5 for some M5 > 0, all n ≥ 1,

⇒ {xn}n≥1 is bounded in Lµ(T, RN ).

It is clear from (3.1) that we can always assume, without loss of generality,
that µ < r. Then∫ b

0

|xn|r dt =
∫ b

0

|xn|r−µ|xn|µ dt ≤ ‖xn‖r−µ
∞

∫ b

0

|xn|µ dt(3.15)

≤ c2‖xn‖r−µ for some c2 > 0, all n ≥ 1 (see (3.14)),

(3.16) ⇒ ‖xn‖r
p ≤ c3‖xn‖r−µ for some c3 > 0, all n ≥ 1 (since p < r)

⇒ ‖xn‖p
p ≤ c4‖xn‖(r−µ)p/r with c4 = c

p/r
3 , all n ≥ 1,

⇒ ‖xn‖p
p ≤ c4(1 + ‖xn‖r−µ) for all n ≥ 1.
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From (3.4), hypothesis (H1)(iii) and (3.15), we successively have

1
p
‖x′n‖p

p ≤M1 +
∫ b

0

F (t, xn) dt

≤M1 +
∫ b

0

(a(t)|xn(t)|+ c|xn(t)|r) dt

≤‖xn‖∞‖a‖1 + c‖xn‖r
r ≤ c̃‖xn‖+ cc2‖xn‖r−µ

for some c̃ > 0 and all n ≥ 1. This together with (3.16) yield

(3.17) ‖xn‖p ≤ c4 + ĉ‖xn‖+ c5‖xn‖r−µ for some ĉ, c5 > 0 and all n ≥ 1.

But recall that by hypothesis (H1)(iv) we have p > max{1, r − µ}. Hence, from
(3.17) it follows that {xn}n≥1 ⊂ W 1,p

per(T ) is bounded. This proves the Claim.
Thanks to the Claim we may assume that

(3.18) xn
w−→ x in W 1,p

per(T ) and xn→x in C(T ; RN ).

In (3.7) we choose u = xn − x. Then∣∣∣∣〈A(xn), xn−x〉−
∫ b

0

(∇F (t, xn), xn−x) dt

∣∣∣∣ ≤ εn

1 + ‖xn‖
‖xn−x‖ for all n ≥ 1.

Evidently ∫ b

0

(∇F (t, xn), xn − x) dt → 0 as n →∞

(see (3.18) and (H1)(iii)). Hence

lim
n→∞

〈A(xn), xn − x〉 → 0 ⇒ xn → x in W 1,p
per(T ) (see Proposition 2.3)

⇒ ϕ satisfies the C-condition. �

Proposition 3.4. If hypotheses (H1) hold, then ϕ has a local linking at the
origin with respect to (RN , V ).

Proof. By virtue of hypothesis (H1)(v), it is clear that we can find δ0 > 0
such that

(3.19) ϕ(x) = −
∫ b

0

F (t, x) dt ≤ 0 for all x ∈ RN ⊂ W 1,p
per(T ) with |x| ≤ δ0.

On the other hand, again from hypothesis (H1)(v), there are constants ε ∈
(0, 1/bp) and δ1 > 0, such that

(3.20) F (t, x) ≤ 1
p

(
1
bp
− ε

)
|x|p for a.a. t ∈ T and all |x| ≤ δ1.

Since V is embedded continuously (in fact, compactly) into C(T ; RN ), we can
find δ2 > 0 such that

x ∈ V and ‖x‖ ≤ δ2 ⇒ ‖x‖∞ ≤ δ1.
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On account of the inequality (see J. Mawhin and M. Willem [19, p. 8]):

(3.21) ‖x‖p
p ≤ bp‖x′‖p

p for all x ∈ V,

we can estimate ϕ(x) for x ∈ V , with ‖x‖ ≤ δ2, as follows

ϕ(x) =
1
p
‖x′‖p

p −
∫ b

0

F (t, x(t)) dt(3.22)

≥ 1
p
‖x′‖p

p −
1
p

(
1
bp
− ε

) ∫ b

0

|x(t)|p dt (see (3.20))

≥ ε

p
‖x‖p

p ≥ 0.

Letting δ = min{δ0, δ2}, from (3.19) and (3.22) we infer that ϕ has a local linking
at the origin with respect to (RN , V ). �

Proposition 3.5. If hypotheses (H1) hold and E ⊂ V is a finite dimen-
sional subspace, then ϕ|RN⊕E is anticoercive (i.e. ϕ(x) → −∞ as ‖x‖ → ∞, for
x ∈ RN ⊕ E).

Proof. By virtue of hypothesis (H1)(iv), given γ > 0, we can find M6 =
M6(γ) > 0 such that

(3.23) F (t, x) ≥ γ|x|p for a.a. t ∈ T, all |x| ≥ M6.

On the other hand, by hypothesis (H1)(iii) we can find ξγ ∈ L1(T )+ such that

(3.24) |F (t, x)| ≤ ξγ(t) for a.a. t ∈ T, all |x| ≤ M6.

Combining (3.23) and (3.24), we have

(3.25) F (t, x) ≥ γ|x|p − ξ̂γ(t) for a.a. t ∈ T and all x ∈ RN ,

where ξ̂γ = ξγ + γMp
6 ∈ L1(T )+. Now, let u ∈ RN ⊕ E. Then

(3.26) ϕ(u) =
1
p
‖u′‖p

p −
∫ b

0

F (t, u(t)) dt ≤ 1
p
‖u′‖p

p − γ‖u‖p
p + c6

with c6 = ‖ξ̂γ‖1 (see (3.25)). Because RN ⊕ E is finite dimensional, all norms
are equivalent and so from (3.26) we infer that

(3.27) ϕ(u) ≤ 1
p
‖u‖p − γ‖u‖p

p + c6 ≤
1
p
(1− γc7)‖u‖p + c6 for all u ∈ RN ⊕E,

with c7 > 0 independent of γ. Therefore, we can chose γ > 1/c7 and (3.27)
shows that ϕ|RN⊕E is anticoercive. �

Now we are ready for the existence theorem.
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Theorem 3.6. If hypotheses (H1) hold, then problem (1.1) has a nontrivial
solution x0 ∈ C1(T ; RN ).

Proof. It is clear that ϕ maps bounded sets into bounded sets. This to-
gether with Propositions 3.3–3.5 allow us to use Theorem 2.1, which gives the
existence of some x0 ∈ W 1,p

per(T ), x0 6= 0 such that ϕ′(x0) = 0, which means

(3.28) A(x0) = N(x0).

From (3.28), a standard reasoning using integration by parts, shows that x0 ∈
C1(T ; RN ) and solves (1.1) (see e.g. L. Gasinski and N. S. Papageorgiou [8]). �

4. Existence of multiple solutions

We prove a multiplicity theorem for problem (1.1). Our hypotheses on the
potential function F (t, x) incorporate systems which are strongly resonant with
respect to λ0 = 0, the principal eigenvalue of the negative vector p-Laplacian.
The Euler–Lagrange functional ϕ will be bounded below but not coercive.

The precise hypotheses on the potential function F (t, x) are the following:

(H2) F :T × RN → R is a function such that:

(i) for all x ∈ RN , t 7→ F (t, x) is measurable;
(ii) for almost all t ∈ T , x 7→ F (t, x) is C1 and F (t, 0) = 0;
(iii) for almost all t ∈ T and all x ∈ RN

|∇F (t, x)| ≤ a0(t)c0(|x|)

with a0 ∈ L1(T )+, c0 ∈ C(R+), c0 ≥ 0;
(iv) there exists a function F∞ ∈ L1(T ) such that

∫ b

0
F∞(t) dt ≤ 0 and

F (t, x) → F∞(t) for a.a. t ∈ T, as |x| → ∞;

(v) there exists a function η ∈ L1(T )+, η 6= 0 such that

lim inf
x→0

pF (t, x)
|x|p

≥ η(t) uniformly for a.a. t ∈ T ;

(vi) F (t, x) ≤ 1
pb

p |x|p for almost all t ∈ T and all x ∈ RN .

Remark 4.1. Hypothesis (H2)(iv) implies that al infinity we may have
strong resonance with respect to the principal eigenvalue λ0 = 0. As it is well
known, strongly resonant problems exhibit a partial lack of compactness. In our
case this is reflected in Proposition 4.3 below.

Example 4.2. The function

F (x) =


1

pbp
|x|p if |x| ≤ 1,

1
pbp|x|

(1 + (p + 1) ln |x|) if |x| > 1,
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satisfies hypotheses (H2) (again, for the sake of simplicity, we dropped the t-
dependence).

Proposition 4.3. If hypotheses (H2) hold, then ϕ satisfies the PSc-condi-
tion at every level c < −

∫ b

0
F∞(t) dt.

Proof. Let {xn}n≥1 ⊂ W 1,p
per(T ) be a sequence such that

(4.1) ϕ(xn) → c, with c < −
∫ b

0

F∞(t) dt

and

(4.2) ϕ′(xn) → 0 in W 1,p
per(T )∗, as n →∞.

Claim. {xn}n≥1 is bounded in W 1,p
per(T ).

We proceed by contradiction. So, suppose that ‖xn‖ → ∞ and set yn =
xn/‖xn‖, n ≥ 1. Then ‖yn‖ = 1 and we may assume that

(4.3) yn
w−→ y in W 1,p

per(T ) and yn → y in C(T ; RN ).

From (4.1) we have

(4.4) |ϕ(xn)| ≤ M7 for some M7 > 0, and all n ≥ 1,

⇒ 1
p
‖y′n‖p

p ≤
M7

‖xn‖p
+

∫ b

0

F (t, xn)
‖xn‖p

dt.

From (H2)(iv), for almost all t ∈ T there is some Mt > 0 such that |F (t, x)| ≤ Mt,
for all x ∈ RN . Then, by virtue of (H2)(vi) and Fatou’s lemma, it follows

(4.5) lim sup
n→∞

∫ b

0

F (t, xn(t))
‖xn‖p

dt ≤
∫ b

0

lim sup
n→∞

F (t, xn(t))
‖xn‖p

dt = 0.

So, if in (4.4) we pass to the limit as n → ∞, we get ‖y′‖p = 0 (see (4.3) and
(4.5)), which means that y = ξ ∈ RN .

If ξ = 0, then yn → 0 in W 1,p
per(T ), a contradiction to the fact that ‖yn‖ = 1,

for all n ≥ 1.
If ξ 6= 0, then |xn(t)| → ∞ for all t ∈ T , as n → ∞. Then, by virtue of

(H2)(iv), we have

F (t, xn(t)) → F∞(t) for a.a. t ∈ T, as n →∞.

Because of (4.1), given ε > 0, we can find n0 = n0(ε) ≥ 1 such that

|ϕ(xn)− c| ≤ ε for all n ≥ n0,

⇒ 1
p
‖x′n‖p

p −
∫ b

0

F (t, xn(t)) dt ≤ c + ε for all n ≥ n0,

⇒ −
∫ b

0

F∞(t) dt ≤ c + ε (by Fatou’s lemma).
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Since ε > 0 was arbitrary, we let ε → 0+ and obtain

−
∫ b

0

F∞(t) dt ≤ c,

which contradicts the choice of c ∈ R (see (4.1)). This proves the Claim.
Due to the Claim, we may assume that

xn
w−→ x in W 1,p

per(T ) and xn→x in C(T ; RN ).

Then using (4.2) and arguing as in the proof of Proposition 3.3, exploiting the
fact that the operator A is of type (S)+, we conclude that xn → x in W 1,p

per(T ).

Therefore, ϕ satisfies the PSc-condition at every level c < −
∫ b

0
F∞(t) dt. �

Now we are ready for the multiplicity theorem.

Theorem 4.4. If hypotheses (H2) hold, then problem (1.1) has at least two
nontrivial solutions x0, u0 ∈ C1(T, RN ).

Proof. By virtue of hypothesis (H2)(v), given ε > 0, we can find δ = δ(ε) >

0 such that

(4.6)
1
p
(η(t)− ε)|x|p ≤ F (t, x) for a.a. t ∈ T and x ∈ RN with |x| ≤ δ.

Let x = ξ ∈ RN with |ξ| ≤ δ. Then

(4.7) ϕ(ξ) = −
∫ b

0

F (t, ξ) dt ≤ −|ξ|
p

p

[ ∫ b

0

η(t) dt− εb

]
(see (4.6).

If we chose ε ∈ (0, ‖η‖1/b), then from (4.7) it follows that

(4.8) ϕ(ξ) < 0.

We show that ϕ is bounded below. Indeed, if this is not the case, then we can
find a sequence {xn}n≥1 ⊂ W 1,p

per(T ) such that

(4.9) ϕ(xn) → −∞ as n →∞.

Since ϕ maps bounded sets into bounded sets, we may assume that ‖xn‖ → ∞, as
n →∞. As before, let yn = xn/‖xn‖ and assume, without any loss of generality,
that

(4.10) yn
w−→ y in W 1,p

per(T ) and yn→y in C(T ; RN ).

We have
ϕ(xn)
‖xn‖p

=
1
p
‖y′n‖p

p −
∫ b

0

F (t, xn)
‖xn‖p

dt.

From (4.9) and (4.10) it follows

0 ≥ lim inf
n→∞

ϕ(xn)
‖xn‖p

≥ 1
p
‖y′‖p

p − lim sup
n→∞

∫ b

0

F (t, xn)
‖xn‖p

dt ≥ 1
p
‖y′‖p

p
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(by Fatou’s lemma; see (4.5)), meaning that y = ξ ∈ RN .
As before, if ξ = 0, then yn → 0 in W 1,p

per(T ), a contradiction to the fact that
‖yn‖ = 1, for all n ≥ 1. If ξ 6= 0, then |xn(t)| → +∞ for all t ∈ T , as n → ∞
and so, via (H2)(iv), (4.9) and Fatou’s lemma, we have

−∞ = lim
n→∞

ϕ(xn) ≥ −
∫ b

0

F∞(t) dt ≥ 0,

a contradiction. This proves that ϕ is bounded below.
From (4.8) we infer

−∞ < m := inf ϕ < 0 = ϕ(0) ≤ −
∫ b

0

F∞(t) dt.

According to Proposition 4.3, ϕ satisfies the PSm-condition. Hence, we can find
x0 ∈ W 1,p

per(T ) such that

(4.11) m = ϕ(x0) < 0 = ϕ(0)

(see, for example, L. Gasinski and N. S. Papageorgiou [9, p. 650]). From (4.11)
we see that x0 6= 0 and

(4.12) ϕ′(x0) = 0.

By virtue of (4.8), for ρ > 0 small enough, we have

(4.13) µ := sup{ϕ(x) | x ∈ ∂Bρ ∩ RN} < 0.

As before, we consider the direct sum decomposition

W 1,p
per(T ) = RN ⊕ V, with V =

{
x ∈ W 1,p

per(T )
∣∣∣∣ ∫ b

0

x(t) dt = 0
}

.

From (H2)(vi) and (3.21) , for x ∈ V , we have

(4.14) ϕ(x) ≥ 1
p
‖x′‖p

p −
1

pbp
‖x‖p

p ≥ 0 ⇒ inf
V

ϕ ≥ 0.

Suppose that x0 is the only nontrivial critical point of ϕ (see (4.12)). Let
a := m < 0 =: c and apply Theorem 2.2. Then we can find a homotopy
h: [0, 1]× (ϕc \Kc) → ϕc, such that h(t, x) = x for all (t, x) ∈ [0, 1]× ϕa and

h(1, ϕc \Kc) ⊂ ϕa,(4.15)

ϕ(h(t, x)) ≤ ϕ(h(s, x)) for all t, s ∈ [0, 1], s ≤ t, all x ∈ ϕc \Kc.(4.16)

Now, we consider the map γ:Bρ ∩ RN → W 1,p
per(T ) defined by

(4.17) γ(x) =

{
x0 if ‖x‖ ≤ ρ/2,

h(2(ρ− ‖x‖)/ρ, ρx/‖x‖) if ‖x‖ ∈ (ρ/2, ρ].
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If x ∈ RN , ‖x‖ = ρ/2, then 2x ∈ ϕc \Kc (see (4.13)) and so, by (4.15)

h

(
2(ρ− ‖x‖)

ρ
,

ρx

‖x‖

)
= h(1, 2x) ∈ ϕa = {x0},

showing that γ is continuous (see (4.17)). If x ∈ ∂Bρ∩RN then γ(x) = h(0, x) =
x, because h is a homotopy. Therefore

γ ∈ Γ = {γ ∈ C(Bρ ∩ RN ,W 1,p
per(T )) | γ|∂Bρ∩RN = id|∂Bρ∩RN }.

From L. Gasinski and N. S. Papageorgiou [9, p. 642], we know that the pair
{∂Bρ ∩ RN , Bρ ∩ RN} is linking with V in W 1,p

per(T )). It follows that

γ(Bρ ∩ RN ) ∩ V 6= ∅,

which ensures that

(4.18) sup{ϕ(γ(x)) | x ∈ Bρ ∩ RN} ≥ 0 (see (4.14)).

On the other hand, using (4.17), (4.11), (4.13) and (4.16), we deduce

(4.19) ϕ(γ(x)) ≤ µ < 0 for all x ∈ Bρ ∩ RN .

Comparing (4.18) and (4.19), we reach a contradiction. This proves that ϕ has
one more nontrivial critical point u0 6= x0. �
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