${\bf Topological\ Methods\ in\ Nonlinear\ Analysis} \ {\bf Journal\ of\ the\ Juliusz\ Schauder\ University\ Centre} \ {\bf Volume\ 38,\ 2011,\ 45-58}$

NONEXPANSIVE MAPPINGS ON HILBERT'S METRIC SPACES

Bas Lemmens

ABSTRACT. This paper deals with the iterative behavior of nonexpansive mappings on Hilbert's metric spaces (X,d_X) . We show that if (X,d_X) is strictly convex and does not contain a hyperbolic plane, then for each nonexpansive mapping, with a fixed point in X, all orbits converge to periodic orbits. In addition, we prove that if X is an open 2-simplex, then the optimal upper bound for the periods of periodic points of nonexpansive mappings on (X,d_X) is 6. The results have applications in the analysis of nonlinear mappings on cones, and extend work by Nussbaum and others.

1. Introduction

In [11] Hilbert introduced the following metric spaces which generalize the Cayley–Klein model of the hyperbolic plane. Let $X \subseteq \mathbb{R}^n$ be a bounded open convex set. For $x \neq y$ in X define the distance between x and y to be the logarithm of the *cross-ratio*,

$$[a,x,y,b] = \frac{|ay|}{|ax|} \frac{|bx|}{|by|},$$

where a and b are the points of intersection of the straight-line through x and y and the (Euclidean) boundary, ∂X , of X such that x is between a and y, and y is between b and x, see Figure 1.

©2011 Juliusz Schauder University Centre for Nonlinear Studies

²⁰¹⁰ Mathematics Subject Classification. Primary 47H09, 47H07; Secondary 54H20. Key words and phrases. Nonexpansive mappings, Hilbert's metric, periodic orbits, hyperbolic plane, simplices, nonlinear mappings on cones.

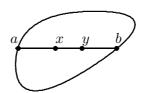


FIGURE 1. Hilbert's metric

So, for $x \neq y$ in X,

$$d_X(x,y) = \log[a, x, y, b].$$

The metric d_X is called *Hilbert's metric* on X. In case X is the interior of an ellipse, (X, d_X) is a model for the hyperbolic plane.

Hilbert's metric is a natural example of a projective metric, meaning that straight-line segments are geodesics, and plays a role in the solution of Hilbert's fourth problem [1]. In this paper we study the iterates of *nonexpansive mappings* $g: X \to X$ on Hilbert's metric spaces, so

$$d_X(g(x), g(y)) \le d_X(x, y)$$
 for all $x, y \in X$.

Motivating examples arise from nonlinear mappings on cones. More precisely, let $C \subseteq \mathbb{R}^{n+1}$ be a closed cone with non-empty interior C° , and let $C^{*} = \{\phi \in \mathbb{R}^{n+1}: \langle x, \phi \rangle \geq 0$ for all $x \in C\}$ denote the *dual cone*. The cone C induces a partial ordering \leq_{C} on \mathbb{R}^{n+1} by $x \leq_{C} y$ if $y - x \in C$. Suppose that ϕ is in the interior of C^{*} and let $X_{\phi} = \{x \in C^{\circ}: \langle x, \phi \rangle = 1\}$, which is a bounded, convex, relatively open set. Now if $f: C^{\circ} \to C^{\circ}$ is a monotone mapping, i.e. f preserves \leq_{C} on C° , and f is homogeneous of degree 1, then $g: X_{\phi} \to X_{\phi}$ given by,

(1.1)
$$g(x) = \frac{f(x)}{\langle f(x), \phi \rangle} \quad \text{for all } x \in X_{\phi},$$

is nonexpansive under Hilbert's metric, see [5], [22]. The original idea to use Hilbert's metric in the analysis of cone mappings is due to Garrett Birkhoff [3] and H. Samelson [26], who used it to analyze eigenvalue problems for linear operators that leave a closed cone in a Banach space invariant.

Interesting nonlinear examples arise in optimal control and game theory [7], [25], matrix scaling problems [23], and the analysis of diffusions on fractals [18], [21]. In these applications it is often important to understand the iterative behavior of $g: X_{\phi} \to X_{\phi}$ in (1.1).

The goal of this paper is to analyze the iterates of mappings $g: X \to X$ which are nonexpansive with respect to Hilbert's metric, for strictly convex domains X, meaning that ∂X does not contain any straight-line segments, and for X an open n-simplex. It is important to distinguish two cases: g has a fixed point in X, and g does not have a fixed point in X. In the second case it follows from a result by A. Calka [6] that the limit points of each orbit of g are contained

in the boundary of X. In fact, Nussbaum [24] and Karlsson have conjectured independently that, in that case, there exists $\Lambda \subseteq \partial X$ convex such that the limit points of all orbits of g are contained in Λ . If X is a strictly convex, the conjecture is known to be true [2] and Λ reduces to a single point. Partial results for general domains were obtained in [2], [12], [13], [17], [24].

In this paper we shall restrict ourselves to the first case and assume that g has a fixed point in X. We prove the following result.

THEOREM 1.1. Suppose that (X, d_X) is a strictly convex Hilbert's metric space and there exists no 2-dimensional plane P such that $X \cap P$ is the interior of an ellipse. If $g: X \to X$ is nonexpansive under Hilbert's metric and g has a fixed point, then every orbit of g converges to a periodic orbit. In fact, there exists an integer $g \ge 1$ such that $(g^{qk}(x))_k$ converges for all $x \in X$.

In other words, each orbit of a nonexpansive mapping converges to a periodic orbit if the domain does not contain a hyperbolic plane and the mapping has a fixed point.

If the domain X is an open polytope, i.e. the intersection of finitely many open half-spaces, then it is known [22], [27] that there is convergence to periodic orbits for nonexpansive mappings $g: X \to X$ with a fixed point in X. Moreover, there exists an a priori upper bound for the possible periods in terms of the number of facets of X. The current best estimate, obtained in [16], is

$$\max_{k=1,\dots,m} 2^k \binom{m}{k},$$

where m = N(N-1)/2 and N is the number of facets of X. This upper bound is believed to be far from optimal. Finding a sharp upper bound appears to be a hard combinatorial geometric problem, even when X is an open n-simplex. For the 2-simplex, however, we prove the following result.

THEOREM 1.2. If X is an open 2-simplex, then the optimal upper bound for the periods of periodic points of nonexpansive mappings on (X, d_X) is 6.

2. Preliminaries

Let (Y,d) be a complete metric space, and $g: Y \to Y$ be a continuous map. The *orbit* of y under g is denoted by $\mathcal{O}(y) = \{g^k(y): k = 0, 1, \dots\}$. A point $y \in Y$ is called a *periodic point* if $g^p(y) = y$ for some integer $p \geq 1$, and the smallest such $p \geq 1$ is called the *period* of y. For $y \in Y$ the ω -limit set of y under g is given by,

$$\omega(y;g) = \left\{ x \in Y : \lim_{i \to \infty} g^{k_i}(y) = x \text{ for some subsequence } k_i \to \infty \right\}.$$

Furthermore we write $\Omega_g = \bigcup_{y \in Y} \omega(y; g)$ to denote the attractor of g.

Clearly $\omega(y;g)$ is closed and $g(\omega(y;g)) \subseteq \omega(y;g)$. It is not hard to show that if $g: Y \to Y$ is continuous, $\mathcal{O}(y)$ is pre-compact, and $|\omega(y,g)| = q$, then $(g^{qk}(y))_k$ converges to a periodic point of g with period g. Moreover, if $g: Y \to Y$ is nonexpansive, g has a fixed point in Y, and the orbit of each point in Y is pre-compact, then each $\omega(y;g)$ is a non-empty compact set, and $g(\omega(y;g)) = \omega(y;g)$. Furthermore it was shown in [8] that $\omega(x;g) = \omega(y;g)$ for all $x \in \omega(y;g)$, and the restriction of g to $\omega(y;g)$ is an isometry, see [10].

A metric space (Y, d) is called *proper* if every closed ball is compact. Hilbert's metric spaces are separable and proper, since their topology coincides with the norm topology, see [22]. As the iterates of a nonexpansive mapping form an equicontinuous family, one can use an Arzelà–Ascoli type argument to prove the following assertion, see [4, p. 9] for details.

LEMMA 2.1. If (Y, d) is a separable proper metric space and $g: Y \to Y$ is a nonexpansive mapping with a fixed point in Y, then every subsequence of $(g^k)_k$ has a further subsequence which converges uniformly on compact subsets of Y.

Lemma 2.1 can be used to prove the following proposition concerning the existence of a nonexpansive retraction on Ω_g . The argument is a straightforward adaptation of [15, Proposition 2.1].

PROPOSITION 2.2. If (Y, d) is separable proper metric space and $g: Y \to Y$ is a nonexpansive mapping with a fixed point on Y, then there exists a nonexpansive retraction $r: Y \to Y$ onto Ω_g and the restriction of g to Ω_g is an isometry.

3. Strictly convex domains

Recall that a path $\gamma: [r, s] \to (X, d_X)$ is called a *geodesic* if

$$d_X(\gamma(t_1), \gamma(t_2)) = |t_1 - t_2|$$
 for all $t_1, t_2 \in [r, s]$.

A geodesic segment is the image of a geodesic in (X, d_X) . It is a well-known fact that if X is strictly convex, then (X, d_X) is uniquely geodesic [4, p. 106]; so, the only geodesic segments are the straight-line segments. For $x, y \in (X, d_X)$ we write [x, y] to denote the straight-line segment connecting x and y, and $\ell_{x,y}$ to denote the straight-line through x and y.

LEMMA 3.1. If (X, d_X) is a strictly convex Hilbert's metric space and $g: X \to X$ is a nonexpansive mapping with a fixed point in X, then Ω_g is convex.

PROOF. By Proposition 2.2 there exists a nonexpansive retraction $r: X \to X$ onto Ω_g . Thus, r(r(x)) = r(x) for all $x \in X$.

Now let $x, y \in \Omega_g$ and put $s = d_X(x, y)$. Let $\gamma: [0, s] \to X$ be the unique geodesic path connecting [x, y], so the image of γ is the straight-line segment

between x and y. Now let $u = \gamma(t)$, so $d_X(x, u) = t$ and $d_X(u, y) = s - t$. As r is nonexpansive, we get that $d_X(x, r(u)) \le t$ and $d_X(y, r(u)) \le s - t$. Now using

$$d_X(x, r(u)) + d_X(r(u), y) \le d_X(x, y) = s,$$

we find that $d_X(x, r(u)) = t$ and $d_X(y, r(u)) = s - t$. This implies that r(u) lies on the unique geodesic connecting x and y, which is [x, y]. Thus, r(u) = u and hence $u \in \Omega_g$.

It is convenient to embed the domain X into the affine hyperplane $H = \{(x,1) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n\}$ in \mathbb{R}^{n+1} by identifying X with $\{(x,1) \in \mathbb{R}^{n+1} : x \in X\}$. Let $P(\mathbb{R}^{n+1})$ denote the real n-dimensional projective space. So, $P(\mathbb{R}^{n+1})$ is the set of lines through the origin in \mathbb{R}^{n+1} . Recall that $P(\mathbb{R}^{n+1})$ can be partitioned into the set of lines intersecting the hyperplane H and the set of lines parallel to H. In other words, X is contained in the open cell of $P(\mathbb{R}^{n+1})$. Let $V' = \operatorname{aff}(\Omega_g)$ denote the affine span of Ω_g inside H, and put $X' = V' \cap X$. Let V be the vector space above V' in \mathbb{R}^{n+1} . Thus, X' lies in the open cell of the real projective space $P(V) = V' \cup P(V')$. We write

$$Coll(X') = \{ h \in PGL(V) : h(X') = X' \}$$

to denote the *collineation group* of X'.

PROPOSITION 3.2. If $g: X \to X$ is a nonexpansive mapping on a strictly convex Hilbert's metric space (X, d_X) , and g has a fixed point, then there exists a collineation $h \in Coll(X')$ such that h coincides with g on Ω_g .

PROOF. Let $k = \dim V' \geq 1$. (The case k = 0 is trivial.) By Lemma 3.1 Ω_g is convex, and hence there exist x^0, \ldots, x^k in Ω_g such that $\operatorname{conv}(x^0, \ldots, x^k)$ is a k-simplex in Ω_g Let $y \in \Omega_g$ be in the relative interior of $\operatorname{conv}(x^0, \ldots, x^k)$. So, y, x^0, \ldots, x^k forms a projective basis for P(V).

As g is an isometry on Ω_g and g maps Ω_g onto itself, $g_{|\Omega_g}$ and $g_{|\Omega_g}^{-1}$ map straight-line segments to straight-line segments in Ω_g . We now use a simple induction argument to prove the following claim.

Claim 1. For $0 \le k_0 < \ldots < k_s \le k$ we have that $z \in \operatorname{conv}(x^{k_0}, \ldots, x^{k_s})$ if and only if $g(z) \in \operatorname{conv}(g(x^{k_0}), \ldots, g(x^{k_s}))$.

If s=1, then the assertion is clear as g maps the straight-line segment $[x^{k_0},x^{k_1}]$ onto the straight-line segment $[g(x^{k_0}),g(x^{k_1})]$. Now suppose the assertion is true for all integers r with $1 \le r < s \le k$. Let $z \in \operatorname{conv}(x^{k_1},\ldots,x^{k_s})$. The assertion is clearly true for $z=x^{k_s}$. So, suppose that $z \ne x^{k_s}$ and let ℓ be the straight-line through z and x^{k_s} . Note that ℓ intersects $\operatorname{conv}(x^{k_1},\ldots,x^{k_{s-1}})$ in a point u. By the induction hypothesis $g(u) \in \operatorname{conv}(g(x^{k_1}),\ldots,g(x^{k_{s-1}}))$. As g maps $[u,x^{k_s}]$ onto $[g(u),g(x^{k_s})]$, we conclude that g(z) is in $\operatorname{conv}(g(x^{k_0}),\ldots,g(x^{k_s}))$.

 $g(x^{k_s})$). The opposite implication is obtained by applying the same argument to $g_{1\Omega_-}^{-1}$.

Claim 1 implies that $\operatorname{conv}(g(x^0), \ldots, g(x^k))$ is a k-dimensional simplex in Ω_g and g(y) is in its relative interior. Thus, $g(y), g(x^0), \ldots, g(x^k)$ is a projective basis for P(V). Let $h \in \operatorname{PGL}(V)$ be the unique collineation that coincides with g on $g(x^0, \ldots, g(x^k))$ and $g(x^0, \ldots, g(x^k))$ on the whole of $g(x^0, \ldots, g(x^k))$. We need the following claim.

Claim 2. If g coincides with h on 3 distinct collinear points $x, w, z \in \Omega_g$, then g coincides with h on the straight-line segment $\ell_{x,z} \cap \Omega_g$.

To prove the claim let $a, b \in \partial X'$ be the points of intersection of the straight-line through x and z such that x is between a and z, and z is between b and x. Likewise let $a', b' \in \partial X'$ be the points of intersection of the straight-line through g(x) and g(z) such that g(x) is between a' and g(z), and g(z) is between b' and g(x). There exists a collineation f on the projective line containing $\ell_{x,z}$ that maps a to a', b to b', and x to g(x). We show that f coincides with g on $\ell_{x,z} \cap \Omega_g$. For $u \in \ell_{x,z} \cap \Omega_g$, with u between x and b,

$$[a', g(x), g(u), b'] = [a, x, u, b] = [a', f(x), f(u), b'].$$

As f(x) = g(x), this equality uniquely determines g(u), so that g(u) = f(u). The case where u is between z and a is similar. Now note that, as x, w and z form a projective basis for the projective line containing $\ell_{x,z}$, and h and f coincides on these 3 points, f and h are identical on $\ell_{x,z}$. This implies that g and h are identical on $\ell_{x,z} \cap \Omega_g$.

Note that for each $0 \leq l \leq k$ there exists y^l in the relative interior of $\operatorname{conv}(\{x^1,\ldots,x^k\}\setminus\{x^l\})$ such that $h(y^l)=g(y^l)$. Simply let y^l be the point of intersection of $\ell_{x^l,y}$ and $\operatorname{conv}(\{x^1,\ldots,x^k\}\setminus\{x^l\})$. It follows from Claim 1 that $g(y^l)$ is in the relative interior of $\operatorname{conv}(\{g(x^0),\ldots,g(x^k)\}\setminus\{g(x^l)\})$. As g maps straight-line segments to straight-line segments. $g(y^l)$ is the unique point of intersection of $\ell_{g(x^l),g(y)}$ and $\operatorname{conv}(\{g(x^0),\ldots,g(x^k)\}\setminus\{g(x^l)\})$. Thus, $h(y^l)=g(y^l)$. Repeating this argument shows that for each $0 \leq k_0 < k_1 < \ldots < k_s \leq k$ there exists w in the relative interior of $\operatorname{conv}(x^{k_0},\ldots,x^{k_s})$ such that h(w)=g(w).

We shall now show by induction on $s \ge 1$ that g and h coincide on $\operatorname{conv}(x^{k_0}, \ldots, x^{k_s})$. The induction basis is true by Claim 2. Suppose the assertion is true for all m < s. Let v and w be points in the relative interior of $\operatorname{conv}(x^{k_0}, \ldots, x^{k_s})$ with $v \ne w$ and h(w) = g(w). Then the straight-line $\ell_{w,v}$ intersects the relative boundary of $\operatorname{conv}(x^{k_0}, \ldots, x^{k_s})$ in two distinct points p and q. By the induction hypothesis g and h coincide on p and q. As h(w) = g(w), we can apply Claim 2 to deduce that g(v) = h(v).

To see that g coincides with h on the whole of Ω_g we remark that for $v \in \Omega_g$ the straight-line $\ell_{y,v}$ contains at least 3 points of $\operatorname{conv}(x^0,\ldots,x^k)$, as y is in the relative interior of $\operatorname{conv}(x^0,\ldots,x^k)$. Thus, by Claim 2 g coincides with h on Ω_g .

It remains to show that h(X') = X'. Let $z_1 \neq z_2$ in the relative interior of $\operatorname{conv}(x^0, \ldots, x^k)$, and let $a, b \in \partial X' \cap \ell_{z_1, z_2}$ such that z_1 is between z_2 and a, and z_2 is between z_1 and b. Then $[a, z_1, z_2, b] = [a', g(z_1), g(z_2), b']$, where $a', b' \in \partial X' \cap \ell_{g(z_1), g(z_2)}$, and $g(z_1)$ is between a' and $g(z_2)$. There exists a collineation f that maps a to a', b to b', and z_1 to $g(z_1)$. As in the proof of Claim 2 g coincides with f on $[z_1, z_2]$. This implies that f coincides with f on f and f

Ideas similar to the ones behind Lemma 3.1 and Proposition 3.2 were used by Edelstein in [9] to analyze nonexpansive mappings on strictly convex Banach spaces.

A key ingredient in the proof of Theorem 1.1 is a result by Y. I. Lyubich and A. I. Veitsblit [20]. To state it we need to recall a few definitions. Let C be a closed cone with non-empty interior in a finite dimensional real vector space W, so C is convex, $\lambda C \subseteq C$ for all $\lambda > 0$, and $C \cap (-C) = \{0\}$. A linear map $A: W \to W$ is said to be *positive* if $A(C) \subseteq C$. We denote the *automorphism group* of C by

$$Aut(C) = \{ A \in GL(W) : A(C) = C \}.$$

A linear subspace U of W is called C-complemented if there exists a positive linear projection $P:W\to W$ with range U. Note that if U is a subspace of W, then $U\cap C$ is a closed sub-cone of C.

A closed cone C with non-empty interior in W, where $\dim W = n+1$, is called a *Lorentz cone* if there exists a system of coordinates x_1, \ldots, x_{n+1} such that

$$C = \{(x_1, \dots, x_{n+1}) \in W : x_{n+1}^2 - x_1^2 - \dots - x_n^2 \ge 0 \text{ and } x_{n+1} \ge 0\}.$$

THEOREM 2.3 (Lyubich-Veitsblit [20]). If $C \subseteq W$ is a closed cone with nonempty interior, and $\operatorname{Aut}(C)$ contains an infinite compact subgroup, then there exists a 3-dimensional C-complemented subspace U of W such that $K = C \cap U$ is a Lorentz cone in U.

We will now prove Theorem 1.1.

PROOF OF THEOREM 1.1. As before identify X with $\{(x,1) \in \mathbb{R}^{n+1} : x \in X\}$ and let $V' = \operatorname{aff}(\Omega_g)$ be the affine span of Ω_g in \mathbb{R}^{n+1} . Put $X' = V' \cap X$ and let V be the subspace above V' in \mathbb{R}^{n+1} .

Furthermore let C_X denote the closure of the open cone generated by X in \mathbb{R}^{n+1} , so

$$C_X = {\lambda(x, 1) \in \mathbb{R}^{n+1} : x \in \overline{X} \text{ and } \lambda \ge 0}.$$

Likewise let $C_{X'}$ denote the closure of the open cone generated by X' in V. Let $x^* \in \Omega_q$ be a fixed point of g, and note that x^* is in the interior of $C_{X'}$ in V.

By Proposition 2.2 there exists an $h \in \operatorname{Coll}(X')$ such that h coincides with g on Ω_g . Thus, there exists $A \in \operatorname{Aut}(C_{X'})$ such that pA = h, where p denotes the projection. Remark that, as $h(x^*) = g(x^*) = x^*$, we have that $A(x^*) = \sigma x^*$ for some $\sigma > 0$. Putting $B = \frac{1}{\sigma}A$ we see that $B \in \operatorname{Aut}(C_{X'})$, pB = h and $B(x^*) = x^*$.

As x^* in the interior of $C_{X'}$ in V, we know that $(B^k)_{k=0}^{\infty}$ is bounded. Indeed, let $||x|| = \inf\{\mu > 0: -\mu x^* \leq_C x \leq_C \mu x^*\}$ be the order unit norm on V, see [22, p.14]. Now let $x \in V$ and $||x|| = \tau$. Then $-\tau x^* \leq_C x \leq_C \tau x^*$, so that

$$-\tau x^* = -\tau B(x^*) \le_C B(x) \le_C \tau B(x^*) = \tau x^*.$$

This implies that ||B|| = 1, and hence $(B^k)_{k=0}^{\infty}$ is bounded. In the same way it can be shown that $||B^{-1}|| = 1$, and hence the closure of the group generated by $(B^k)_{k=0}^{\infty}$ is a compact subgroup of $\operatorname{Aut}(C_{X'})$.

As there exists no 2-dimensional plane P in \mathbb{R}^n such that $P \cap X$ is the interior of an ellipse, there exists no 3-dimensional subspace U of \mathbb{R}^{n+1} such that $U \cap C_{X'}$ is a Lorentz cone. Hence by the Lyubich–Veitsblit Theorem 2.3 we know that there exists an integer $q \geq 1$ such that $B^q = I$.

Now to prove the convergence to periodic orbits, it suffices to show that $|\omega(x;g)|$ divides q for each $x \in X$, since g is nonexpansive. So, let $x \in X$ and $y \in \omega(y;g)$. By [8] we know that $\omega(x;g) = \omega(y;g)$. As $y \in \Omega_g$, $g^q(y) = h^q(y) = pB^q(y) = y$. Therefore y is a periodic point of g whose period divides q. Thus, $|\omega(x;g)| = |\omega(y;g)|$ divides q, and we are done.

The proof of Theorem 1.1 does not use the full strength of the Lyubich–Veitsblit Theorem 2.3. In fact, I believe that the hypothesis in Theorem 1.1 can be weakened to the assumption: there exists no 3-dimensional C_X -complemented subspace of \mathbb{R}^{n+1} such that $C_X \cap U$ is a Lorentz cone. For instance, if $C_X = \{(x_1, \ldots, x_4) \in \mathbb{R}^4 : x_4^4 - x_1^4 - x_2^4 - x_3^4 \geq 0 \text{ and } x_4 \geq 0\}$, which corresponds to X being the interior of the unit ball in \mathbb{R}^3 with the ℓ_4 -norm, then it is known [19] that there exists a 3-dimensional subspace U such that $C_X \cap U$ is a Lorentz cone, but U is not C_X -complemented, see [20, Theorem 3]. A more daring speculation would be to conjecture that there is convergence to periodic orbits for general Hilbert's metric spaces not containing a hyperbolic plane.

It must be noted that there exists an analogous result for finite dimensional strictly convex normed spaces, see [15]. In that case one assumes that there exists no 1-complemented Euclidean plane to ensure convergence to periodic orbits.

4. The simplex

It is known [22] that if X is an open n-simplex, then (X, d_X) is isometric to a normed space $(\mathbb{R}^n, \|\cdot\|_H)$, where $\|\cdot\|_H$ has a polyhedral unit ball. As (X, d_X) and (Y, d_Y) are isometric if X and Y are open n-simplices, we can restrict ourselves to analyzing Hilbert's metric on the *standard n-simplex*,

$$\Delta_n = \left\{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_i x_i = 1 \text{ and } x_i > 0 \text{ for } i = 1, \dots, n+1 \right\}.$$

In that case it is easy to describe the isometry. Let \mathbb{R}^{n+1} be equipped with an equivalence relation \sim given by, $x \sim y$ if $x = y + \lambda(1, \dots, 1)$ for some $\lambda \in \mathbb{R}$. Then \mathbb{R}^{n+1}/\sim is an *n*-dimensional vector space that can be endowed with the variation norm,

$$||x||_{\text{var}} = \max_{1 \le i \le n+1} x_i - \min_{1 \le j \le n+1} x_j \text{ for } x \in \mathbb{R}^{n+1} / \sim.$$

There exists an isometry of (Δ_n, d_{Δ_n}) onto $(\mathbb{R}^{n+1}/\sim, \|\cdot\|_{\text{var}})$ which is given by,

$$Log(x) = (\log x_1, \dots, \log x_{n+1})$$
 for $x \in \Delta_n$.

By taking the representative $x \in \mathbb{R}^{n+1}$ with $x_{n+1} = 0$ in the equivalence class of x in \mathbb{R}^{n+1}/\sim , and projecting out the (n+1)-th coordinate, we see that (Δ_n, d_{Δ_n}) is isometric to $(\mathbb{R}^n, \|\cdot\|_H)$, where

$$||z||_H = \left(0 \lor \max_{1 \le i \le n} z_i\right) - \left(0 \land \min_{1 \le j \le n} z_j\right) \text{ for } z \in \mathbb{R}^n.$$

Here $a \vee b = \max\{a, b\}$ and $a \wedge b = \min\{a, b\}$. In dimension n = 2 the unit ball is a hexagon, as shown in Figure 2. For n = 3 the unit ball is a rhombic-dodecahedron.

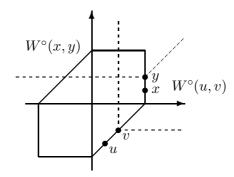


Figure 2. The unit ball of $\|\cdot\|_H$

It is clear that there exists an isometry A on $(\mathbb{R}^n, \|\cdot\|_H)$ with period 6. Simply take

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}.$$

Thus, on (Δ_2, d_{Δ_2}) there exists a nonexpansive mapping that has a period 6 point. In this section it is shown that 6 is the maximal possible period. The proof uses similar methods as the ones developed in [14].

Let $(\mathbb{R}^n, \|\cdot\|)$ be a polyhedral normed space, i.e. it unit ball is a polyhedron. A sequence $x^1, \ldots, x^k \in \mathbb{R}^n$ is called an *additive chain* if

$$||x^{1} - x^{k}|| = \sum_{i=1}^{k-1} ||x^{i} - x^{i+1}||.$$

As $\|\cdot\|$ is a polyhedral norm, x^1, x^2, \dots, x^k need not lie on a straight-line in order to be an additive chain. For $x, y \in \mathbb{R}^n$ define

$$W(x,y) = \{z \in \mathbb{R}^n : x, y, z \text{ is an additive chain}\}$$

and denote its interior by $W^{\circ}(x,y)$. Given a polyhedral norm on \mathbb{R}^n whose unit ball has m facets, i.e. m faces of dimension n-1, there exist m linear functionals ϕ_i, \ldots, ϕ_m such that

$$||x|| = \max_{i=1,\dots,m} \langle \phi_i, x \rangle$$
 for all $x \in \mathbb{R}^n$.

Let
$$I(x,y) = \{i: ||x-y|| = \phi_i(x-y)\}.$$

LEMMA 4.1. If x^1, \ldots, x^k is a sequence in a polyhedral normed vector space $(\mathbb{R}^n, \|\cdot\|)$ and $\|x^1 - x^k\| = \phi_i(x^1 - x^k)$, then x^1, \ldots, x^k is an additive chain if and only if $\|x^j - x^{j+1}\| = \phi_i(x^j - x^{j+1})$ for all $j = 1, \ldots, k-1$.

PROOF. Clearly

$$||x^{1} - x^{k}|| = \sum_{i=1}^{k-1} ||x^{j} - x^{j+1}|| \ge \sum_{i=1}^{k-1} \phi_{i}(x^{j} - x^{j+1}) = \phi_{i}(x^{1} - x^{k}) = ||x^{1} - x^{k}||.$$

Thus, $\phi_i(x^j - x^{j+1}) = ||x^j - x^{j+1}||$ for all j = 1, ..., k-1. Conversely,

$$||x^{1} - x^{k}|| \le \sum_{j=1}^{k-1} ||x^{j} - x^{j+1}|| = \sum_{j=1}^{k-1} \phi_{i}(x^{j} - x^{j+1}) = \phi_{i}(x^{1} - x^{k}) \le ||x^{1} - x^{k}||.$$

It follows from Lemma 4.1 that x^1, x^2, \ldots, x^k is an additive chain if and only if $\bigcap_{i=1}^{k-1} I(x^j, x^{j+1}) \neq \emptyset$.

LEMMA 4.2. For $x \neq y$ in a polyhedral normed vector $(\mathbb{R}^n, \|\cdot\|)$ we have that

$$W^{\circ}(x,y) = \{z \in W(x,y) : I(y,z) \subseteq I(x,y)\}.$$

PROOF. Suppose that x, y, z is an additive chain and $I(y, z) \not\subseteq I(x, y)$. Let $i \in I(y, z) \setminus I(x, y)$. For $\varepsilon > 0$ there exists $z' \in \mathbb{R}^n$ such that $I(y, z') = \{i\}$ and $||z' - z|| \le \varepsilon$. Note that x, y, z' is not an additive chain, as $I(x, y) \cap I(y, z') = \emptyset$. Hence $z \in \partial W(x, y)$, which shows that

$$W^{\circ}(x,y) \subseteq \{z \in W(x,y): I(y,z) \subseteq I(x,y)\}.$$

On the other hand, given an additive chain x, y, z, we let

$$\varepsilon = \min_{i,j} \phi_i(y-z) - \phi_j(y-z) > 0,$$

where the minimum is taken over all $i \in I(y, z)$ and $j \notin I(y, z)$.

For each $z' \in \mathbb{R}^n$ with $||z-z'|| < \varepsilon/2$, we have that $I(y,z') \subseteq I(y,z)$. Indeed, if $j \notin I(y,z)$ and $i \in I(y,z)$, then

$$\phi_{j}(y - z') = \phi_{j}(y - z) + \phi_{j}(z - z') \le \phi_{i}(y - z) + \phi_{j}(z - z') - \varepsilon < \phi_{i}(y - z) - \varepsilon/2$$

$$\le \phi_{i}(y - z') + \phi_{i}(z' - z) - \varepsilon/2 < \phi_{i}(y - z'),$$

and hence $j \notin I(y, z')$.

As $I(y,z) \subseteq I(x,y)$, we know that $I(y,z') \subseteq I(x,y)$. This implies that $I(y,z') \cap I(x,y)$ is non-empty, and hence x,y,z' is an additive chain.

Recall that if $\mathcal{O} = \{\xi, g(\xi), \dots, g^{p-1}(\xi)\}$ is a periodic orbit of a nonexpansive mapping g on a metric space (Y, d), then the iterates $\Gamma = \{g^k : k = 0, \dots p - 1\}$ form a cyclic group of isometries on \mathcal{O} that acts transitively on \mathcal{O} , i.e. for each $x, y \in \mathcal{O}$ there exists $g^k \in \Gamma$ such that $g^k(x) = y$. The following lemma generalizes [14, Lemma 2.2].

LEMMA 4.3. If S is a compact set in a polyhedral normed space $(\mathbb{R}^n, \|\cdot\|)$ and S has a transitive commutative group of isometries, then

$$W^{\circ}(x,y) \cap S = \emptyset$$
 for all $x \neq y \in S$.

PROOF. Let $x, y, z \in S$ be such that $x \neq y$ and $z \in W^{\circ}(x, y)$. Put $\varepsilon = \min\{\|x - y\|, \|y - z\|\} > 0$. Denote the collection of all additive chains in S starting with x, y, z and which are such that the distance between consecutive points in the chain is at least ε by \mathcal{F} .

Note that, since S is compact, there exists an upper bound on the length of the additive chains in \mathcal{F} . Let $x^1=x, x^2=y, x^3=z, \ldots, x^r$ be an additive chain in \mathcal{F} of maximal length.

For $1 \le k, l \le r$ let $g_{k,l}$ be an isometry on S in the commutative group that acts transitively on S such that $g_{k,l}(x^k) = x^l$. Denote $x^{r+1} = g_{1,2}(x^r)$. We now

show that $x^2, x^3, \ldots, x^{r+1}$ is also an additive chain in S in which the distance between consecutive points is at least ε . Indeed, as the group is commutative,

$$||x^r - x^{r+1}|| = ||g_{1,r}(x^1) - g_{1,r}(g_{1,2}(x^1))|| = ||x^1 - x^2|| \ge \varepsilon.$$

This equality implies,

$$||x^{2} - x^{r+1}|| = ||g_{1,2}(x^{1}) - g_{1,2}(x^{r})|| = \sum_{j=1}^{r-1} ||x^{j} - x^{j+1}|| = \sum_{j=2}^{r} ||x^{j} - x^{j+1}||,$$

and hence $\bigcap_{j=2}^r I(x^j, x^{j+1}) \neq \emptyset$. As $z \in W^{\circ}(x, y)$, we know that $I(x^2, x^3) \subseteq I(x^1, x^2)$, and hence $\bigcap_{j=1}^r I(x^j, x^{j+1}) \neq \emptyset$. But this implies that x^1, \ldots, x^{r+1} is an additive chain in \mathcal{F} , which contradicts the maximality of r.

We can now prove Theorem 1.2.

PROOF OF THEOREM 1.2. If g is a nonexpansive mapping on $(\mathbb{R}^2, \|\cdot\|_H)$ with a periodic orbit \mathcal{O} and fixed point x^* , then \mathcal{O} is contained in the boundary of the ball $B(x^*) = \{x \in \mathbb{R}^2 : \|x - x^*\|_H \leq R\}$ for some $R \geq 0$. Without loss of generality we may assume that $x^* = 0$.

Partition $\partial B(x^*)$ as follows:

$$\begin{split} A_1 &= \{x \in \mathbb{R}^2 : x_1 = R \text{ and } 0 \leq x_2 < R\}, \\ A_2 &= \{x \in \mathbb{R}^2 : x_2 = R \text{ and } 0 < x_1 \leq R\}, \\ A_3 &= \{x \in \mathbb{R}^2 : x_2 - x_1 = R \text{ and } 0 < x_2 < R\}, \\ A_4 &= \{x \in \mathbb{R}^2 : x_1 = -R \text{ and } -R < x_2 \leq 0\}, \\ A_5 &= \{x \in \mathbb{R}^2 : x_2 = -R \text{ and } -R \leq x_1 < 0\}, \\ A_6 &= \{x \in \mathbb{R}^2 : x_1 - x_2 = R \text{ and } -R \leq x_2 < 0\}. \end{split}$$

Each A_i corresponds to a facet of $\partial B(x^*)$ with one of its vertices removed.

By Lemma 4.3 each A_i can contain at most two points of \mathcal{O} , see also Figure 2. Moreover, if A_i contains 2 points of \mathcal{O} , then $A_{i+1} \cap \mathcal{O}$ is empty. (Here we are counting modulo 6.) Indeed, if ϕ_i denotes the facet defining functional of $\partial B(x^*)$ corresponding to A_i , then it is easy to verify that if $x \neq y$ in A_i , then $I(x,y) = \{i+1,i+2\}$, so that $W^{\circ}(x,y) \supseteq A_{i+1}$. Thus, $A_{i+1} \cap \mathcal{O}$ is empty, if $x \neq y$ in $A_i \cap \mathcal{O}$, and hence \mathcal{O} has at most 6 points. \square

The example of a period 6 orbit of a nonexpansive mapping on Δ_2 can be generalized to Δ_n . To do this it is convenient to work in $(\mathbb{R}^{n+1}/\sim, \|\cdot\|_{\text{var}})$. Let \mathcal{X} be the subset of all points $x \in \mathbb{R}^{n+1}/\sim$ such that $x_i = 1$ or $x_i = 0$ for each i. Note that $(0, \ldots, 0) = (1, \ldots, 1)$ and that for each $x \in \mathcal{X}$ we have $-x = (1, \ldots, 1) - x \in \mathcal{X}$. If $\mathcal{S} \subseteq \mathcal{X}$ is such that there exists no $x \neq y$ in \mathcal{S} with $x \leq y$, where the inequality holds coordinate-wise, then $\|x - y\|_{\text{var}} = 2$ for all $x \neq y$ in \mathcal{S} . For such sets \mathcal{S} it is known [16, p. 867] that there exists

a nonexpansive mapping $g_{\mathcal{S}}$ on \mathbb{R}^{n+1}/\sim which has \mathcal{S} as a periodic orbit. Now suppose that n is even and let $\mathcal{S}_n \subseteq \mathcal{X}$ be the set of points with exactly n/2 coordinates equal to 1. Then $-\mathcal{S}_n$ is the set of points with exactly n/2+1 coordinates equal to 1 in \mathcal{X} . Clearly the reflection in the origin, R(x) = -x, is an isometry on \mathbb{R}^{n+1}/\sim . Now if $|\mathcal{S}_n| = \binom{n+1}{n/2}$ is odd, the nonexpansive mapping $R \circ g_{\mathcal{S}_n}$ has a periodic orbit of length $2\binom{n+1}{n/2}$. For n=2, this gives a period 6 orbit Δ_2 . On the other hand, if $\binom{n+1}{n/2}$ is even, we can drop one point of \mathcal{S}_n and obtain a periodic orbit of length $2\binom{n+1}{n/2} - 2$. A similar construction exists for n odd. This shows, for general n, that there exists a nonexpansive mapping on (Δ_n, d_{Δ_n}) that has a periodic point with period

$$2\binom{n+1}{\lfloor n/2\rfloor} - 2\delta_n,$$

where $\delta_n = 1$ if $\binom{n+1}{\lfloor n/2 \rfloor}$ is even and $\delta_n = 0$ otherwise. It seems unlikely that this lower bound is optimal, but no better examples are known.

References

- J. C. ÁLVAREZ PAIVA, Hilbert's fourth problem in two dimensions, MASS selecta: teaching and learning advanced undergraduate mathematics (Svetlana Katok et al., eds.), Amer. Math. Soc., Providence, RI, 2003, pp. 165–183.
- [2] A. F. BEARDON, The dynamics of contractions, Ergodic Theory Dynam. Systems 17 (1997), 1257–1266.
- [3] G. Birkhoff, Extensions of Jentzsch's theorems, Trans. Amer. Math. Soc. 85 (1957), 219–277.
- [4] H. BUSEMANN, The Geometry of Geodesics Pure and Applied Mathematics, vol. 6, Academic Press, New York, 1955.
- P. Bushell, Hilbert's metric and positive contraction mappings in Banach space, Arch. Rational Mech. Anal. 52 (1973), 330–338.
- [6] A. CALKA, On conditions under which isometries have bounded orbits, Colloq. Math. 48 (1984), 219–227.
- [7] J. COCHET-TERRASSON AND S. GAUBERT, A policy iteration algorithm for zero-sum stochastic games with mean payoff, C. R. Math. Acad. Sci. Paris 343 (2006), 377–382.
- [8] C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Funct. Anal. 13 (1973), 97–106.
- [9] M. EDELSTEIN, On non-expansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60 (1964), 439–447.
- [10] H. FREUNDENTHAL AND W. HUREWICZ, Dehnungen, verkürzungen und isometrien, Fundamenta Math. 26 (1936), 120–122.
- [11] D. Hilbert, Über die gerade linie als kürzeste verbindung zweier punkte, Math. Ann. 46 (1895), 91–96.
- [12] A. KARLSSON, Non-expanding maps and Busemann functions, Ergodic Theory Dynam. Systems 21 (2001), 1447–1457.
- [13] A. KARLSSON AND G. A. NOSKOV, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. 48 (2002), 73–89.

- [14] B. Lemmens, R. D. Nussbaum and S. M. Verduyn Lunel, Lower and upper bounds for ω -limit sets of nonexpansive maps, Indag. Math. New Ser. 12 (2001), 191–211.
- [15] B. LEMMENS AND O. VAN GAANS, Dynamics of non-expansive maps on strictly convex Banach spaces, Israel J. Math. 171 (2009), 425–442.
- [16] B. LEMMENS AND M. SCHEUTZOW, On the dynamics of sup-norm nonexpansive maps, Ergodic Theory Dynam. Syst. 25 (2005), 861–871.
- [17] B. Lins, A Denjoy-Wolff theorem for Hilbert metric nonexpansive maps on polyhedral domains, Math. Proc. Cambridge Philos. Soc. 143 (2007), 157–164.
- [18] B. LINS AND R. NUSSBAUM, Denjoy-Wolff theorems, Hilbert metric nonexpansive maps and reproduction-decimation operators, J. Funct. Anal. 254 (2008), 2365–2386.
- [19] Y. I. LYUBICH AND L. N. VASERSTEIN, Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata 47 (1993), 327–362.
- [20] Yu. I. Lyubich and A. I. Veitsblit, Boundary spectrum of nonnegative operators, Siberian Math. J. 26 (1985), 798–802.
- [21] V. Metz, Hilbert's projective metric on cones of Dirichlet forms, J. Funct. Anal. 127 (1995), 438–455.
- [22] R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75 (1988), 1–137.
- [22] _____, Omega limit sets of nonexpansive maps: finiteness and cardinality estimates, Differential Integral Equations 3 (1990), 523–540.
- [23] _____, Entropy minimization, Hilbert's projective metric, and scaling integral kernels,
 J. Funct. Anal. 115 (1993), 45–99.
- [24] _____, Fixed point theorems and Denjoy-Wolff theorems for Hilbert's projective metric in infinite dimensions, Topol. Methods Nonlinear Anal. 29 (2007), 199–249.
- [25] D. ROSENBERG AND S. SORIN, An operator approach to zero-sum repeated games, Israel J. Math. 121 (2001), 221–246.
- [26] H. SAMELSON, On the Perron-Frobenius theorem, Michigan Math. J. 4 (1957), 57-59.
- [27] D. Weller, *Hilbert's metric, part metric and selfmappings of a cone*, Ph.D. dissertation (1987), Univ. of Bremen, Germany, December.

 $Manuscript\ received\ August\ 4,\ 2010$

BAS LEMMENS
SMSAS
University of Kent
Canterbury, CT2 7NF, UNITED KINGDOM
E-mail address: B.Lemmens@kent.ac.uk