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NONEXPANSIVE MAPPINGS
ON HILBERT’S METRIC SPACES

Bas Lemmens

Abstract. This paper deals with the iterative behavior of nonexpansive
mappings on Hilbert’s metric spaces (X, dX). We show that if (X, dX) is
strictly convex and does not contain a hyperbolic plane, then for each
nonexpansive mapping, with a fixed point in X, all orbits converge to
periodic orbits. In addition, we prove that if X is an open 2-simplex, then
the optimal upper bound for the periods of periodic points of nonexpansive
mappings on (X, dX) is 6. The results have applications in the analysis of
nonlinear mappings on cones, and extend work by Nussbaum and others.

1. Introduction

In [11] Hilbert introduced the following metric spaces which generalize the
Cayley–Klein model of the hyperbolic plane. Let X ⊆ R

n be a bounded open
convex set. For x �= y in X define the distance between x and y to be the
logarithm of the cross-ratio,

[a, x, y, b] =
|ay|
|ax|

|bx|
|by| ,

where a and b are the points of intersection of the straight-line through x and y

and the (Euclidean) boundary, ∂X , of X such that x is between a and y, and y

is between b and x, see Figure 1.

2010 Mathematics Subject Classification. Primary 47H09, 47H07; Secondary 54H20.
Key words and phrases. Nonexpansive mappings, Hilbert’s metric, periodic orbits, hyper-

bolic plane, simplices, nonlinear mappings on cones.

c©2011 Juliusz Schauder University Centre for Nonlinear Studies

45



46 B. Lemmens

....................

...................

..................
.................
................
..................
...................

.....................
....................... ......................... ........................... ............................. ..................... ................... ................ .............. ............ ......... ...............................................................................

....................
.....................
..

......................
....

........................
......

........................
...

......................................................................................................................................
...........
.............
...............
................

a x y b

Figure 1. Hilbert’s metric

So, for x �= y in X ,
dX(x, y) = log[a, x, y, b].

The metric dX is called Hilbert’s metric on X . In case X is the interior of an
ellipse, (X, dX) is a model for the hyperbolic plane.

Hilbert’s metric is a natural example of a projective metric, meaning that
straight-line segments are geodesics, and plays a role in the solution of Hilbert’s
fourth problem [1]. In this paper we study the iterates of nonexpansive mappings
g: X → X on Hilbert’s metric spaces, so

dX(g(x), g(y)) ≤ dX(x, y) for all x, y ∈ X.

Motivating examples arise from nonlinear mappings on cones. More precisely,
let C ⊆ R

n+1 be a closed cone with non-empty interior C◦, and let C∗ = {φ ∈
R

n+1: 〈x, φ〉 ≥ 0 for all x ∈ C} denote the dual cone. The cone C induces
a partial ordering ≤C on R

n+1 by x ≤C y if y − x ∈ C. Suppose that φ is in the
interior of C∗ and let Xφ = {x ∈ C◦: 〈x, φ〉 = 1}, which is a bounded, convex,
relatively open set. Now if f : C◦ → C◦ is a monotone mapping, i.e. f preserves
≤C on C◦, and f is homogeneous of degree 1, then g: Xφ → Xφ given by,

(1.1) g(x) =
f(x)

〈f(x), φ〉 for all x ∈ Xφ,

is nonexpansive under Hilbert’s metric, see [5], [22]. The original idea to use
Hilbert’s metric in the analysis of cone mappings is due to Garrett Birkhoff [3]
and H. Samelson [26], who used it to analyze eigenvalue problems for linear
operators that leave a closed cone in a Banach space invariant.

Interesting nonlinear examples arise in optimal control and game theory [7],
[25], matrix scaling problems [23], and the analysis of diffusions on fractals
[18], [21]. In these applications it is often important to understand the itera-
tive behavior of g: Xφ → Xφ in (1.1).

The goal of this paper is to analyze the iterates of mappings g: X → X which
are nonexpansive with respect to Hilbert’s metric, for strictly convex domains
X , meaning that ∂X does not contain any straight-line segments, and for X an
open n-simplex. It is important to distinguish two cases: g has a fixed point
in X , and g does not have a fixed point in X . In the second case it follows from
a result by A. Calka [6] that the limit points of each orbit of g are contained
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in the boundary of X . In fact, Nussbaum [24] and Karlsson have conjectured
independently that, in that case, there exists Λ ⊆ ∂X convex such that the
limit points of all orbits of g are contained in Λ. If X is a strictly convex, the
conjecture is known to be true [2] and Λ reduces to a single point. Partial results
for general domains were obtained in [2], [12], [13], [17], [24].

In this paper we shall restrict ourselves to the first case and assume that g

has a fixed point in X . We prove the following result.

Theorem 1.1. Suppose that (X, dX) is a strictly convex Hilbert’s metric
space and there exists no 2-dimensional plane P such that X ∩ P is the interior
of an ellipse. If g: X → X is nonexpansive under Hilbert’s metric and g has
a fixed point, then every orbit of g converges to a periodic orbit. In fact, there
exists an integer q ≥ 1 such that (gqk(x))k converges for all x ∈ X.

In other words, each orbit of a nonexpansive mapping converges to a periodic
orbit if the domain does not contain a hyperbolic plane and the mapping has a
fixed point.

If the domain X is an open polytope, i.e. the intersection of finitely many
open half-spaces, then it is known [22], [27] that there is convergence to periodic
orbits for nonexpansive mappings g: X → X with a fixed point in X . Moreover,
there exists an a priori upper bound for the possible periods in terms of the
number of facets of X . The current best estimate, obtained in [16], is

max
k=1,... ,m

2k

(
m

k

)
,

where m = N(N − 1)/2 and N is the number of facets of X . This upper bound
is believed to be far from optimal. Finding a sharp upper bound appears to be
a hard combinatorial geometric problem, even when X is an open n-simplex.
For the 2-simplex, however, we prove the following result.

Theorem 1.2. If X is an open 2-simplex, then the optimal upper bound for
the periods of periodic points of nonexpansive mappings on (X, dX) is 6.

2. Preliminaries

Let (Y, d) be a complete metric space, and g: Y → Y be a continuous map.
The orbit of y under g is denoted by O(y) = {gk(y): k = 0, 1, . . . }. A point y ∈ Y

is called a periodic point if gp(y) = y for some integer p ≥ 1, and the smallest
such p ≥ 1 is called the period of y. For y ∈ Y the ω-limit set of y under g is
given by,

ω(y; g) =
{

x ∈ Y : lim
i→∞

gki(y) = x for some subsequence ki → ∞
}

.

Furthermore we write Ωg =
⋃

y∈Y ω(y; g) to denote the attractor of g.
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Clearly ω(y; g) is closed and g(ω(y; g)) ⊆ ω(y; g). It is not hard to show that
if g: Y → Y is continuous, O(y) is pre-compact, and |ω(y, g)| = q, then (gqk(y))k

converges to a periodic point of g with period q. Moreover, if g: Y → Y is
nonexpansive, g has a fixed point in Y , and the orbit of each point in Y is pre-
compact, then each ω(y; g) is a non-empty compact set, and g(ω(y; g)) = ω(y; g).
Furthermore it was shown in [8] that ω(x; g) = ω(y; g) for all x ∈ ω(y; g), and
the restriction of g to ω(y; g) is an isometry, see [10].

A metric space (Y, d) is called proper if every closed ball is compact. Hilbert’s
metric spaces are separable and proper, since their topology coincides with the
norm topology, see [22]. As the iterates of a nonexpansive mapping form an
equicontinuous family, one can use an Arzelà–Ascoli type argument to prove the
following assertion, see [4, p. 9] for details.

Lemma 2.1. If (Y, d) is a separable proper metric space and g: Y → Y is
a nonexpansive mapping with a fixed point in Y , then every subsequence of (gk)k

has a further subsequence which converges uniformly on compact subsets of Y .

Lemma 2.1 can be used to prove the following proposition concerning the
existence of a nonexpansive retraction on Ωg. The argument is a straightforward
adaptation of [15, Proposition 2.1].

Proposition 2.2. If (Y, d) is separable proper metric space and g: Y → Y is
a nonexpansive mapping with a fixed point on Y , then there exists a nonexpansive
retraction r: Y → Y onto Ωg and the restriction of g to Ωg is an isometry.

3. Strictly convex domains

Recall that a path γ: [r, s] → (X, dX) is called a geodesic if

dX(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ [r, s].

A geodesic segment is the image of a geodesic in (X, dX). It is a well-known fact
that if X is strictly convex, then (X, dX) is uniquely geodesic [4, p. 106]; so,
the only geodesic segments are the straight-line segments. For x, y ∈ (X, dX) we
write [x, y] to denote the straight-line segment connecting x and y, and �x,y to
denote the straight-line through x and y.

Lemma 3.1. If (X, dX) is a strictly convex Hilbert’s metric space and g: X →
X is a nonexpansive mapping with a fixed point in X, then Ωg is convex.

Proof. By Proposition 2.2 there exists a nonexpansive retraction r: X → X

onto Ωg. Thus, r(r(x)) = r(x) for all x ∈ X .
Now let x, y ∈ Ωg and put s = dX(x, y). Let γ: [0, s] → X be the unique

geodesic path connecting [x, y], so the image of γ is the straight-line segment
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between x and y. Now let u = γ(t), so dX(x, u) = t and dX(u, y) = s − t. As r

is nonexpansive, we get that dX(x, r(u)) ≤ t and dX(y, r(u)) ≤ s− t. Now using

dX(x, r(u)) + dX(r(u), y) ≤ dX(x, y) = s,

we find that dX(x, r(u)) = t and dX(y, r(u)) = s − t. This implies that r(u) lies
on the unique geodesic connecting x and y, which is [x, y]. Thus, r(u) = u and
hence u ∈ Ωg. �

It is convenient to embed the domain X into the affine hyperplane H =
{(x, 1) ∈ R

n+1: x ∈ R
n} in R

n+1 by identifying X with {(x, 1) ∈ R
n+1: x ∈ X}.

Let P (Rn+1) denote the real n-dimensional projective space. So, P (Rn+1) is the
set of lines through the origin in R

n+1. Recall that P (Rn+1) can be partitioned
into the set of lines intersecting the hyperplane H and the set of lines parallel to
H . In other words, X is contained in the open cell of P (Rn+1). Let V ′ = aff(Ωg)
denote the affine span of Ωg inside H , and put X ′ = V ′∩X . Let V be the vector
space above V ′ in R

n+1. Thus, X ′ lies in the open cell of the real projective
space P (V ) = V ′ ∪ P (V ′). We write

Coll(X ′) = {h ∈ PGL(V ): h(X ′) = X ′}
to denote the collineation group of X ′.

Proposition 3.2. If g: X → X is a nonexpansive mapping on a strictly
convex Hilbert’s metric space (X, dX), and g has a fixed point, then there exists
a collineation h ∈ Coll(X ′) such that h coincides with g on Ωg.

Proof. Let k = dimV ′ ≥ 1. (The case k = 0 is trivial.) By Lemma 3.1 Ωg

is convex, and hence there exist x0, . . . , xk in Ωg such that conv(x0, . . . , xk) is
a k-simplex in Ωg Let y ∈ Ωg be in the relative interior of conv(x0, . . . , xk). So,
y, x0, . . . , xk forms a projective basis for P (V ).

As g is an isometry on Ωg and g maps Ωg onto itself, g|Ωg
and g−1

|Ωg
map

straight-line segments to straight-line segments in Ωg. We now use a simple
induction argument to prove the following claim.

Claim 1. For 0 ≤ k0 < . . . < ks ≤ k we have that z ∈ conv(xk0 , . . . , xks) if
and only if g(z) ∈ conv(g(xk0 ), . . . , g(xks)).

If s = 1, then the assertion is clear as g maps the straight-line segment
[xk0 , xk1 ] onto the straight-line segment [g(xk0 ), g(xk1)]. Now suppose the asser-
tion is true for all integers r with 1 ≤ r < s ≤ k. Let z ∈ conv(xk1 , . . . , xks).
The assertion is clearly true for z = xks . So, suppose that z �= xks and let � be
the straight-line through z and xks . Note that � intersects conv(xk1 , . . . , xks−1)
in a point u. By the induction hypothesis g(u) ∈ conv(g(xk1 ), . . . , g(xks−1)). As
g maps [u, xks ] onto [g(u), g(xks)], we conclude that g(z) is in conv(g(xk0), . . . ,
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g(xks)). The opposite implication is obtained by applying the same argument
to g−1

|Ωg
.

Claim 1 implies that conv(g(x0), . . . , g(xk)) is a k-dimensional simplex in Ωg

and g(y) is in its relative interior. Thus, g(y), g(x0), . . . , g(xk) is a projective
basis for P (V ). Let h ∈ PGL(V ) be the unique collineation that coincides with
g on y, x0, . . . , xk. We will show that h ∈ Coll(X ′) and h coincides with g on
the whole of Ωg. We need the following claim.

Claim 2. If g coincides with h on 3 distinct collinear points x, w, z ∈ Ωg,
then g coincides with h on the straight-line segment �x,z ∩ Ωg.

To prove the claim let a, b ∈ ∂X ′ be the points of intersection of the straight-
line through x and z such that x is between a and z, and z is between b and x.
Likewise let a′, b′ ∈ ∂X ′ be the points of intersection of the straight-line through
g(x) and g(z) such that g(x) is between a′ and g(z), and g(z) is between b′

and g(x). There exists a collineation f on the projective line containing �x,z

that maps a to a′, b to b′, and x to g(x). We show that f coincides with g on
�x,z ∩ Ωg. For u ∈ �x,z ∩ Ωg, with u between x and b,

[a′, g(x), g(u), b′] = [a, x, u, b] = [a′, f(x), f(u), b′].

As f(x) = g(x), this equality uniquely determines g(u), so that g(u) = f(u).
The case where u is between z and a is similar. Now note that, as x, w and
z form a projective basis for the projective line containing �x,z, and h and f

coincides on these 3 points, f and h are identical on �x,z. This implies that g

and h are identical on �x,z ∩ Ωg.

Note that for each 0 ≤ l ≤ k there exists yl in the relative interior of
conv({x1, . . . , xk} \ {xl}) such that h(yl) = g(yl). Simply let yl be the point of
intersection of �xl,y and conv({x1, . . . , xk} \ {xl}). It follows from Claim 1 that
g(yl) is in the relative interior of conv({g(x0), . . . , g(xk)} \ {g(xl)}). As g maps
straight-line segments to straight-line segments. g(yl) is the unique point of inter-
section of �g(xl),g(y) and conv({g(x0), . . . , g(xk)} \ {g(xl)}). Thus, h(yl) = g(yl).
Repeating this argument shows that for each 0 ≤ k0 < k1 < . . . < ks ≤ k there
exists w in the relative interior of conv(xk0 , . . . , xks) such that h(w) = g(w).

We shall now show by induction on s ≥ 1 that g and h coincide on conv(xk0 ,

. . . , xks). The induction basis is true by Claim 2. Suppose the assertion is true
for all m < s. Let v and w be points in the relative interior of conv(xk0 , . . . , xks)
with v �= w and h(w) = g(w). Then the straight-line �w,v intersects the relative
boundary of conv(xk0 , . . . , xks) in two distinct points p and q. By the induction
hypothesis g and h coincide on p and q. As h(w) = g(w), we can apply Claim 2
to deduce that g(v) = h(v).
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To see that g coincides with h on the whole of Ωg we remark that for v ∈ Ωg

the straight-line �y,v contains at least 3 points of conv(x0, . . . , xk), as y is in the
relative interior of conv(x0, . . . , xk). Thus, by Claim 2 g coincides with h on Ωg.

It remains to show that h(X ′) = X ′. Let z1 �= z2 in the relative interior of
conv(x0, . . . , xk), and let a, b ∈ ∂X ′ ∩ �z1,z2 such that z1 is between z2 and a,
and z2 is between z1 and b. Then [a, z1, z2, b] = [a′, g(z1), g(z2), b′], where a′, b′ ∈
∂X ′∩�g(z1),g(z2), and g(z1) is between a′ and g(z2). There exists a collineation f

that maps a to a′, b to b′, and z1 to g(z1). As in the proof of Claim 2 g coincides
with f on [z1, z2]. This implies that h coincides with f on �z1,z2 ∩X ′, and hence
h(a) = a′ and h(b) = b′, which completes the proof. �

Ideas similar to the ones behind Lemma 3.1 and Proposition 3.2 were used
by Edelstein in [9] to analyze nonexpansive mappings on strictly convex Banach
spaces.

A key ingredient in the proof of Theorem 1.1 is a result by Y. I. Lyubich
and A. I. Veitsblit [20]. To state it we need to recall a few definitions. Let C be
a closed cone with non-empty interior in a finite dimensional real vector space
W , so C is convex, λC ⊆ C for all λ > 0, and C ∩ (−C) = {0}. A linear map
A: W → W is said to be positive if A(C) ⊆ C. We denote the automorphism
group of C by

Aut(C) = {A ∈ GL(W ) : A(C) = C}.
A linear subspace U of W is called C-complemented if there exists a positive
linear projection P : W → W with range U . Note that if U is a subspace of W ,
then U ∩ C is a closed sub-cone of C.

A closed cone C with non-empty interior in W , where dim W = n + 1, is
called a Lorentz cone if there exists a system of coordinates x1, . . . , xn+1 such
that

C = {(x1, . . . , xn+1) ∈ W : x2
n+1 − x2

1 − . . . − x2
n ≥ 0 and xn+1 ≥ 0}.

Theorem 2.3 (Lyubich–Veitsblit [20]). If C ⊆ W is a closed cone with non-
empty interior, and Aut(C) contains an infinite compact subgroup, then there
exists a 3-dimensional C-complemented subspace U of W such that K = C ∩ U

is a Lorentz cone in U .

We will now prove Theorem 1.1.

Proof of Theorem 1.1. As before identify X with {(x, 1) ∈ R
n+1: x ∈ X}

and let V ′ = aff(Ωg) be the affine span of Ωg in R
n+1. Put X ′ = V ′ ∩X and let

V be the subspace above V ′ in R
n+1.

Furthermore let CX denote the closure of the open cone generated by X in
R

n+1, so
CX = {λ(x, 1) ∈ R

n+1 : x ∈ X and λ ≥ 0}.
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Likewise let CX′ denote the closure of the open cone generated by X ′ in V . Let
x∗ ∈ Ωg be a fixed point of g, and note that x∗ is in the interior of CX′ in V .

By Proposition 2.2 there exists an h ∈ Coll(X ′) such that h coincides with
g on Ωg. Thus, there exists A ∈ Aut(CX′ ) such that pA = h, where p denotes
the projection. Remark that, as h(x∗) = g(x∗) = x∗, we have that A(x∗) = σx∗

for some σ > 0. Putting B = 1
σ A we see that B ∈ Aut(CX′), pB = h and

B(x∗) = x∗.

As x∗ in the interior of CX′ in V , we know that (Bk)∞k=0 is bounded. Indeed,
let ‖x‖ = inf{µ > 0:−µx∗ ≤C x ≤C µx∗} be the order unit norm on V , see [22,
p.14]. Now let x ∈ V and ‖x‖ = τ . Then −τx∗ ≤C x ≤C τx∗, so that

−τx∗ = −τB(x∗) ≤C B(x) ≤C τB(x∗) = τx∗.

This implies that ‖B‖ = 1, and hence (Bk)∞k=0 is bounded. In the same way it
can be shown that ‖B−1‖ = 1, and hence the closure of the group generated by
(Bk)∞k=0 is a compact subgroup of Aut(CX′).

As there exists no 2-dimensional plane P in R
n such that P ∩X is the interior

of an ellipse, there exists no 3-dimensional subspace U of R
n+1 such that U∩CX′

is a Lorentz cone. Hence by the Lyubich–Veitsblit Theorem 2.3 we know that
there exists an integer q ≥ 1 such that Bq = I.

Now to prove the convergence to periodic orbits, it suffices to show that
|ω(x; g)| divides q for each x ∈ X , since g is nonexpansive. So, let x ∈ X and
y ∈ ω(y; g). By [8] we know that ω(x; g) = ω(y; g). As y ∈ Ωg, gq(y) = hq(y) =
pBq(y) = y. Therefore y is a periodic point of g whose period divides q. Thus,
|ω(x; g)| = |ω(y; g)| divides q, and we are done. �

The proof of Theorem 1.1 does not use the full strength of the Lyubich–
Veitsblit Theorem 2.3. In fact, I believe that the hypothesis in Theorem 1.1 can
be weakened to the assumption: there exists no 3-dimensional CX -complemented
subspace of R

n+1 such that CX ∩ U is a Lorentz cone. For instance, if CX =
{(x1, . . . , x4) ∈ R

4 : x4
4 −x4

1 −x4
2 −x4

3 ≥ 0 and x4 ≥ 0}, which corresponds to X

being the interior of the unit ball in R
3 with the �4-norm, then it is known [19]

that there exists a 3-dimensional subspace U such that CX ∩U is a Lorentz cone,
but U is not CX -complemented, see [20, Theorem 3]. A more daring speculation
would be to conjecture that there is convergence to periodic orbits for general
Hilbert’s metric spaces not containing a hyperbolic plane.

It must be noted that there exists an analogous result for finite dimensional
strictly convex normed spaces, see [15]. In that case one assumes that there exists
no 1-complemented Euclidean plane to ensure convergence to periodic orbits.
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4. The simplex

It is known [22] that if X is an open n-simplex, then (X, dX) is isometric
to a normed space (Rn, ‖ · ‖H), where ‖ · ‖H has a polyhedral unit ball. As
(X, dX) and (Y, dY ) are isometric if X and Y are open n-simplices, we can
restrict ourselves to analyzing Hilbert’s metric on the standard n-simplex,

∆n =
{

(x1, . . . , xn+1) ∈ R
n+1 :

∑
i

xi = 1 and xi > 0 for i = 1, . . . , n + 1
}

.

In that case it is easy to describe the isometry. Let R
n+1 be equipped with

an equivalence relation ∼ given by, x ∼ y if x = y + λ(1, . . . , 1) for some λ ∈ R.
Then R

n+1/∼ is an n-dimensional vector space that can be endowed with the
variation norm,

‖x‖var = max
1≤i≤n+1

xi − min
1≤j≤n+1

xj for x ∈ R
n+1/∼.

There exists an isometry of (∆n, d∆n) onto (Rn+1/∼, ‖ · ‖var) which is given by,

Log(x) = (log x1, . . . , log xn+1) for x ∈ ∆n.

By taking the representative x ∈ R
n+1 with xn+1 = 0 in the equivalence class of

x in R
n+1/∼, and projecting out the (n+1)-th coordinate, we see that (∆n, d∆n)

is isometric to (Rn, ‖ · ‖H), where

‖z‖H =
(

0 ∨ max
1≤i≤n

zi

)
−

(
0 ∧ min

1≤j≤n
zj

)
for z ∈ R

n.

Here a ∨ b = max{a, b} and a ∧ b = min{a, b}. In dimension n = 2 the unit
ball is a hexagon, as shown in Figure 2. For n = 3 the unit ball is a rhombic-
dodecahedron.

�

�

y
x

W ◦(x, y)

v
u

W ◦(u, v)

Figure 2. The unit ball of ‖ · ‖H
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It is clear that there exists an isometry A on (Rn, ‖ · ‖H) with period 6.
Simply take

A =
(

1 −1
1 0

)
.

Thus, on (∆2, d∆2) there exists a nonexpansive mapping that has a period 6
point. In this section it is shown that 6 is the maximal possible period. The
proof uses similar methods as the ones developed in [14].

Let (Rn, ‖ · ‖) be a polyhedral normed space, i.e. it unit ball is a polyhedron.
A sequence x1, . . . , xk ∈ R

n is called an additive chain if

‖x1 − xk‖ =
k−1∑
i=1

‖xi − xi+1‖.

As ‖ · ‖ is a polyhedral norm, x1, x2, . . . , xk need not lie on a straight-line in
order to be an additive chain. For x, y ∈ R

n define

W (x, y) = {z ∈ R
n: x, y, z is an additive chain}

and denote its interior by W ◦(x, y). Given a polyhedral norm on R
n whose unit

ball has m facets, i.e. m faces of dimension n−1, there exist m linear functionals
φi, . . . , φm such that

‖x‖ = max
i=1,... ,m

〈φi, x〉 for all x ∈ R
n.

Let I(x, y) = {i: ‖x− y‖ = φi(x − y)}.

Lemma 4.1. If x1, . . . , xk is a sequence in a polyhedral normed vector space
(Rn, ‖ · ‖) and ‖x1 − xk‖ = φi(x1 − xk), then x1, . . . , xk is an additive chain if
and only if ‖xj − xj+1‖ = φi(xj − xj+1) for all j = 1, . . . , k − 1.

Proof. Clearly

‖x1 − xk‖ =
k−1∑
j=1

‖xj − xj+1‖ ≥
k−1∑
j=1

φi(xj − xj+1) = φi(x1 − xk) = ‖x1 − xk‖.

Thus, φi(xj − xj+1) = ‖xj − xj+1‖ for all j = 1, . . . , k − 1. Conversely,

‖x1 −xk‖ ≤
k−1∑
j=1

‖xj −xj+1‖ =
k−1∑
j=1

φi(xj −xj+1) = φi(x1 −xk) ≤ ‖x1 −xk‖. �

It follows from Lemma 4.1 that x1, x2, . . . , xk is an additive chain if and only
if

⋂k−1
j=1 I(xj , xj+1) �= ∅.
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Lemma 4.2. For x �= y in a polyhedral normed vector (Rn, ‖·‖) we have that

W ◦(x, y) = {z ∈ W (x, y): I(y, z) ⊆ I(x, y)}.

Proof. Suppose that x, y, z is an additive chain and I(y, z) �⊆ I(x, y). Let
i ∈ I(y, z) \ I(x, y). For ε > 0 there exists z′ ∈ R

n such that I(y, z′) = {i} and
‖z′ − z‖ ≤ ε. Note that x, y, z′ is not an additive chain, as I(x, y) ∩ I(y, z′) = ∅.
Hence z ∈ ∂W (x, y), which shows that

W ◦(x, y) ⊆ {z ∈ W (x, y): I(y, z) ⊆ I(x, y)}.
On the other hand, given an additive chain x, y, z, we let

ε = min
i,j

φi(y − z) − φj(y − z) > 0,

where the minimum is taken over all i ∈ I(y, z) and j �∈ I(y, z).
For each z′ ∈ R

n with ‖z−z′‖ < ε/2, we have that I(y, z′) ⊆ I(y, z). Indeed,
if j �∈ I(y, z) and i ∈ I(y, z), then

φj(y − z′) = φj(y − z)+ φj(z − z′) ≤ φi(y − z)+ φj(z − z′)− ε < φi(y − z)− ε/2

≤ φi(y − z′) + φi(z′ − z) − ε/2 < φi(y − z′),

and hence j �∈ I(y, z′).
As I(y, z) ⊆ I(x, y), we know that I(y, z′) ⊆ I(x, y). This implies that

I(y, z′) ∩ I(x, y) is non-empty, and hence x, y, z′ is an additive chain. �
Recall that if O = {ξ, g(ξ), . . . , gp−1(ξ)} is a periodic orbit of a nonexpansive

mapping g on a metric space (Y, d), then the iterates Γ = {gk: k = 0, . . . p −
1} form a cyclic group of isometries on O that acts transitively on O, i.e. for
each x, y ∈ O there exists gk ∈ Γ such that gk(x) = y. The following lemma
generalizes [14, Lemma 2.2].

Lemma 4.3. If S is a compact set in a polyhedral normed space (Rn, ‖ · ‖)
and S has a transitive commutative group of isometries, then

W ◦(x, y) ∩ S = ∅ for all x �= y ∈ S.

Proof. Let x, y, z ∈ S be such that x �= y and z ∈ W ◦(x, y). Put ε =
min{‖x − y‖, ‖y − z‖} > 0. Denote the collection of all additive chains in S

starting with x, y, z and which are such that the distance between consecutive
points in the chain is at least ε by F .

Note that, since S is compact, there exists an upper bound on the length of
the additive chains in F . Let x1 = x, x2 = y, x3 = z, . . . , xr be an additive chain
in F of maximal length.

For 1 ≤ k, l ≤ r let gk,l be an isometry on S in the commutative group that
acts transitively on S such that gk,l(xk) = xl. Denote xr+1 = g1,2(xr). We now
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show that x2, x3, . . . , xr+1 is also an additive chain in S in which the distance
between consecutive points is at least ε. Indeed, as the group is commutative,

‖xr − xr+1‖ = ‖g1,r(x1) − g1,r(g1,2(x1))‖ = ‖x1 − x2‖ ≥ ε.

This equality implies,

‖x2 − xr+1‖ = ‖g1,2(x1) − g1,2(xr)‖ =
r−1∑
j=1

‖xj − xj+1‖ =
r∑

j=2

‖xj − xj+1‖,

and hence
⋂r

j=2 I(xj , xj+1) �= ∅. As z ∈ W ◦(x, y), we know that I(x2, x3) ⊆
I(x1, x2), and hence

⋂r
j=1 I(xj , xj+1) �= ∅. But this implies that x1, . . . , xr+1 is

an additive chain in F , which contradicts the maximality of r. �

We can now prove Theorem 1.2.

Proof of Theorem 1.2. If g is a nonexpansive mapping on (R2, ‖ · ‖H)
with a periodic orbit O and fixed point x∗, then O is contained in the boundary
of the ball B(x∗) = {x ∈ R

2 : ‖x − x∗‖H ≤ R} for some R ≥ 0. Without loss of
generality we may assume that x∗ = 0.

Partition ∂B(x∗) as follows:

A1 = {x ∈ R
2 : x1 = R and 0 ≤ x2 < R},

A2 = {x ∈ R
2 : x2 = R and 0 < x1 ≤ R},

A3 = {x ∈ R
2 : x2 − x1 = R and 0 < x2 < R},

A4 = {x ∈ R
2 : x1 = −R and − R < x2 ≤ 0},

A5 = {x ∈ R
2 : x2 = −R and − R ≤ x1 < 0},

A6 = {x ∈ R
2 : x1 − x2 = R and − R ≤ x2 < 0}.

Each Ai corresponds to a facet of ∂B(x∗) with one of its vertices removed.
By Lemma 4.3 each Ai can contain at most two points of O, see also Figure

2. Moreover, if Ai contains 2 points of O, then Ai+1 ∩ O is empty. (Here we
are counting modulo 6.) Indeed, if φi denotes the facet defining functional of
∂B(x∗) corresponding to Ai, then it is easy to verify that if x �= y in Ai, then
I(x, y) = {i + 1, i + 2}, so that W ◦(x, y) ⊇ Ai+1. Thus, Ai+1 ∩ O is empty, if
x �= y in Ai ∩ O, and hence O has at most 6 points. �

The example of a period 6 orbit of a nonexpansive mapping on ∆2 can be
generalized to ∆n. To do this it is convenient to work in (Rn+1/ ∼, ‖ · ‖var).
Let X be the subset of all points x ∈ R

n+1/ ∼ such that xi = 1 or xi = 0
for each i. Note that (0, . . . , 0) = (1, . . . , 1) and that for each x ∈ X we have
−x = (1, . . . , 1) − x ∈ X . If S ⊆ X is such that there exists no x �= y in S
with x ≤ y, where the inequality holds coordinate-wise, then ‖x − y‖var = 2
for all x �= y in S. For such sets S it is known [16, p. 867] that there exists
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a nonexpansive mapping gS on R
n+1/∼ which has S as a periodic orbit. Now

suppose that n is even and let Sn ⊆ X be the set of points with exactly n/2
coordinates equal to 1. Then −Sn is the set of points with exactly n/2 + 1
coordinates equal to 1 in X . Clearly the reflection in the origin, R(x) = −x, is
an isometry on R

n+1/∼. Now if |Sn| =
(
n+1
n/2

)
is odd, the nonexpansive mapping

R ◦ gSn has a periodic orbit of length 2
(
n+1
n/2

)
. For n = 2, this gives a period 6

orbit ∆2. On the other hand, if
(
n+1
n/2

)
is even, we can drop one point of Sn and

obtain a periodic orbit of length 2
(
n+1
n/2

) − 2. A similar construction exists for
n odd. This shows, for general n, that there exists a nonexpansive mapping on
(∆n, d∆n) that has a periodic point with period

2
(

n + 1
�n/2�

)
− 2δn,

where δn = 1 if
(

n+1
�n/2	

)
is even and δn = 0 otherwise. It seems unlikely that this

lower bound is optimal, but no better examples are known.
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