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IMPULSIVE PROBLEMS
FOR FRACTIONAL EVOLUTION EQUATIONS

AND OPTIMAL CONTROLS
IN INFINITE DIMENSIONAL SPACES

JinRong Wang — Yong Zhou — Wei Wei

Abstract. In this paper, a class of impulsive fractional evolution equa-

tions and optimal controls in infinite dimensional spaces is considered.

A suitable concept of a PC-mild solution is introduced and a suitable op-
erator mapping is also constructed. By using a PC-type Ascoli–Arzela

theorem, the compactness of the operator mapping is proven. Applying

a generalized Gronwall inequality and Leray–Schauder fixed point theorem,
the existence and uniqueness of the PC-mild solutions is obtained. Exis-

tence of optimal pairs for system governed by impulsive fractional evolution

equations is also presented. Finally, an example illustrates the applicability
of our results.

1. Introduction

In recent years, there has been a growing interest in the area of fractional
calculus. This is mainly because fractional derivatives and fractional integrals
provide more accurate models of many engineering systems than integer or-
der derivatives and integrals. Accordingly, the theory of fractional differential
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equations has become an active area of investigation due to their applications
in the fields of physics, engineering, economics and so on. For the basic the-
ory on fractional differential equations in finite dimensional spaces, one can see
the monographs of A. A. Kilbas et al. [25], V. Lakshmikantham et al. [27],
K. S. Miller and B. Ross [31], I. Podlubny [35], the survey of R. P. Agarwal
et al. [3]. For the basic theory on fractional differential equations involving the
Caputo derivative and optimal controls in infinite dimensional spaces, one can
see the papers of N. Abada et al. [1], R. P. Agarwal [2], R. P. Agarwal et al. [4],
M. M. El-Borai [16], [17], E. Hernández et al. [22], M. Li et al. [28], N. Özdemir
et al. [34], J. Wang and Y. Zhou [43], [44], Y. Zhou and F. Jiao [53], [54].

In order to describe dynamics of populations subject to abrupt changes as
well as other phenomena such as harvesting, diseases, and so forth, some au-
thors have used impulsive differential systems to describe the model since the
last century. For the basic theory on impulsive differential equations and im-
pulsive controls in finite dimensional spaces, the reader can refer to the mono-
graphs of D. D. Bainov and P. S. Simeonov [10], V. Lakshmikantham et al. [26],
T. Yang [49]. For the basic theory on impulsive differential equations and optimal
controls in infinite dimensional spaces, the reader can refer to the monograph of
M. Benchohra et al. [12] and the papers of N. U. Ahmed, Y. K. Chang, J. Hen-
derson, E. Hernández, Z. Fan, J. H. Liu, J. Liang, J. J. Nieto, R. Sakthivel,
J. Wang, W. Wei, X. Xiang, etc. (see for instance [5]–[9], [15], [18]–[21], [29],
[30], [33], [36]–[48] and references therein).

Impulsive fractional differential equations serve as basic fractional models
to study the dynamics of processes that are subject to sudden changes in their
states. Very recently, K. Balachandran and S. Kiruthika [11] studied a class of
impulsive fractional evolution equations with bounded time-varying linear op-
erator by using fractional calculus and fixed point theorems. M. Benchohra
et al. [13], [14] also applied the Banach contraction principle, Schaefer’s fixed
point theorem and nonlinear alternative of Leray–Schauder type, measure of
noncompactness to a class of impulsive fractional differential equations without
unbounded operator. Although there were some papers discussing impulsive
fractional differential equations without unbounded operator in infinite dimen-
sional spaces, to our knowledge, impulsive fractional differential equations with
unbounded operator in infinite dimensional spaces have not been studied exten-
sively since it is much difficult to introduce a suitable concept of a mild solution.

Optimal control problems require minimization of a functional over a set of
admissible control functions subject to dynamic constraints on the state and con-
trol variables. When the impulsive fractional differential equations describe the
performance index and system dynamics, an optimal control problem reduces to
an impulsive fractional optimal control problem. There has been very little work
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in the area of optimal control problems for system governed by impulsive frac-
tional differential equations in finite dimensional spaces or infinite dimensional
spaces.

Motivated by the above works including us [11]–[13], [37], [39], [43], [52], [53],
we pay attention to investigate the fractional impulsive evolution equations of
the type

(1.1)


CDα

t x(t) = Ax(t) + f(t, x(t)), α ∈ (0, 1), t ∈ J = [0, b], t 6= tk,

x(0) = x0,

∆x(tk) = Ik(x(tk)), k = 1, . . . , δ,

where CDα
t is the Caputo fractional derivative of order α, A:D(A) → X is the

generator of a C0-semigroup {T (t), t ≥ 0} on a Banach space X, f : J ×X → X

is specified latter, x0 is an element of X, Ik:X → X is a nonlinear map which
determine the size of the jump at tk, 0 = t0 < t1 < . . . < tδ < tδ+1 = b,
Ik(x(tk)) = x(t+k ) − x(t−k ), x(t+k ) = limh→0+ = x(tk + h) and x(t−k ) = x(tk)
represent respectively the right and left limits of x(t) at t = tk.

G. N. Mophou [32] studied system (1.1), however, E. Hernández et al. [22]
showed that the concept of mild solutions (Definition 3.2, [32]) which inspired
by O. K. Jaradat et al. [24] was not suitable for system (1.1) at all. So we have
to introduce a new concept of a PC-mild solution (Definition 2.8) for system
(1.1) based on our early works [43], [52], [53] on fractional evolution equations
without impulses.

In order to obtain the existence of PC-mild solutions for fractional differential
equations, some authors are used to apply Krasnosel’skĭı’s fixed point theorem
or contraction mapping principle. However, the conditions for Krasnosel’skĭı’s
fixed point theorem are not easy to be verified sometimes and the conditions
for contraction mapping principle are too strong. Here, we use Leray–Schauder
fixed point theorem to obtain the existence of solutions for system (1.1) under
some easily checked conditions. First, we construct a operator Q associated
with semigroup operators, probability density functions and impulsive terms for
system (1.1), then use a PC-type Ascoli–Arzela theorem (Theorem 2.11) and
overcome some difficulties to show the compactness of operator Q which is very
important. By a new generalized Gronwall inequality with impulses and singular
(Theorem 3.1), an estimate of a fixed point set {x = σQx, σ ∈ [0, 1]} is estab-
lished. Therefore, the existence of PC-mild solutions for system (1.1) is shown.
Our methods are different from the original references and we give a new way
to show the existence of PC-mild solutions for impulsive fractional differential
equations. In addition, the new generalized Gronwall inequality with impulses
and singular, which can be used in other nonlinear problems, has played an es-
sential role in the study of impulsive fractional nonlinear differential equations in
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infinite dimensional spaces. Further, we also consider a Bolza problem of system
governed by impulsive fractional evolution equations and an existence result of
impulsive fractional optimal controls is presented.

The paper is organized as follows. In Section 2, we introduce the PC-mild
solution of system (1.1) and recall some basis results. In Section 3, a new general-
ized Gronwall inequality with impulses and singular is established. In Section 4,
the existence and uniqueness of PC-mild solutions for system (1.1) is proved. In
Section 5, we introduce a class of admissible controls and an existence result of
optimal controls for Bolza problem (P) is proved. At last, an example is given
to demonstrate the applicability of our result.

2. Preliminaries

Let £b(X) be the Banach space of all linear and bounded operators on X.
For a C0-semigroup {T (t), t ≥ 0} on X, we set M = supt∈J ‖T (t)‖£b(X). Let
C(J,X) be the Banach space of all X-valued continuous functions from J = [0, b]
into X endowed with the norm ‖x‖C = supt∈J ‖x(t)‖. We also introduce the set
of functions PC(J,X) ≡ {x: J → X | x is continuous at t ∈ J \{t1, . . . , tδ}, and
x is continuous from left and has right hand limits at t ∈ {t1, . . . , tδ}}. Endowed
with the norm

‖x‖PC = max
{

sup
t∈J

‖x(t + 0)‖, sup
t∈J

‖x(t− 0)‖
}

,

it is easy to see (PC(J,X), ‖ · ‖PC) is a Banach space.
Let us recall the following known definitions. For more details, see [25].

Definition 2.1. The fractional integral of order γ with the lower limit zero
for a function f is defined as

Iγf(t) =
1

Γ(γ)

∫ t

0

f(s)
(t− s)1−γ

ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ( · ) is the gamma
function.

Definition 2.2. The Riemann–Liouville derivative of order γ with the lower
limit zero for a function f : [0,∞) → R can be written as

LDγf(t) =
1

Γ(n− γ)
dn

dtn

∫ t

0

f(s)
(t− s)γ+1−n

ds, t > 0, n− 1 < γ < n.

Definition 2.3. The Caputo derivative of order γ for a function f : [0,∞) →
R can be written as

CDγf(t) = LDγ

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < γ < n.
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Remark 2.4. (a) If f(t) ∈ Cn[0,∞), then

CDγf(t) =
1

Γ(n− γ)

∫ t

0

f (n)(s)
(t− s)γ+1−n

ds = In−γf (n)(t), t > 0, n− 1 < γ < n.

(b) The Caputo derivative of a constant is equal to zero.

(c) If f is an abstract function with values in X, then integrals which appear
in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Let’s recall that Y. Zhou and F. Jiao (Lemma 3.1 and Definition 3.1, [52])
have used the following definition of mild solutions for the problem below.

Definition 2.5. By a mild solution of the following system{
CDα

t x(t) = Ax(t) + f(t, x(t)), t ∈ J,

x(0) = x0,

we mean that the function x ∈ C(J,X) which satisfies the following integral
equation

x(t) = T(t)x0 +
∫ t

0

(t− s)α−1S(t− s)f(s, x(s)) ds, t ∈ J,

where

T(t) =
∫ ∞

0

ξα(θ)T (tαθ) dθ, S(t) = α

∫ ∞

0

θξα(θ)T (tαθ) dθ,

ξα(θ) =
1
α

θ−1−1/α$α(θ−1/α) ≥ 0,

$α(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα + 1)
n!

sin(nπα), θ ∈ (0,∞),

ξα is a probability density function defined on (0,∞), that is

ξα(θ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0

ξα(θ) dθ = 1.

Remark 2.6. Note that T( · ) and S( · ) are associated with noninteger α,
there are no analogue of the semigroup property, i.e.

T(t + s) 6= T(t)T(s), S(t + s) 6= S(t)S(s) for t, s > 0.
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According to Definitions 2.1 and 2.3, it is suitable to rewrite system (1.1) in
the equivalent integral equation

(2.1)



x(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1[Ax(s) + f(s, x(s))] ds, t ∈ [0, t1],

x(t) = x0 +
1

Γ(α)

k∑
i=1

∫ ti

ti−1

(ti − s)α−1[Ax(s) + f(s, x(s))] ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1[Ax(s) + f(s, x(s))] ds

+
k∑

i=1

Ii(x(ti)), t ∈ (tk, tk+1],

k = 1, . . . , δ,

provided that the integral in (2.1) exists.

Before giving the definition of mild solution of system (1.1), we firstly prove
the following lemma.

Lemma 2.7. If (2.1) holds, then we have

(2.2)



x(t) = T(t)x0 +
∫ t

0

(t− s)α−1S(t− s)f(s, x(s)) ds, t ∈ [0, t1],

x(t) = T(t− tk)
∏

0<i≤k

T(ti − ti−1)x0

+ T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)

×
[ ∫ ti

ti−1

(ti − s)α−1S(ti − s)f(s, x(s)) ds + Ii(x(ti))
]}

+
∫ t

tk

(t− s)α−1S(t− s)f(s, x(s)) ds, t ∈ (tk, tk+1],

k = 1, . . . , δ.

Proof. For t ∈ [0, t1], by Lemma 3.1 of [52],

x(t) = T(t)x0 +
∫ t

0

(t− s)α−1S(t− s)f(s, x(s)) ds,

which leads to

x(t1) = T(t1)x0 +
∫ t1

0

(t1 − s)α−1S(t1 − s)f(s, x(s)) ds.
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Moreover, for t ∈ (t1, t2],

x(t) =T(t− t1)x(t+1 ) +
∫ t

t1

(t− s)α−1S(t− s)f(s, x(s)) ds

=T(t− t1)(x(t1) + ∆x(t1)) +
∫ t

t1

(t− s)α−1S(t− s)f(s, x(s)) ds

=T(t− t1)T(t1)x0

+ T(t− t1)
[ ∫ t1

0

(t1 − s)α−1S(t1 − s)f(s, x(s))ds + I1(x(t1))
]

+
∫ t

t1

(t− s)α−1S(t− s)f(s, x(s)) ds.

Repeating the same procedure, we can easily deduce that (2.2) holds for any
t ∈ (tk, tk+1], k = 1, . . . , δ. �

Due to Lemma 2.7, we give the following definition of the mild solution of
system (1.1).

Definition 2.8. By a PC-mild solution of the system (1.1) we mean that
the function x ∈ PC(J,X) which satisfies the following integral equation

x(t) =



T(t)x0 +
∫ t

0

(t− s)α−1S(t− s)f(s, x(s)) ds, t ∈ [0, t1],

T(t− tk)
∏

0<i≤k

T(ti − ti−1)x0

+T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)

×
[ ∫ ti

ti−1

(ti − s)α−1S(ti − s)f(s, x(s)) ds + Ii(x(ti))
]}

+
∫ t

tk

(t− s)α−1S(t− s)f(s, x(s)) ds, t ∈ (tk, tk+1],

k = 1, . . . , δ.

The following results will be used throughout this paper.

Lemma 2.9 ([52, Lemmas 3.2–3.4]). The operators T and S have the follow-
ing properties:

(a) For any fixed t ≥ 0, T(t) and S(t) are linear and bounded operators, i.e.
for any x ∈ X,

‖T(t)x‖ ≤ M‖x‖ and ‖S(t)x‖ ≤ qM

Γ(1 + q)
‖x‖.

(b) {T(t), t ≥ 0} and {S(t), t ≥ 0} are strongly continuous.
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(c) For every t > 0, T(t) and S(t) are also compact operators if T (t) is
compact.

Lemma 2.10. A measurable function f : J → X is Bochner integrable if ‖f‖
is Lebesuge integrable.

Lemma 2.11 (PC-type Ascoli–Arzela theorem [45, Theorem 2.1]). Suppose
W ⊂ PC(J,X) be a subset. If the following conditions are satisfied:

(a) W is uniformly bounded subset of PC(J,X).
(b) W is equicontinuous in (tk, tk+1), k = 0, 1, . . . , δ, where t0 = 0, tδ+1 =

b.
(c) W(t) ≡ {x(t) | x ∈ W, t ∈ J \ {t1, . . . , tδ}}, W(tk + 0) ≡ {x(tk + 0) |

x ∈ W} and W(tk − 0) ≡ {x(tk − 0) | x ∈ W} are relatively compact
subsets of X.

Then W is a relatively compact subset of PC(J,X).

3. Gronwall’s inequality with impulses and singular

In order to use Leray–Schauder fixed point theorem to show the existence
and uniqueness of solutions, we need a new generalized Gronwall’s inequality
with impulses and singular which can also be used in other problems. It will
play an essential role in the study of impulsive fractional nonlinear differential
equations in Banach spaces.

Lemma 3.1. Let x ∈ PC([0,∞), X) and satisfy the following inequality

(3.1) ‖x(t)‖ ≤ c1 + c2

∫ t

0

(t− s)α−1‖x(s)‖ ds +
∑

0<tk<t

θk‖x(tk)‖,

where 1 > α > 0, c1, c2, θk ≥ 0 are constants. Then

‖x(t)‖ ≤ c1

∏
0<tk<t

(1 + θk)
(

1 +
n−1∑
j=1

cj
2t

jαΓj(α)
(jα)Γ(jα)

)
exp

(
cn
2 tnαΓn(α)

nα(nα− 1)Γ(nα)

)
,

where

n =
[

1
α

]
+ 1, θi =

(
1 +

∑
0<tk≤ti

θk

)(
1 +

n∑
k=1

ck
2

Γk(α)
Γ(kα)

tkα
i

kα

)
.
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Proof. It comes from (3.1) that

‖x(t)‖ ≤ c1 + c2

∫ t

0

(t− s)α−1

[
c1 + c2

∫ s

0

(s− τ)α−1‖x(τ)‖ dτ

+
∑

0<tk<s

θk‖x(tk)‖
]

ds +
∑

0<tk<t

θk‖x(tk)‖

≤
(

c1 +
∑

0<tk<t

θk‖x(tk)‖
)

+ c2

∫ t

0

(t− s)α−1

[
c1 + c2

∫ s

0

(s− τ)α−1‖x(τ)‖ dτ

+
∑

0<tk<s

θk‖x(tk)‖
]

ds

≤
(

c1 +
∑

0<tk<t

θk‖x(tk)‖
)

+
(

c1 +
∑

0<tk<t

θk‖x(tk)‖
)

c2

∫ t

0

(t− s)α−1 ds

+ c2
2

∫ t

0

[ ∫ t

τ

(t− s)α−1(s− τ)α−1 ds

]
‖x(τ)‖ dτ

≤
(

c1 +
∑

0<tk<t

θk‖x(tk)‖
)[

1 + c2
Γ(α)tα

Γ(α + 1)

]

+ c2
2

∫ t

0

[ ∫ t

τ

(t− s)α−1(s− τ)α−1 ds

]
‖x(τ)‖ dτ.

Let y = (s− τ)/(t− τ), then

∫ t

τ

(t−s)α−1(s−τ)α−1 ds =
∫ 1

0

(t−τ)2α−1yα−1(1−y)α−1 dy =
Γ2(α)
Γ(2α)

(t−τ)2α−1.

Thus, we have

‖x(t)‖ ≤
(

c1 +
∑

0<tk<t

θk‖x(tk)‖
)[

1 + c2
Γ(α)tα

Γ(α + 1)

]

+ c2
2

Γ2(α)
Γ(2α)

∫ t

0

(t− τ)2α−1‖x(τ)‖ dτ.

Using (3.1) again, we can obtain

‖x(t)‖ ≤
(

c1 +
∑

0<tk<t

θk‖x(tk)‖
)[

1 + c2
Γ(α)
Γ(α)

tα

α
+ c2

2

Γ2(α)
Γ(2α)

t2α

2α

]

+ c3
2

Γ3(α)
Γ(3α)

∫ t

0

(t− τ)3α−1‖x(τ)‖ dτ.
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Repeating the above steps until the (n − 1)-th step, where n = [1/α] + 1,
then we have

‖x(t)‖ ≤ Θk,t

[
1 + c2

tα

α
+ c2

2

Γ2(α)
Γ(2α)

t2α

2α
+ . . . + cn−1

2

Γn−1(α)
Γ((n− 1)α)

t(n−1)α

(n− 1)α

]
+ cn

2

Γn(α)
Γ(nα)

∫ t

0

(t− τ)nα−1‖x(τ)‖ dτ

where

Θk,t =
(

c1 +
∑

0<tk<t

θk‖x(tk)‖
)

.

Define

v(t) = Θk,t

[
1 + c2

tα

α
+ c2

2

Γ2(α)
Γ(2α)

t2α

2α
+ . . . + cn−1

2

Γn−1(α)
Γ((n− 1)α)

t(n−1)α

(n− 1)α

]
+ cn

2

Γn(α)
Γ(nα)

∫ t

0

(t− τ)nα−1‖x(τ)‖ dτ.

By means of the fact that v(t) is nondecreasing and ‖x(t)‖ ≤ v(t), we can
arrive at

dv(t)
dt

=Θk,t

n−1∑
k=1

ck
2

Γk(α)
Γ(kα)

tkα−1 + v(t)cn
2

(nα− 1)Γn(α)
Γ(nα)

∫ t

0

(t− τ)nα−2 dτ

=Θk,t

n−1∑
k=1

ck
2

Γk(α)
Γ(kα)

tkα−1 + v(t)cn
2

(nα− 1)Γn(α)
Γ(nα)

tnα−1

nα− 1

≡h(t) + m(t)v(t), t 6= tk,(3.2)

v(ti + 0) ≤
(

1 +
∑

0<tk≤ti

θk

)(
1 +

n∑
k=1

ck
2

Γk(α)
Γ(kα)

tkα
i

kα

)
v(ti) ≡ θiv(ti),

v(0) = c1,

where

h(t) = Θk,t

n−1∑
k=1

ck
2

Γk(α)
Γ(kα)

tkα−1, m(t) = cn
2

(nα− 1)Γn(α)
Γ(nα)

tnα−1

nα− 1
.

For t ∈ (tk, tk+1], by (3.2) we obtain

v(t) ≤ θkv(tk) exp
( ∫ t

tk

m(s) ds

)
+

∫ t

tk

h(s) exp
( ∫ t

s

m(τ) dτ

)
ds

≤ c1

∏
0<tk<t

θk exp
( ∫ t

0

m(s)ds

)

+
∫ t

0

h(s)
∏

s<tk<t

(1 + θk) exp
( ∫ t

s

m(τ) dτ

)
ds
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≤ c1

∏
0<tk<t

(1 + θk)
(

1 +
n−1∑
j=1

cj
2t

jαΓj(α)
(jα)Γ(jα)

)
exp

(
cn
2 tnαΓn(α)

nα(nα− 1)Γ(nα)

)
.

Thus

‖x(t)‖ ≤ c1

∏
0<tk<t

(1 + θk)
(

1 +
n−1∑
j=1

cj
2t

jαΓj(α)
(jα)Γ(jα)

)
exp

(
cn
2 tnαΓn(α)

nα(nα− 1)Γ(nα)

)
. �

Remark 3.2. If x ∈ PC(J,X) and satisfies the inequality (3.1), then there
exists a constant M̃ > 0 such that ‖x(t)‖ ≤ M̃c1.

4. Existence and uniqueness of PC-mild solutions

In this section, we will derive the existence and uniqueness results concerning
the PC-mild solution for system (1.1) under some easily checked conditions. Our
result will use the PC-type Ascoli–Arzela theorem and Leray–Schauder fixed
point theorem.

Let us list the following hypotheses:

(HA) A is the infinitesimal generator of a compact semigroup {T (t), t ≥ 0}
in X.

(HF1) f : J ×X → X is measurable for t ∈ J and for any x, y ∈ X satisfying
‖x‖, ‖y‖ ≤ ρ, there exists a positive constant Lf (ρ) > 0 such that

‖f(t, x)− f(t, y)‖ ≤ Lf (ρ)‖x− y‖.

(HF2) There exists a positive constant Mf > 0 such that

‖f(t, x)‖ ≤ Mf (1 + ‖x‖) for all t ∈ J, x ∈ X.

(HI1) Ik:X → X, Ik(X) is a bounded subset of X, k = 1, . . . , δ.
(HI2) There exist a constants h∗ > 0, such that

‖Ik(x)− Ik(y)‖ ≤ h∗‖x− y‖, for all x, y ∈ X, k = 1, . . . , δ.

Theorem 4.1. Assume that the hypotheses (HA), (HF1), (HF2), (HI1) and
(HI2) holds. Then system (1.1) has a unique PC-mild solution on J .
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Proof. Let x0 ∈ X be fixed. Define an operator Q on PC(J,X) by

(Qx)(t) =



T(t)x0 +
∫ t

0

(t− s)α−1S(t− s)f (s, x(s)) ds, t ∈ [0, t1],

T(t− tk)
∏

0<i≤k

T(ti − ti−1)x0

+T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)

×
[ ∫ ti

ti−1

(ti − s)α−1S(ti − s)f(s, x(s)) ds + Ii(x(ti))
]}

+
∫ t

tk

(t− s)α−1S(t− s)f(s, x(s)) ds, t ∈ (tk, tk+1],

k = 1, . . . , δ.

It is obvious that Q is well defined mapping from PC(J,X) to PC(J,X)
for x ∈ PC(J,X) due to Lemma 2.10. In fact, for 0 ≤ τ < t ≤ t1, by our
assumptions and Lemma 2.9,

‖(Qx)(t) − (Qx)(τ)‖

≤‖T(t)− T(τ)‖‖x0‖+
αM

Γ(1 + α)

∫ t

τ

(t− s)α−1‖f(s, x(s))‖ ds

+ sup
s∈[0,τ ]

‖S(t− s)− S(τ − s)‖
∫ τ

0

(t− s)α−1‖f(s, x(s))‖ ds

+
αM‖f‖C([0,t1],X)

Γ(1 + α)

∣∣∣∣ ∫ τ

0

(τ − s)α−1ds−
∫ τ

0

(t− s)α−1 ds

∣∣∣∣
≤‖T(t)− T(τ)‖‖x0‖+

(t− τ)αM‖f‖C([0,t1],X)

Γ(1 + α)

+
tα1 ‖f‖C([0,t1],X)

α
sup

s∈[0,τ ]

‖S(t− s)− S(τ − s)‖

+
M‖f‖C([0,t1],X)

Γ(1 + α)
|τα + (t− τ)α − tα|,

which implies that Qx ∈ C([0, t1], X). With analogous arguments we can obtain
Qx ∈ C((t1, t2], X), Qx ∈ C((t2, t3], X), . . . , Qx ∈ C((tδ, b], X). That is, Qx ∈
PC(J,X).

For the sake of convenience, we subdivide the proof into several steps.

Step 1. Q is a continuous operator on PC(J,X).

Let x, y ∈ PC(J,X) and ‖x− y‖PC ≤ 1, then ‖y‖PC ≤ 1 + ‖x‖PC = ρ.
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By our assumptions and Lemma 2.9 again, we obtain

‖(Qx)(t)− (Qy)(t)‖ ≤
∥∥∥∥T(t− tk)

k∑
i=1

×
{ ∏

i<j≤k

T(tj − tj−1)

×
[ ∫ ti

ti−1

(ti − s)α−1S(ti − s)[f(s, x(s))− f(s, y(s))] ds

+ [Ii(x(ti))− Ii(y(ti))]
]}∥∥∥∥

+
∥∥∥∥∫ t

tk

(t− s)α−1S(t− s)[f(s, x(s))− f(s, y(s))] ds

∥∥∥∥
≤ αM2

Γ(1 + α)

k∑
i=1

Mk−i

[ ∫ ti

ti−1

(ti − s)α−1‖f(s, x(s))− f(s, y(s))‖ ds

+ ‖Ii(x(ti))− Ii(y(ti))‖
]

+
αM

Γ(1 + α)

∫ t

tk

(t− s)α−1‖f(s, x(s))− f(s, y(s))‖ ds

≤ αM2

Γ(1 + α)

k∑
i=1

Mk−i

[ ∫ ti

ti−1

(ti − s)α−1Lf (ρ)‖x− y‖PC ds + hi‖x− y‖PC

]
+

αM

Γ(1 + α)

∫ t

tk

(t− s)α−1Lf (ρ)‖x− y‖PC ds

≤ αM2

Γ(1 + α)

k∑
i=1

Mk−i

[
1
α

(ti − ti−1)αLf (ρ) + hi

]
‖x− y‖PC

+
αM

Γ(1 + α)
1
α

(t− tk)αLf (ρ)‖x− y‖PC

≤ αM

Γ(1 + α)

k∑
i=1

Mk+1−i

(
bα

α
Lf (ρ) + h∗

)
‖x− y‖PC

+
αM

Γ(1 + α)
bα

α
Lf (ρ)‖x− y‖PC ,

which implies that

‖Qx−Qy‖PC ≤ αM

Γ(1 + α)

[ δ∑
i=1

M δ+1−i

(
bα

α
Lf (ρ) + h∗

)
+

bα

α
Lf (ρ)

]
‖x− y‖PC .

Thus, Q is a continuous operator on PC(J,X).

Step 2. Q is a compact operator on PC(J,X).
Let B be a bounded subset of PC(J,X), there exists a constant µ > 0 such

that ‖x‖PC ≤ µ for all x ∈ B. Using (HI2), there exists a constant N such that
‖Ik(x(t))‖ ≤ N for all x ∈ B, t ∈ J , k = 1, . . . , δ. Also using (HF2), there exists
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a constant ω such that ‖f(t, x(t)‖ ≤ Mf (1 + ‖x‖PC) ≤ Mf (1 + µ) ≡ ω for all
x ∈ B, t ∈ J . Further, QB is a bounded subset of PC(J,X). In fact, let x ∈ B,
after some standard calculation,

‖Qx‖PC ≤ M δ‖x0‖+
δM2+δωbα

Γ(1 + α)
+

ωbαM

Γ(1 + α)
+ δM δ+1N ≡ ρ.

Hence QB is bounded.
Let

(Qv)(t) = (Q1v)(t) + (Q2v)(t)

where

(Q1v)(t) =



T(t)x0 +
∫ t

0

(t− s)α−1S(t− s)f(s, v(s)) ds, t ∈ [0, t1],

T(t− tk)
∏

0<i≤k

T(ti − ti−1)x0 + T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)

×
∫ ti

ti−1

(ti − s)α−1S(ti − s)f(s, v(s)) ds

}
+

∫ t

tk

(t− s)α−1S(t− s)f(s, v(s))ds, t ∈ (tk, tk+1],

k = 1, . . . , δ,

and

(4.1) (Q2v)(t) =


0, t ∈ [0, t1],

T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)Ii(v(ti))
}

, t ∈ (tk, tk+1],

k = 1, . . . , δ.

We first check that Q2 is a compact operator. Note that (4.1) and our
assumptions, we know that{

WQ2(t)|(0,t1] = {0}, t ∈ (0, t1],

WQ2(t)|(tk,tk+1] = {(Q2v)(t) | v ∈ B}, t ∈ (tk, tk+1], k = 1, . . . , δ.

are uniformly bounded and relatively compact in X. Moreover, WQ2(tk + 0) are
also relatively compact from (HI1).

For tk ≤ t < t + ε ≤ tk+1, ε > 0,

‖(Q2v)(t + ε)− (Q2v)(t)‖ ≤ ‖T(t + ε− tk)− T(t− tk)‖ ×
δ∑

i=1

M δ+1−iN.

Thus, the functions in WQ2 are equicontinuous due to ‖T(t+ε−tk)−T(t−tk)‖ → 0
as ε → 0 for each fixed tk. Now an application of the PC-type Arzela–Ascoli
theorem justifies the relatively compactness of WQ2 . Therefore, Q2 is a compact
operator.
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Next, the same idea can be used to prove the compactness of Q1.
Since T(t), t > 0 is compact, it is easy to see

W 1
Q1

(t)|(0,t1] = {T(t)x0}, t ∈ (0, t1],

W 1
Q1

(t)|(tk,tk+1] =
{

T(t− tk)
∏

0<i≤k

T(ti − ti−1)x0

}
, t ∈ (tk, tk+1],

k = 1, . . . , δ,

are relatively compact in X.
Also, for each t ∈ [0, t1], arbitrary t1 > h > 0, ε > 0, the set{
T (hαε)

∫ t−h

0

(t− s)q−1

×
(

α

∫ ∞

ε

θξα(θ)T ((t− s)αθ − hαε)dθ

)
f(s, v(s)) ds

∣∣∣∣ v ∈ B

}
=

{
α

∫ t−h

0

∫ ∞

ε

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s, v(s)) dθ ds

∣∣∣∣ v ∈ B

}
is relatively compact in X since T (hαε) is compact.

After some standard calculation (see our earlier work [52]), one can obtain

α

∫ t−h

0

∫ ∞

ε

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s, v(s)) dθ ds

→ α

∫ t

0

∫ ∞

0

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s, v(s)) dθ ds,

as h → 0, ε → 0. Thus, we can conclude that

W 2
Q1

(t)|[0,t1] =
{ ∫ t

0

(t− s)α−1S(t− s)f(s, v(s)) ds

∣∣∣∣ v ∈ B

}
=

{
α

∫ t

0

∫ ∞

0

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s, v(s)) dθ ds

∣∣∣∣ v ∈ B

}
is relatively compact in X.

It is obvious that the set

W 2
Q1

(t)|(tk,tk+1] =
{

T(t− tk)
k∑

i=1

[ ∏
i<j≤k

T(tj − tj−1)

×
∫ ti

ti−1

(ti − s)α−1S(ti − s)f(s, v(s)) ds

] ∣∣∣∣ v ∈ B

}
is also relatively compact in X since T(t− tk) is compact for t− tk > 0.
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For each t ∈ (tk, tk+1], arbitrary h > 0, ε > 0, the set

{
T (hαε)

∫ t−h

tk

(t− s)q−1

×
(

α

∫ ∞

ε

θξα(θ)T ((t− s)αθ − hαε) dθ

)
f(s, v(s)) ds

∣∣∣∣ v ∈ B

}
=

{
α

∫ t−h

tk

∫ ∞

ε

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f(s, v(s)) dθ ds

∣∣∣∣ v ∈ B

}

is relatively compact in X since T (hαε) is compact again. After some standard
calculation again (see [52]),

W 3
Q1

(t)|(tk,tk+1] =
{ ∫ t

tk

(t− s)α−1S(t− s)f(s, v(s)) ds

∣∣∣∣ v ∈ B

}
is also relatively compact in X.

Therefore, the set

WQ1(t)|(tk,tk+1] = W 1
Q1

(t)|(tk,tk+1] + W 2
Q1

(t)|(tk,tk+1] + W 3
Q1

(t)|(tk,tk+1]

is relatively compact in X and WQ1(tk + 0) are relatively compact for tk ∈
{t1, . . . , tδ}. Obviously, WQ1(t) is a uniformly bounded subset of PC(J,X).

Now, we only need to show the piecewise equicontinuity of WQ1(t)|(tk,tk+1].

The equicontinuity of W 1
Q1

(t)|(tk,tk+1] can be proven since the fact of T( · )
is compact. Next, we check the piecewise equicontinuity of the second term
W 2
Q1

(t).

For t ∈ [0, t1], let 0 ≤ t′ < t′′ ≤ t1, we can obtain

∥∥∥∥∫ t′′

0

(t′′ − s)α−1S(t′′ − s)f(s, v(s)) ds−
∫ t′

0

(t′ − s)α−1S(t′ − s)f(s, v(s)) ds

∥∥∥∥
≤

∥∥∥∥∫ t′′

t′
(t′′ − s)q−1S(t′′ − s)f(s, v(s)) ds

∥∥∥∥
+

∥∥∥∥∫ t′

0

(t′′ − s)α−1S(t′′ − s)f(s, v(s)) ds

−
∫ t′

0

(t′ − s)α−1S(t′′ − s)f(s, v(s)) ds

∥∥∥∥
+

∥∥∥∥∫ t′

0

(t′ − s)q−1S(t′′ − s)f(s, v(s)) ds

−
∫ t′

0

(t′ − s)α−1S(t′ − s)f(s, v(s)) ds

∥∥∥∥ = I1 + I2 + I3,
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where

I1 =
∥∥∥∥∫ t′′

t′
(t′′ − s)α−1S(t′′ − s)f(s, v(s)) ds

∥∥∥∥,

I2 =
∥∥∥∥∫ t′

0

[(t′′ − s)α−1 − (t′ − s)α−1]S(t′′ − s)f(s, v(s)) ds

∥∥∥∥,

I3 =
∥∥∥∥∫ t′

0

(t′ − s)α−1[S(t′′ − s)− S(t′ − s)]f(s, v(s)) ds

∥∥∥∥.

Based on the discussion in our previous work [52], we know that I1, I2, I3 tend
to zero as t′′ → t′. Using the same method, one can show that the piecewise
equicontinuity of the third term W 3

Q1
(t)|(tk,tk+1].

By the PC-type Arzela–Ascoli theorem again, for each t ∈ J , WQ1(t) is
relatively compact in X. Therefore, Q1 is a compact operator.

As a result, Q is compact due to Q1 and Q2 are compact operators.

Step 3. Q has a fixed point in PC(J,X).
According to Leray–Schauder fixed point theorem, it suffices to show the

following set
K = {x ∈ PC(J,X) | x = σQx, σ ∈ [0, 1]}

is a bounded subset of PC(J,X).
In fact, let x ∈ K, we have

‖x(t)‖ = ‖Q(σx(t))‖

≤‖T(t− tk)‖
∏

0<i≤k

‖T(ti − ti−1)σx0‖

+ ‖T(t− tk)‖
k∑

i=1

{ ∏
i<j≤k

‖T(tj − tj−1)‖

×
[ ∫ ti

ti−1

(ti − s)α−1‖S(ti − s)f(s, σx(s))‖ ds + ‖Ii(x(ti))‖
]}

+
∫ t

tk

(t− s)α−1‖S(t− s)f(s, σx(s))‖ ds

≤M δ+1‖x0‖+
αM δ+1

Γ(1 + α)

∫ t

0

(t− s)α−1Mf (1 + ‖x(s)‖) ds

+
k∑

i=1

M δ+1(‖Ii(0)‖+ h∗‖x(ti)‖)

≤
[
M δ+1‖x0‖+

bαMfM δ+1

Γ(1 + α)
+ δM δ+1‖Ik(0)‖

]
+

αM δ+1Mf

Γ(1 + α)

∫ t

0

(t− s)α−1‖x(s)‖ ds + h∗M δ+1
∑

0<tk<t

‖x(tk)‖.
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By Lemma 3.1 and Remark 3.2, we know that there exist a constant M∗
1 > 0

such that

‖x‖PC ≤ M∗
1

[
M δ+1‖x0‖+

bαMfM δ+1

Γ(1 + α)
+ δM δ+1‖Ik(0)‖

]
for all x ∈ K.

Thus, K is a bounded subset of PC(J,X).
Now, Schauder’s fixed point theorem implies that Q has a fixed point in

PC(J,X). This yields that system (1.1) has at least one PC-mild solution on J .

Step 4. Uniqueness.
Let y( · ) be another PC-mild solution of system (1.1) with the initial value y0.

It is not difficult to verify that there exists a constant ρ > 0 such that ‖x‖PC ≤ ρ

and ‖y‖PC ≤ ρ. Directly calculation, we can deduce that

‖x(t)− y(t)‖ ≤ M δ+1‖x0 − y0‖+
αδMδ+1Lf (ρ)

Γ(1 + α)

∫ t

0

(t− s)α−1‖x(s)− y(s)‖ ds

+ h∗M δ+1
∑

0<tk<t

‖x(tk)− y(tk)‖.

By Lemma 3.1 and Remark 3.2 again, there exists a constant M∗
2 > 0 such that

‖x(t)− y(t)‖ ≤ M∗
2 M δ+1‖x0 − y0‖,

which yields the uniqueness of x( · ). �

5. Existence of optimal controls

Let Y be another separable reflexive Banach space from which the controls
u take the value. We denote a class of nonempty closed and convex subsets of
Y by Wf (Y ). The multifunction ω: J → Wf (Y ) is measurable and ω( · ) ⊂ E

where E is a bounded set of Y , the admissible control set Uad = Sp
ω = {u ∈

Lp(E) | u(t) ∈ ω(t) almost everywhere}, 1 < p < ∞. Then Uad 6= ∅ (see [23,
p. 142, Proposition 1.7 and p. 174, Lemma 3.2]).

Consider the following controlled system

(5.1)


CDα

t x(t) = Ax(t) + f(t, x(t)) + B(t)u(t), 0 < α < 1, t ∈ J, t 6= tk,

x(0) = x0,

∆x(tk) = Ik(x(tk)), k = 1, . . . , δ.

Assumption (HB): B ∈ L∞(J,£(Y, X)).
It is easy to see that Bu ∈ Lp(J,X) for all u ∈ Uad. Define f̃(t, x) =

f(t, x(t)) + B(t)u(t). It is obvious that if f̃ satisfies the assumptions (HF1) and
(HF2). By Theorem 4.1, we have the following existence and uniqueness result.
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Theorem 5.1. Under the assumptions (HA), (HF1), (HF2), (HI1), (HI2)
and (HB), for every u ∈ Uad, system (5.1) has a unique PC-mild solution cor-
responding to u given by

x(t)=



T(t)x0+
∫ t

0

(t− s)α−1S(t− s)[f(s, x(s))+B(s)u(s)] ds, t ∈ [0, t1],

T(t− tk)
∏

0<i≤k

T(ti − ti−1)x0

+T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)

×
[ ∫ ti

ti−1

(ti − s)α−1S(ti − s)[f(s, x(s)) + B(s)u(s)] ds + Ii(x(ti))
]}

+
∫ t

tk

(t− s)α−1S(t− s)[f(s, x(s)) + B(s)u(s)] ds, t ∈ (tk, tk+1],

k = 1, . . . , δ,

provided that 1 > α > 1/p for some 1 < p < ∞.

Proof. Compared with Theorem 4.1, the key step is to check the term
containing control policy for t ∈ (tk−1, tk].

Consider

Φ(t) = T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)
∫ ti

ti−1

(ti − s)α−1S(ti − s)B(s)u(s) ds

}

+
∫ t

tk

(t− s)α−1S(t− s)B(s)u(s) ds.

By our assumptions and Lemma 2.9, and Hölder inequality,

(5.2)
∥∥∥∥∫ ti

ti−1

(ti − s)α−1S(ti − s)B(s)u(s) ds

∥∥∥∥
≤ αM

Γ(1 + α)

∫ ti

ti−1

(ti − s)α−1‖B(s)u(s)‖ ds

≤ αM‖B‖∞
Γ(1 + α)

( ∫ ti−1

ti

(ti − s)(α−1)p/(p−1) ds

)(p−1)/p( ∫ t

0

‖u(s)‖p
Y ds

)1/p

≤ αM‖B‖∞
Γ(1 + α)

(
p− 1

p + p(α− 1)− 1

)(p−1)/p

b(p+p(α−1)−1)/p‖u‖Lp(J,Y ),

and

(5.3)
∥∥∥∥∫ tk

t

(t− s)α−1S(t− s)B(s)u(s) ds

∥∥∥∥
≤ αM‖B‖∞

Γ(1 + α)

(
p− 1

p + p(α− 1)− 1

)(p−1)/p

b(p+p(α−1)−1)/p‖u‖Lp(J,Y ),
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where ‖B‖∞ is the norm of operator B in Banach space L∞(J,£(Y, X)). Thus,
‖(ti − s)α−1S(ti − s)B(s)u(s)‖ and ‖(t − s)α−1S(t − s)B(s)u(s)‖ are Lebesgue
integrable with respect to s ∈ [0, t] for all t ∈ (tk, tk+1]. From Lemma 2.10, it
follows that (ti − s)α−1S(ti − s)B(s)u(s) and (t − s)α−1S(t − s)B(s)u(s) and
are Bochner integral with respect to s ∈ [0, t] for all t ∈ (tk, tk+1]. Hence
Φ( · ) ∈ C((tk, tk+1], X). Using Theorem 4.1, one can verify it immediately. �

Theorem 5.2. Let Ξ ⊂ X be a bounded set, x1(x2) be a PC-mild solution
of system (5.1) corresponding to (x1

0, u1)((x2
0, u2)) ∈ Ξ×Uad. Under assumptions

of Theorem 5.1, there exist constants M̂1, M̂2 > 0 such that

‖x1 − x2‖PC ≤ M̂1‖x1
0 − x2

0‖+ M̂2‖u1 − u2‖Lp(J,Y ).

Proof. Since x1 and x2 are the PC-mild solution of system (5.1), using
Lemma 3.1 and Remark 3.2, Theorem 5.1 and the boundedness of Uad, it is not
difficult to verify that there exists a constant ρ > 0 such that ‖x1‖, ‖x2‖ < ρ.
Similar to the discussion on Step 4 in Theorem 4.1, note that (5.2) and (5.3) one
can complete the rest proof. �

Now, we consider the Bolza problem:

(P) Find (x0, u0) ∈ PC(J,X)× Uad such that

J(x0, u0) ≤ J(xu, u), for all u ∈ Uad,

where

J(xu, u) =
∫ b

0

L(t, xu(t), u(t)) dt + Ψ(xu(b)),

xu denotes the PC-mild solution of system (5.1) corresponding to the
control u ∈ Uad.

We impose some assumption on L and Ψ.
Assumption (HL):

(HL1) The functional L: J ×X × Y → R ∪ {∞} is Borel measurable.
(HL2) L(t, · , · ) is sequentially lower semicontinuous on X × Y for almost all

t ∈ J .
(HL3) L(t, x, · ) is convex on Y for each x ∈ X and almost all t ∈ J .
(HL4) There exist constants d ≥ 0, e > 0, ϕ is nonnegative and ϕ ∈ L1(J,R)

such that
L(t, x, u) ≥ ϕ(t) + d‖x‖+ e‖u‖p

Y .

(HL5) The functional Ψ: X → R is continuous and nonnegative.

In order to obtain the existence of impulsive fractional optimal controls we
need the following important Lemmas.
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Lemma 5.3. Assumption (HA) holds. Then operators Ej :Lp(J, Y )→C(J,X),
j = 1, 2 for some 1 > α > 1/p, given by

(E1u)( · ) =
∫ ·

0

( · − s)α−1T( · − s)B(s)u(s) ds,

(E2u)( · ) =
∫ ·

0

( · − s)α−1S( · − s)B(s)u(s) ds

are strongly continuous.

Proof. Suppose that {un} ⊆ Lp(J, Y ) is bounded, we define Aj
n(t) =

(Eju
n)(t), j = 1, 2, t ∈ J . One can verify that for any fixed t ∈ J and

1 > α > 1/p, ‖Aj
n(t)‖ is bounded. By Lemma 2.9, it is not difficult to ver-

ify that Aj
n(t) is compact in X and is also equicontinuous. Due to Ascoli–Arzela

Theorem, {Aj
n(t)} is relatively compact in C(J,X). Obviously, E is linear and

continuous. Hence, Ej is a strongly continuous operator due to Lebesgue domi-
nated convergence theorem and [23]. �

By Lemma 5.3, we can obtain the following results immediately.

Lemma 5.4. Operators Hj :Lp(J, Y ) → PC(J,X), j = 1, 2 for some 1 >

α > 1/p, given by

(H1u)( · ) =



∫ t

0

(t− s)α−1T(t− s)B(s)u(s) ds, t ∈ [0, t1],∫ t2

t1

(t2 − s)α−1T(t2 − s)B(s)u(s) ds,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∫ tδ

tδ−1

(tδ − s)α−1T(tδ − s)B(s)u(s) ds,∫ t

tδ

(t− s)α−1T(t− s)B(s)u(s) ds, t ∈ (tδ, T ],

and

(H2u)( · ) =



∫ t

0

(t− s)α−1S(t− s)B(s)u(s) ds, t ∈ [0, t1],∫ t2

t1

(t2 − s)α−1S(t2 − s)B(s)u(s) ds,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∫ tδ

tδ−1

(tδ − s)α−1S(tδ − s)B(s)u(s) ds,∫ t

tδ

(t− s)α−1S(t− s)B(s)u(s) ds, t ∈ (tδ, T ],

are strongly continuous.

Now we can give the existence of optimal controls for Bolza problem (P).
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Theorem 5.5. Under the assumptions of Theorem 5.1 and (HL), Bolza
problem (P) admits at least one optimal pair.

Proof. If inf{J(u) | u ∈ Uad} = ∞, there is nothing to prove. So we assume
that inf{J(u) | u ∈ Uad} = m < ∞. By (HL) we have

J(u) ≥
∫ b

0

ϕ(t) dt + d

∫ b

0

‖x(t)‖ dt + e

∫ b

0

‖u(t)‖p
Y dt + Ψ(xu(b)) ≥ −η > −∞,

where η > 0 is a constant. Hence m ≥ −η > −∞.
By definition of infimum there exists a sequence {un} ⊂ Uad, such that

J(un) → m.
Since {un} is bounded in Lp(J, Y ), there exists a subsequence, relabeled as

{un}, and u0 ∈ Lp(J, Y ) such that un w−→ u0 in Lp(J, Y ). Since Uad is closed
and convex, thanking Mazur Lemma, u0 ∈ Uad.

Suppose xn is the PC-mild solution of system (5.1) corresponding to un

(n = 0, 1, . . . ), then xn satisfies the following integral equation

xn(t)=



T(t)x0 +
∫ t

0

(t− s)α−1S(t− s)[f(s, xn(s)) + B(s)un(s)] ds,

t ∈ [0, t1],

T(t− tk)
∏

0<i≤k

T(ti − ti−1)x0 + T(t− tk)
k∑

i=1

{ ∏
i<j≤k

T(tj − tj−1)

×
[ ∫ ti

ti−1

(ti − s)α−1S(ti − s)[f(s, xn(s))+B(s)un(s)] ds+Ii(x(ti))
]}

+
∫ t

tk

(t− s)α−1S(t− s)[f(s, xn(s)) + B(s)un(s)] ds, t ∈ (tk, tk+1],

k = 1, . . . , δ.

It follows from the boundedness of {un} and Lemma 3.1, one can verify that
there exists a ρ∗ > 0 such that ‖xn‖PC ≤ ρ∗.

Define

ηi
n =



∫ ti

ti−1

(ti − s)α−1‖S(ti − s)B(s)un(s)− S(ti − s)B(s)u0(s)‖ ds,

i = 1, . . . , k,∫ t

tk

(t− s)α−1‖S(t− s)B(s)un(s)− S(t− s)B(s)u0(s)‖ ds,

k = 1, . . . , δ.

It comes from the compactness of S( · ) and Lemma 5.4, we obtain

(5.4) ηi
n → 0 in C([ti−1, ti], X) as un w−→ u0, i = 1, . . . , δ.
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Now, for t ∈ [0, t1], directly calculation implies

‖xn(t)− x0(t)‖ ≤ η1
n +

MLf (ρ)
Γ(α)

∫ t

0

(t− s)α−1‖xn(s)− x0(s)‖ ds.

By Lemma 3.1 and Remark 3.2, there exists a M̃ > 0 such that

(5.5) ‖xn(t)− x0(t)‖ ≤ M̃η1
n ≡ Ĉ1η

1
n, for t ∈ [0, t1].

By (HI2) and (5.5), we also have

‖xn(t+1 )− x0(t+1 )‖ ≤‖xn(t1)− x0(t1)‖+ ‖I1(xn(t1))− I1(x0(t1))‖
≤ (h∗ + 1)‖xn(t1)− x0(t1)‖ ≤ (h∗ + 1)Ĉ1η

1
n ≡ Ĉ ′

1η
1
n.

For t ∈ (t1, t2], with the same argument, we can obtain

‖xn(t)− x0(t)‖ ≤ Ĉ2η
2
n for t ∈ (t1, t2],

‖xn(t+2 )− x0(t+2 )‖ ≤ Ĉ ′
2η

2
n.

Thus, in general, given any tk, k = 1, . . . , δ, and the xn(tk), x0(tk), prior to
the jump at time tk, we immediately following the jump as xn(t+k ) = xn(tk) +
Ik(xn(tk)), x0(t+k ) = x0(tk) + Ik(x0(tk)), the associated interval (tk, tk+1], we
also similarly obtain

‖xn(t)− x0(t)‖ ≤Ĉk+1η
k+1
n for t ∈ (tk, tk+1],

‖xn(t+k+1)− x0(t+k+1)‖ ≤ Ĉ ′
k+1η

k+1
n .

Step by steps, we repeat the procedures till the time interval is exhausted. Let
Ĉ = max{Ĉ1, Ĉ ′

1, Ĉ2, Ĉ ′
2, . . . , Ĉδ+1} and η̂n = max

{
η1

n, η2
n, . . . , ηδ+1

n

}
thus we

obtain

(5.6) ‖xn − x0‖PC ≤ Ĉη̂n.

From (5.4) and (5.6), we immediately have

xn → x0 in PC(J,X) as un w−→ u0.

Since PC(J,X) ↪→ L1(J,X), using (HL) and Balder’s theorem, we can obtain

m = lim
n→∞

∫ b

0

L(t, xn(t), un(t)) dt + Ψ(xn(b))

≥
∫ b

0

L(t, x0(t), u0(t)) dt + Ψ(x0(b)) ≥ m.

This shows that J attains its minimum at u0 ∈ Uad. This completes the proof.�



40 J. Wang — Y. Zhou — W. Wei

6. An example

In this section, an example is given to illustrate our theory.
Consider the following problem

(6.1)



CDα
t x(t, y) =

∂2

∂y2
x(t, y) +

√
x2(t, y) + 1 + | sin(t, y)|+ u(t, y),

α =
4
5
∈ (0, 1), y ∈ Ω = (0, π),

t ∈
[
0,

1
3

)
∪

(
1
3
, 1

]
,

∆x(t1, y) =
|x(t1, y)|

1 + |x(t1, y)|
, t1 =

1
3
, y ∈ Ω,

x(t, y)|y∈∂Ω = 0, t > 0, x(0, y) = 0, y ∈ Ω.

Let X = Y = L2(0, π) and A:X → X be defined by Ax = xyy, x ∈ D(A)
where D(A) = {x ∈ X : x, xy are absolutely continuous, x(0) = x(π) = 0}.
Then

Ax =
∞∑

n=1

n2(x, xn)xn, x ∈ X,

where xn(s) =
√

2/π sin(ns), n = 1, 2, . . . is the orthogonal set of eigenfunctions
of A. It can be easily shown that A is the infinitesimal generator of a compact
analytic semigroup {T (t), t ≥ 0} in X and is given by

T (t)x =
∞∑

n=1

e−n2t(x, xn)xn.

So there exists a constant M ≥ 1 such that ‖T (t)‖ ≤ M .
The admissible control set Uad = {u ∈ Y | ‖u‖L2(J,Y ) ≤ 1} is closed and

convex. Find a control u(t, y) that minimizes the performance index

J(x, u) =
∫ 1

0

∫
Ω

|x(t, y)|2 dy dt +
∫ 1

0

∫
Ω

|u(t, y)|2 dy dt +
∫

Ω

|x(1, y)|2 dy

subject to the problem (6.1).
Denote

x( · )(y) = x( · , y), sin( · )(y) = sin( · , y),

f( · , x( · ))(y) =
√

x2( · , y) + 1 + | sin( · , y)|,

B( · )u( · )(y) = u( · , y), I1(x(t1))(y) =
|x(t1, y)|

1 + |x(t1, y)|
.

Thus, problem (6.1) can be rewritten as
CDα

t x(t) = Ax(t) + f(t, x(t)) + B(t)u(t), α ∈ (0, 1), t ∈ [0, 1] \ {t1},
∆x(t1) = I1(x(t1)), t1 = 1/3,

x(0) = 0,
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with the cost function

J(u) =
∫ 1

0

(‖x(t)‖2 + ‖u(t)‖2Y ) dt + ‖x(1)‖2.

Obviously, all the assumptions in Theorem 5.5 are satisfied. Our results can
be used to solve problem (6.1).
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