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POSITIVE SOLUTIONS
FOR A CLASS OF NONLOCAL IMPULSIVE BVPS

VIA FIXED POINT INDEX

Gennaro Infante — Paolamaria Pietramala — Miros lawa Zima

Abstract. We study the existence of positive solutions for perturbed im-
pulsive integral equations. Our setting is quite general and covers a wide

class of impulsive boundary value problems. We also study other cases that
can be treated in a similar manner. The main ingredient in our theory is

the classical fixed point index theory for compact maps.

1. Introduction

The interest of researchers in the theory of impulsive differential equations
has grown in the last decades. The study of problems of this type is driven not
only by a theoretical interest, but also by the fact that several phenomena in
engineering, physics and life sciences can be modelled with impulsive equations.
For example, in the field of population control, this has been done by J. J. Nieto
and co-authors [39], [41].

For an introduction to the theory of impulsive differential equations we refer
to the books [4], [8], [24], [31], that also include a variety of examples and
applications.
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In this paper we discuss the existence of positive solutions of the, fairly
general, second order differential equations of the form

(1.1) u′′(t) + p(t)u′(t) + q(t)u(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

with impulsive terms of the type

∆u|t=τ = I(u(τ)), τ ∈ (0, 1),

∆u′|t=τ = N(u(τ)),

and nonlocal boundary conditions (BCs) of “Sturm–Liouville” kind

(1.2) a1u(0)− b1u
′(0) = α[u], a2u(1) + b2u

′(1) = β[u];

here ∆v|t=τ denotes the “jump” of the function v in t = τ , that is

∆v|t=τ = v(τ+)− v(τ−),

where v(τ−), v(τ+) are the left and right limits of v in t = τ , and α[ · ], β[ · ] are
linear functionals given by Stieltjes integrals, namely

(1.3) α[u] =
∫ 1

0

u(s) dA(s), β[u] =
∫ 1

0

u(s) dB(s).

The formulation (1.3) is rather general and includes, as special cases, multi-
point BCs and integral BCs that have been studied recently, in the case of
impulsive equations, by many authors, see for example [5]–[7], [10]–[12], [22],
[23], [27], [38] and references therein.

Second order differential equations of the form (1.1) with no impulsive term
under the m-point BCs of the type

(1.4) u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi),

have been studied by R. Ma and L. Ren [29], who utilized a careful equivalent
integral formulation of the problem, combined with results of K. Q. Lan and
J. R. L. Webb [26] and K. Q. Lan [25]. An equation similar to (1.1), subject to
two multi-point BCs has been studied later by R. Ma [28] and, with two integral
BCs, by Z. Yang [40]. A key ingredient in [28], [29] is that the coefficients
involved in the BCs are non-negative and in [40] only positive Stieltjes measures
are considered.

J. R. L. Webb [32], also with no impulsive term, studied (1.1) under the BCs
(1.2), where the involved measures can be signed; this, in particular, allows some
negative coefficients in (1.4). The method in [32] is to rewrite the boundary value
problem (BVP) in an integral form of the type

(1.5) u(t) = γ(t)α[u] + δ(t)β[u] +
∫ 1

0

k(t, s)g(s)f(s, u(s)) ds,
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and to make use of a general theory developed by J. R. L. Webb and G. In-
fante [33].

Our idea is to use the results of [32], [35], valid for the non-impulsive problem,
as a starting point and to rewrite the impulsive boundary value problem (IBVP)
(1.1)–(1.2) as a perturbation of (1.5), namely

u(t) = γ(t)α[u] + δ(t)β[u] +
∫ 1

0

k(t, s)g(s)f(s, u(s)) ds + Gu(t),

where the term Gu(t) takes care of the impulsive effect and is constructed in
a very natural manner.

We use the classical theory of fixed point index, combined with some results
from the paper [33], in order to prove the existence of one or more positive solu-
tions. It is worth pointing out that in [32] the theory allows signed measures, here
we focus, as in [17], on positive measures only, because we want our functionals
to preserve some inequalities.

We extend the results of [33] to the context of impulsive equations and, do-
ing so, we cover a wide class of IBVPs, including local ones. We stress that
our methodology involves the construction of new Stieltjes measures that take
into account, at the same time, the boundary conditions and the impulsive ef-
fect. This avoids long calculations in order to build the corresponding impulsive
integral operator.

Other cases that do not fit directly in our theory, can be treated in a similar
manner. Here we modify some techniques given by J. R. L. Webb and G. In-
fante [33] and J. R. L. Webb and M. Zima [37] in order to deal with both the
impulses and two nonlocal conditions. We do this in three cases. The results are
new and the IBVP (1.1)–(1.2) is, as far as we know, studied for the first time.

2. The non-impulsive case

We begin by recalling some results of J. R. L. Webb [32] and J. R. L. Webb
and G. Infante [35], valid for the non-impulsive case. Consider the second order
equation

(2.1) u′′(t) + p(t)u′(t) + q(t)u(t) + g(t)f(t, u(t)) = 0,

where g, f are non-negative functions, p and q are continuous and q(t) ≤ 0, so
that the maximum principle holds. The nonlocal boundary conditions are of the
general form

(2.2) a1u(0)− b1u
′(0) = α[u], a2u(1) + b2u

′(1) = β[u],
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where a1, b1, a2, b2 ∈ [0,∞), a1+b1 6= 0, a2+b2 6= 0 and λ = 0 is not an eigenvalue
of the problem

u′′(t) + p(t)u′(t) + q(t)u(t) + λu(t) = 0,

a1u(0)− b1u
′(0) = 0, a2u(1) + b2u

′(1) = 0;

we assume that these conditions are satisfied throughout the paper, unless we
state otherwise.

Let γ, δ be the unique solutions of

γ′′(t) + p(t)γ′(t) + q(t)γ(t) = 0, a1γ(0)− b1γ
′(0) = 1, a2γ(1) + b2γ

′(1) = 0,

δ′′(t) + p(t)δ′(t) + q(t)δ(t) = 0, a1δ(0)− b1δ
′(0) = 0, a2δ(1) + b2δ

′(1) = 1;

their properties are given in the following lemma, whose proof utilizes some
results from [30].

Lemma 2.1 ([32], [35]). The functions γ, δ are well-defined C2 functions that
are positive on (0, 1), γ is non-increasing and δ is non-decreasing on [0, 1].

By multiplying by eP (t) := exp(
∫ t

0
p(s) ds), equation (2.1) can be rewritten

as

(2.3) (u′(t)eP (t))′ + q(t)u(t) + g(t)f(t, u(t)) = 0,

where q(t) = q(t) eP (t) and g(t) = g(t) eP (t). When there are no nonlocal BCs,
the well-known Green’s function is then given by the following result, see for
example [9, §5.7] or [16, XI, §1–2].

Lemma 2.2. Solutions of (2.3) with BCs a1u(0) − b1u
′(0) = 0, a2u(1) +

b2u
′(1) = 0 are given by solutions of the integral equation

(2.4) u(t) =
∫ 1

0

k(t, s)g(s)f(s, u(s)) ds := Fu(t)

with Green’s function given by

k(t, s) =
1

W (0)

{
γ(t)δ(s) if s ≤ t,

γ(s)δ(t) if s ≥ t,

where W (t) is the Wronskian, W (t) = γ(t)δ′(t) − δ(t)γ′(t), and W (t) > 0 by
Lemma 2.1.

J. R. L. Webb [32] studied the existence of positive solutions of the nonlocal
BVP (2.1)–(2.2) by seeking fixed points of the perturbed Hammerstein integral
operator

(2.5) Λu(t) := γ(t)α[u] + δ(t)β[u] +
∫ 1

0

k(t, s)g(s)f(s, u(s)) ds,
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in a suitable cone of positive functions in the space C[0, 1] and utilizing the
theory developed in [33]. Key ingredients in [32] are the following upper and
lower bounds for the functions k, γ, δ. For an arbitrary [a, b] ⊂ (0, 1) one has

k(t, s) ≤ Φ(s) :=
1

W (0)
γ(s)δ(s) for t ∈ [0, 1] and s ∈ [0, 1],

k(t, s) ≥ c1Φ(s) for t ∈ [a, b] and s ∈ [0, 1],

γ(t) ≥ c2‖γ‖, δ(t) ≥ c3‖δ‖ for t ∈ [a, b],

where

c1 := min
t∈[a,b]

{
γ(t)
‖γ‖

,
δ(t)
‖δ‖

}
, c2 := min

t∈[a,b]

γ(t)
‖γ‖

, c3 := min
t∈[a,b]

δ(t)
‖δ‖

.

We also make use of these estimates in the next sections.

3. The impulsive case

We can now consider the second order impulsive differential problem

(3.1)

(u′(t)eP (t))′ + q(t)u(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

∆u|t=τ = I(u(τ)), τ ∈ (0, 1),

∆u′|t=τ = N(u(τ)),

with the nonlocal BCs

(3.2) a1u(0)− b1u
′(0) = α[u], a2u(1) + b2u

′(1) = β[u].

We work in the Banach space

PCτ [0, 1] := {u:[0, 1] → R | u is continuous in t ∈ [0, 1] \ {τ},
there exist u(τ−) = u(τ) and |u(τ+)| < ∞},

endowed with the usual supremum norm ‖u‖ = sup{|u(t)| : t ∈ [0, 1]}.
Our idea is to seek a solution of the IBVP (3.1)–(3.2) as a fixed point of

a perturbation of the operator (2.5), namely

(3.3) Tu(t) := γ(t)α[u] + δ(t)β[u] +
∫ 1

0

k(t, s)g(s)f(s, u(s)) ds + Gu(t),

where

Gu(t) := γ(t)χ(τ,1](d1I + e1N)(u(τ)) + δ(t)χ[0,τ ](d2I + e2N)(u(τ)),

and the coefficients d1, e1, d2, e2 are given by the following lemma.
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Lemma 3.1. The solutions of the integral equation u(t) = Tu(t) with

d1 =
δ′(τ)
W (τ)

, e1 =
−δ(τ)
W (τ)

, d2 =
γ′(τ)
W (τ)

, e2 =
−γ(τ)
W (τ)

,

are solutions of the IBVP (3.1)–(3.2).

Proof. Let u be a fixed point of the operator T . From the choice of the
coefficients d1, e1, d2, e2 it follows that

∆u|t=τ = I(u(τ)) and ∆u′|t=τ = N(u(τ)).

The rest of the proof follows from the choice of γ and δ and from Lemma 2.2.�

We now fix [a, b] ⊂ (τ, 1) and make the following assumptions on the functions
f , g, I, N and the functionals α, β that appear in (3.1)–(3.2).

(C1) f : [0, 1]× [0,∞) → [0,∞) satisfies Carathéodory conditions, that is, for
each u, t 7→ f(t, u) is measurable and for almost every t, u 7→ f(t, u) is
continuous and for every r > 0 there exists a L∞-function φr: [0, 1] →
[0,∞) such that

f(t, u) ≤ φr(t) for almost all t ∈ [0, 1] and all u ∈ [0, r].

(C2) g Φ ∈ L1[0, 1], g ≥ 0 almost everywhere, and
∫ b

a
Φ(s)g(s) ds > 0.

(C3) I: [0,∞) → R and N : [0,∞) → R are continuous functions and there
exist h1, h2 > 0 and h3 ≥ 0 such that for w ∈ [0,∞)

h1w ≤ (d1I + e1N)(w) ≤ h2w, and 0 ≤ (d2I + e2N)(w) ≤ h3w.

(C4) α[ · ], β[ · ] are linear functionals given by

α[u] =
∫ 1

0

u(s) dA(s), β[u] =
∫ 1

0

u(s) dB(s),

involving Riemann–Stieltjes integrals; A, B are functions of bounded
variation and dA, dB are positive measures.

The assumptions above enable us to work in the cone

K = {u ∈ PCτ [0, 1], u ≥ 0 : min
t∈[a,b]

u(t) ≥ c‖u‖},

where [a, b] is arbitrary in (τ, 1) and

c = min
{

c1, c2, c3,
c2‖γ‖h1

max{h2‖γ‖, h3‖δ‖}

}
.

We make use of the following compactness criterion, which can be found, for
example, in [1], [24] and is an extension of the classical Ascoli–Arzelà Theorem.

We recall that a set S ⊂ PCτ [0, 1] is said to be quasi-equicontinuous if for
every u ∈ S and for every ε > 0 there exists δ > 0 such that t1, t2 ∈ [0, τ ] (or
t1, t2 ∈ (τ, 1]) and |t1 − t2| < δ implies |u(t1)− u(t2)| < ε.
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Lemma 3.2. A set S ⊆ PCτ [0, 1] is relatively compact in PCτ [0, 1] if and
only if S is bounded and quasi-equicontinuous.

We now prove that T leaves the cone K invariant and is compact.

Theorem 3.3. Under the hypotheses above, T :K → K and T is compact.

Proof. It follows, as in [33], that for u ∈ K and t ∈ [a, b] ⊂ (τ, 1) we have

Λu(t) ≥ c0‖Λu‖,

where c0 = min{c1, c2, c3}. For t ∈ [0, τ ] we have Gu(t) ≤ ‖δ‖h3u(τ) and, for
t ∈ (τ, 1], Gu(t) ≤ ‖γ‖h2u(τ). Therefore, for t ∈ [0, 1],

Gu(t) ≤ u(τ)max{h2‖γ‖, h3‖δ‖}

and we obtain

(3.4) ‖Tu‖ ≤ ‖Λu‖+ u(τ)max{h2‖γ‖, h3‖δ‖}.

For t ∈ [a, b], we get

Tu(t) ≥ c0‖Λu‖+ γ(t)(d1I + e1N)(u(τ))

≥ c0‖Λu‖+
c2‖γ‖h1

max{h2‖γ‖, h3‖δ‖}
u(τ) max{h2‖γ‖, h3‖δ‖}.

Thus we obtain

min
t∈[a,b]

Tu(t) ≥ c‖Tu‖.

Moreover, we have Tu(t) ≥ 0 for t ∈ [0, 1]. Hence Tu ∈ K for every u ∈ K.
Now, we prove that the map T is compact. Firstly, we show that T sends

bounded sets into bounded sets. Let u ∈ K and ‖u‖ ≤ r. Then, for all t ∈ [0, 1],
from (3.4) we have

‖Tu‖ ≤ r‖γ‖
∫ 1

0

dA(s) + r‖δ‖
∫ 1

0

dB(s)

+
∫ 1

0

Φ(s)g(s)φr(s) ds + r max{h2‖γ‖, h3‖δ‖}.

Secondly we show that T sends bounded sets into quasi-equicontinuous sets.
For t1, t2 ∈ [0, τ ], t1 < t2 and u ∈ K such that ‖u‖ ≤ r, we have

|Tu(t1)− Tu(t2)| ≤ |δ(t1)− δ(t2)|(d2I + e2N)(u(τ)) + |Λu(t1)− Λu(t2)|.

Then |Tu(t1)−Tu(t2)| → 0 when t1 → t2. A similar proof holds for t1, t2 ∈ (τ, 1].
By Lemma 3.2, T is a compact map. �
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4. Fixed point index calculations

We now recall some basic facts regarding the classical fixed point index for
compact maps, see for example the paper by H. Amann [2] and the books by
D. Guo and V. Lakshmikantham [14] and by J. Andres and L. Górniewicz [3].

Let K̃ be a cone in a Banach space X. If Ω is a bounded open subset of K̃

(in the relative topology) we denote by Ω and ∂Ω the closure and the boundary
relative to K̃. When Ω is an open bounded subset of X we write Ω

eK = Ω ∩ K̃,
an open subset of K̃. The following result (see for example Theorem 12.3 of [2])
is crucial for our existence results.

Theorem 4.1. Let K̃ be a cone in a Banach space X and let Ω be an open
bounded set with Ω

eK 6= ∅ and Ω
eK 6= K̃. Assume that T : Ω

eK → K̃ is a compact
map such that x 6= Tx for x ∈ ∂Ω

eK . Then the fixed point index i
eK(T,Ω

eK) has
the following properties.

(a) If there exists x0 ∈ K̃ \ {0} such that x 6= Tx + λx0 for all x ∈ ∂Ω
eK

and all λ ≥ 0, then i
eK(T,Ω

eK) = 0.
(b) If Tx 6= λx for all x ∈ ∂Ω

eK and all λ ≥ 1, then i
eK(T,Ω

eK) = 1.
(c) Let Ω1 be open in X with Ω1

eK
⊂ Ω

eK . If i
eK(T,Ω

eK) = 1 and i
eK(T,Ω1

eK
) =

0, then T has a fixed point in Ω
eK \ Ω1

eK
. The same result holds if

i
eK(T,Ω

eK) = 0 and i
eK(T,Ω1

eK
) = 1.

We recall some useful facts valid for real 2× 2 matrices.

Definition 4.2 ([33]). A 2× 2 matrix N is said to be order preserving (or
positive) if p1 ≥ q1, p2 ≥ q2 imply

N
(

p1

p2

)
≥ N

(
q1

q2

)
,

in the sense of components.

Lemma 4.3 ([33]). Let

N =
(

p11 −p12

−p21 p22

)
with p11, p12, p21, p22 ≥ 0 and detN > 0. Then N−1 is order preserving.

Lemma 4.4 ([33]). Let N satisfy the hypotheses of Lemma 4.3. Suppose
p1 ≥ 0, p2 ≥ 0 and

N
(

x

y

)
=

(
p1

p2

)
and M

(
xν

yν

)
=

(
p1

p2

)
,

where M = νI +N with ν ≥ 0. Then xν ≤ x and yν ≤ y.
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We now introduce, in a similar way as in [18], the functionals

α1[u] := α[u] + h1u(τ) :=
∫ 1

0

u(s) dA1(s),

α2[u] := α[u] + h2u(τ) :=
∫ 1

0

u(s) dA2(s),

β2[u] := β[u] + h3u(τ) :=
∫ 1

0

u(s) dB2(s),

and use the notations

f0,ρ := sup
0≤u≤ρ, 0≤t≤1

f(t, u)
ρ

, fρ,ρ/c := inf
ρ≤u≤ρ/c, a≤t≤b

f(t, u)
ρ

,

1
m

:= sup
t∈[0,1]

∫ 1

0

k(t, s)g(s) ds,
1
M

:= inf
t∈[a,b]

∫ b

a

k(t, s)g(s) ds,

D1 := (1− α1[γ])(1− β[δ])− α1[δ]β[γ],

D2 := (1− α2[γ])(1− β2[δ])− α2[δ]β2[γ],

KC(s) :=
∫ 1

0

k(t, s) dC(t),

where dC is one of the measures dA1, dA2, dB, dB2. Note that D2 > 0 implies
D1 > 0.

We assume from now on that

(C5) α2[γ] < 1, β2[δ] < 1 and D2 > 0.

We also make use of the following open bounded sets (relative to K):

Kρ = {u ∈ K : ‖u‖ < ρ}, Vρ =
{

u ∈ K : min
a≤t≤b

u(t) < ρ

}
.

Note that the sets above can be nested, that is Kρ ⊂ Vρ ⊂ Kρ/c.
We firstly prove that the index is 0 on the set Vρ.

Lemma 4.5. Assume that there exists ρ > 0 such that

(4.1) fρ,ρ/c

((
c2‖γ‖
D1

(1− β[δ]) +
c3‖δ‖
D1

β[γ]
) ∫ b

a

KA1(s)g(s) ds

+
(

c2‖γ‖
D1

α1[δ] +
c3‖δ‖
D1

(1− α1[γ])
) ∫ b

a

KB(s)g(s) ds +
1
M

)
> 1.

Then the fixed point index iK(T, Vρ) is equal to 0.

Proof. Let u0(t) ≡ 1 for t ∈ [0, 1]. Then u0 ∈ K. We prove that

u 6= Tu + λu0 for u ∈ ∂Vρ and λ ≥ 0,
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which ensures, by Theorem 4.1, that the index is 0 on the set Vρ. In fact, if this
is not so, there exist u ∈ ∂Vρ and λ ≥ 0 such that u = Tu + λu0. Then we have

u(t) = γ(t)(α[u] + χ(τ,1](d1I + e1N)(u(τ)))

+ δ(t)(β[u] + χ[0,τ ](d2I + e2N)(u(τ))) + Fu(t) + λ,

where F is given by (2.4). Since

α1[u] ≤ α[u] + (d1I + e1N)(u(τ)),

we obtain for t ∈ [a, b]

(4.2) u(t) ≥ γ(t)α1[u] + δ(t)β[u] + Fu(t) + λ.

Applying α1 and β to both sides of (4.2) we get

α1[u] ≥ α1[γ]α1[u] + α1[δ]β[u] + α1[Fu] + λα1[u0],

β[u] ≥ β[γ]α1[u] + β[δ]β[u] + β[Fu] + λβ[u0].

This can be written in the form

(4.3)
(

1− α1[γ] −α1[δ]
−β[γ] 1− β[δ]

) (
α1[u]
β[u]

)
≥

(
α1[Fu] + λα1[u0]
β[Fu] + λβ[u0]

)
≥

(
α1[Fu]
β[Fu]

)
.

Let

M =
(

1− α1[γ] −α1[δ]
−β[γ] 1− β[δ]

)
.

Then

(M)−1 =
1

D1

(
1− β[δ] α1[δ]

β[γ] 1− α1[γ]

)
.

By Lemma 4.3, (M)−1 is order preserving. Thus, if we apply (M)−1 to left and
right-hand sides of the inequality (4.3) we obtain(

α1[u]
β[u]

)
≥ 1

D1

(
1− β[δ] α1[δ]

β[γ] 1− α1[γ]

) (
α1[Fu]
β[Fu]

)
and therefore, for t ∈ [a, b]

u(t) ≥
(

γ(t)
D1

(1− β[δ]) +
δ(t)
D1

β[γ]
)

α1[Fu]

+
(

γ(t)
D1

α1[δ] +
δ(t)
D1

(1− α1[γ])
)

β[Fu] + Fu(t) + λ.

Then, for t ∈ [a, b], we get

u(t) ≥
(

γ(t)
D1

(1− β[δ]) +
δ(t)
D1

β[γ]
) ∫ 1

0

KA1(s)g(s)f(s, u(s)) ds

+
(

γ(t)
D1

α1[δ] +
δ(t)
D1

(1− α1[γ])
) ∫ 1

0

KB(s)g(s)f(s, u(s)) ds

+
∫ 1

0

k(t, s)g(s)f(s, u(s)) ds + λ
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≥
(

c2‖γ‖
D1

(1− β[δ]) +
c3‖δ‖
D1

β[γ]
) ∫ b

a

KA1(s)g(s)f(s, u(s)) ds

+
(

c2‖γ‖
D1

α1[δ] +
c3‖δ‖
D1

(1− α1[γ])
) ∫ b

a

KB(s)g(s)f(s, u(s)) ds

+
∫ b

a

k(t, s)g(s)f(s, u(s)) ds + λ.

From (4.1) we obtain mint∈[a,b] u(t) > ρ+λ ≥ ρ, which contradicts the fact that
u ∈ ∂Vρ. �

Next, we prove that the index is 1 on the set Kρ.

Lemma 4.6. Assume that there exists ρ > 0 such that

(4.4) f0,ρ

((
‖γ‖
D2

(1− β2[δ]) +
‖δ‖
D2

β2[γ]
) ∫ 1

0

KA2(s)g(s) ds

+
(
‖γ‖
D2

α2[δ] +
‖δ‖
D2

(1− α2[γ])
) ∫ 1

0

KB2(s)g(s) ds +
1
m

)
< 1.

Then the fixed point index iK(T,Kρ) is equal to 1.

Proof. We show that Tu 6= λu for all λ ≥ 1 when u ∈ ∂Kρ; this ensures,
by Theorem 4.1, that the index is 1 on Kρ. In fact, if this is not so, then there
exist u ∈ K with ‖u‖ = ρ and λ ≥ 1 such that λu(t) = Tu(t). Then we have

λu(t) = γ(t)(α[u] + χ(τ,1](d1I + e1N)(u(τ)))

+ δ(t)(β[u] + χ[0,τ ](d2I + e2N)(u(τ))) + Fu(t).

Since
α2[u] ≥ α[u] + χ(τ,1](d1I + e1N)(u(τ))

and
β2[u] ≥ β[u] + χ[0,τ ](d2I + e2N)(u(τ)),

we obtain

(4.5) λu(t) ≤ γ(t)α2[u] + δ(t)β2[u] + Fu(t).

Applying α2 and β2 to both sides of (4.5) we obtain

λα2[u] ≤ α2[γ]α2[u] + α2[δ]β2[u] + α2[Fu],

λβ2[u] ≤ β2[γ]α2[u] + β2[δ]β2[u] + β2[Fu].

Thus we have

(4.6)
(

λ− α2[γ] −α2[δ]
−β2[γ] λ− β2[δ]

) (
α2[u]
β2[u]

)
≤

(
α2[Fu]
β2[Fu]

)
.

Setting

M =
(

λ− α2[γ] −α2[δ]
−β2[γ] λ− β2[δ]

)
,
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we get

(M)−1 =
1

det(M)

(
λ− β2[δ] α2[δ]

β2[γ] λ− α2[γ]

)
,

where det(M) ≥ D2 > 0.
By Lemma 4.3, (M)−1 is order preserving. Thus, if we apply (M)−1 to both

sides of the inequality (4.6) we obtain(
α2[u]
β2[u]

)
≤ 1

det(M)

(
λ− β2[δ] α2[δ]

β2[γ] λ− α2[γ]

) (
α2[Fu]
β2[Fu]

)
,

and by Lemma 4.4, we have(
α2[u]
β2[u]

)
≤ 1

D2

(
1− β2[δ] α2[δ]

β2[γ] 1− α2[γ]

) (
α2[Fu]
β2[Fu]

)
.

Hence we obtain

λu(t) ≤ γ(t)
D2

[(1− β2[δ])α2[Fu] + α2[δ]β2[Fu]]

+
δ(t)
D2

[(1− α2[γ])β2[Fu] + β2[γ]α2[Fu]] + Fu(t).

Using the inequality f(s, u(s)) ≤ ρf0,ρ and taking the supremum over [0, 1] gives

λρ ≤ ρf0,ρ

((
‖γ‖
D2

(1− β2[δ]) +
‖δ‖
D2

β2[γ]
) ∫ 1

0

KA2(s)g(s) ds

+
(
‖γ‖
D2

α2[δ] +
‖δ‖
D2

(1− α2[γ])
) ∫ 1

0

KB2(s)g(s) ds +
1
m

)
,

contradicting (4.4). �

The two lemmas above lead to the following result valid for the impulsive
integral equation

(4.7) u(t) = γ(t)α[u] + δ(t)β[u] +
∫ 1

0

k(t, s)g(s)f(s, u(s)) ds + Gu(t).

Theorem 4.7. Equation (4.7) has at least one positive solution in K if either
of the following conditions hold:

(S1) There exist ρ1, ρ2 with ρ1 < ρ2 such that (4.4) is satisfied for ρ1 and
(4.1) is satisfied for ρ2.

(S2) There exist ρ1, ρ2 with ρ1 < cρ2 such that (4.1) is satisfied for ρ1 and
(4.4) is satisfied for ρ2.

Equation (4.7) has at least two positive solutions in K if one of the following
conditions hold:

(H1) There exist ρ1, ρ2, ρ3 with ρ1 < ρ2 < cρ3 such that (4.4) is satisfied for
ρ1, (4.1) is satisfied for ρ2 and (4.4) is satisfied for ρ3.

(H2) There exist ρ1, ρ2, ρ3 with ρ1 < cρ2 < cρ3 such that (4.1) is satisfied
for ρ1, (4.4) is satisfied for ρ2 and (4.1) is satisfied for ρ3.
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We omit the proof which follows simply from properties of fixed point index,
for details of similar proofs see [19].

Remark 4.8. It is possible to state results for three or more nontrivial
solutions by expanding the lists in conditions (H1), (H2), we refer the reader to
[20], [25] for the type of results that may be stated.

The following example illustrates our approach.

Example 4.9. Consider the differential equation

(4.8) u′′(t) +
t

1 + t
u′(t)− 1

1 + t
u(t) +

1 + t

et
f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

with impulsive effect

∆u|t=τ = I(u(τ)), ∆u′|t=τ = N(u(τ)), τ ∈ (0, 1/2),

and BCs
u(0) = α[u], u′(1) = β[u],

where

I(w) =

{
µw, 0 ≤ w ≤ 1,
µ

2
w +

µ

2
, w ≥ 1,

N(w) =

{
−σw, 0 ≤ w ≤ 1,

−σ

2
w − σ

2
, w ≥ 1.

Set P (t) =
∫ t

0
s/(1 + s) ds. By multiplying by eP (t) we can rewrite (4.8) as(

u′(t)
et

1 + t

)′
− et

(1 + t)2
u(t) + f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ.

In this case, we have

γ(t) =
1
e
t + e−t, δ(t) = t,

and for every fixed [a, b] ⊂ (τ, 1) we obtain c2 = b/e + e−b and c3 = a.
Thus the Green’s function is given by

k(t, s) =
1

W (0)


s

(
1
e
t + e−t

)
if s ≤ t,

t

(
1
e
s + e−s

)
if s ≥ t,

where W (t) = γ(t)δ′(t)− δ(t)γ′(t) = e−t(1 + t) and therefore W (0) = 1.
Upper and lower bounds for k(t, s) are given by direct calculation as follows:

Φ(s) = s

(
1
e
s + e−s

)
, c1 = min

{
1
e
b + e−b, a

}
.

Moreover, we have

1
m

= sup
t∈[0,1]

∫ 1

0

k(t, s) ds = max
t∈[0,1]

{
t2

2
e−t + te−t − 1

2e
t

}
=

1
e
,
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and, for [a, b] = [1/2, 3/4],

1
M

= inf
t∈[1/2,3/4]

∫ 3/4

1/2

k(t, s) ds

= min
t∈[1/2,3/4]

{
5

32e
t +

1
2
e−tt2 − 1

8
e−t + te−t − te−3/4

}
=

5
64e

+
1

2
√

e
− 1

2e3/4
.

We fix

τ = 1/5, µ = 1/6, σ = 1/10, α[u] = u(1/10)/4, β[u] = u(5/8)/5

and show that all the constants that appear in (4.4) can be computed, the ones
appearing in (4.1) can be dealt with in a similar way. This choice leads to

h1 = 1/8, h2 = 1/4, h3 = 1/3,

and (rounded to 3 decimal places)

α2[γ] = 0.458, β2[δ] = 0.192, D2 = 0.404.

Therefore (C5) is satisfied,
∫ 1

0
KA2(s) ds = 0.055,

∫ 1

0
KB2(s) ds = 0.113 and

condition (4.4) reads f0,ρ < 1.406.

5. Others cases

In this Section we study three cases that do not fit directly in our theory but
can be treated in a similar manner.

5.1. A critical case. We begin by observing that our method does not
apply whenever one of the conditions in (C5) fails. In the case of non-impulsive
problems, when the associated linear operator is not invertible, the BVP is said
to be at resonance.

J. R. L. Webb and M. Zima [37] studied six non-impulsive resonant BVPs
subject to one nonlocal condition, using signed measures and improving the
results of [21], where a completely different technique was used. The method
utilized in [37] is based on earlier results of J. R. L. Webb and co-authors [34],
[36] and on a technique similar to the one used by X. Han [15] for a three-point
problem.

Here we present a modification of the approach of [37] to the setting of IBVPs,
with two nonlocal BCs, by showing that a critical (for our method) IBVP can
be transformed into an equivalent IBVP that fits our framework.
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In particular, we study the IBVP

(5.1)

u′′(t) + h(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

∆u|t=τ = I(u(τ)), ∆u′|t=τ = N(u(τ)), τ ∈ (0, 1),

u(0) = α[u], u(1) = β[u],

where

α[u] :=
n∑

i=1

αiu(ξi) +
∫ 1

0

α(t)u(t) dt, β[u] :=
m∑

j=1

βju(ηj) +
∫ 1

0

β(t)u(t) dt,

ξi, ηj are distinct points in (0, 1), αi ≥ 0, βj ≥ 0, α, β are non-negative continuous
functions and the nonlinearity h is not necessarily positive.

In this case we have γ(t) = 1− t and δ(t) = t and we assume that

(5.2)

α2[γ] =
n∑

i=1

αi(1− ξi) +
∫ 1

0

α(t)(1− t) dt + h2(1− τ) < 1,

β2[δ] =
m∑

j=1

βjηj +
∫ 1

0

β(t)t dt + h3τ < 1,

D2 = (1− α2[γ])(1− β2[δ])− α2[δ]β2[γ] = 0.

From (5.2) and h2 > 0 we obtain α2[γ], α2[δ], β2[γ] > 0.
The problem (5.1) with no impulsive terms and only one nonlocal condition

is a resonant problem studied in [37] and the functionals α[ · ], β[ · ] in (5.2) are
similar to one descripted in [13]. Even if our method can be applied to more
general measures, we have chosen these particular functionals since they shed
more light on our approach.

We can now consider an equivalent IBVP

u′′(t)− ω2u(t) + f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

∆u|t=τ = I(u(τ)), ∆u′|t=τ = N(u(τ)), τ ∈ (0, 1),

u(0) = α[u], u(1) = β[u],

where ω > 0 is such that f(t, u) := h(t, u) + ω2u ≥ 0.
We show that the condition (C5) is fulfilled. The Green’s function for the

local problem

u′′(t)− ω2u(t) + f(t, u(t)) = 0, u(0) = 0, u(1) = 0,

is (see, for example, [37])

k̂(t, s) =
1

ω sinh(ω)

{
sinh(ωs) sinh(ω(1− t)) for s ≤ t,

sinh(ωt) sinh(ω(1− s)) for s > t,
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and we have

γ̂(t) =
sinh(ω(1− t))

sinh(ω)
, δ̂(t) =

sinh(ωt)
sinh(ω)

.

Now, it can be shown that sinh(ωx)/sinh(ω) < x for x ∈ (0, 1), that is,

γ̂(t) < γ(t) and δ̂(t) < δ(t), for t ∈ (0, 1).

This implies that

α2[γ̂] < α2[γ] < 1 and β2[δ̂] < β2[δ] < 1

and
α2[δ̂] < α2[δ] and β2[γ̂] < β2[γ].

This ensures that

D̂2 := (1− α2[γ̂])(1− β2[δ̂])− α2[δ̂]β2[γ̂] > 0,

since

(1− α2[γ̂])(1− β2[δ̂]) > (1− α2[γ])(1− β2[δ]) = α2[δ]β2[γ] > α2[δ̂]β2[γ̂].

Thus (C5) is satisfied. Furthermore one may use the function

Φ̂(s) =
sinh(ωs) sinh(ω(1− s))

ω sinh(ω)
,

and for an arbitrary (but fixed) [a, b] in (τ, 1) we obtain

ĉ1 = min
{

sinh(ωa)
sinh(ω)

,
sinh(ω(1− b))

sinh(ω)

}
, ĉ2 =

sinh(ω(1− b))
sinh(ω)

, ĉ3 =
sinh(ωa)
sinh(ω)

.

With suitable assumptions on the nonlinearity f we are now able to prove exis-
tence results for the IBVP (5.1) via Theorem 4.7.

5.2. A case with negative Wronskian. We illustrate an example where
γ is negative and δ is positive. We proceed somewhat in a similar way as in
Subsection 5.4 of [33]. The difference this time is that, due to the impulsive
effect, we cannot study the fixed points of the operator (3.3), but we have to
deal with an operator of different kind.

Consider the IBVP

(5.3)

u′′(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

∆u|t=τ = I(u(τ)), ∆u′|t=τ = N(u(τ)), τ ∈ (0, 1),

u′(0) = α[u], u(1) = β[u].

In this case we have γ(t) = t− 1 and δ(t) = 1 on [0, 1], that is, γ is negative
and non-decreasing and δ is positive on [0, 1] and non-decreasing. Furthermore
the Wronskian W (t) is less than 0 on [0, 1] and

k(t, s) =
1

W (0)

{
t− 1 for s ≤ t,

s− 1 for s > t,
=

{
1− t for s ≤ t,

1− s for s > t,



Impulsive BVPs 279

is non-negative on [0, 1]× [0, 1]. For an arbitrary [a, b] ⊂ (τ, 1) we have

k(t, s) ≤ 1− s for t ∈ [0, 1] and s ∈ [0, 1],

k(t, s) ≥ (1− b)(1− s) for t ∈ [a, b] and s ∈ [0, 1].

We associate to the IBVP (5.3) the operator

T̃ u(t) := (1− t)α̃[u] + tβ[u] + (1− t)χ(τ,1](−N)(u(τ))

+ χ[0,τ ](−I + (τ − 1)N)(u(τ)) + Fu(t),

where α̃[u] := β[u]− α[u].
Under the new assumptions

• I: [0,∞) → R and N : [0,∞) → R are continuous functions and there
exist h1, h2 > 0 and h3 ≥ 0 such that, for w ∈ [0,∞),

h1w ≤ −N(w) ≤ h2w and 0 ≤ (−I + (τ − 1)N)(w) ≤ h3w,

• α̃[u] is a positive functional,

the operator T̃ is compact and leaves invariant the cone

K = {u ∈ PCτ [0, 1] : u ≥ 0, min
t∈[a,b]

u(t) ≥ c‖u‖},

where

c = min
{

a,
(1− b)h1

max{h2, h3}

}
.

We introduce the measures

α1[u] = α̃[u] + h1u(τ), α2[u] = α̃[u] + h2u(τ) and β2[u] = β[u] + h3u(τ)

and we assume that

(5.4) 1−α2[−γ] > 0, 1−β2[1] > 0, (1−α2[−γ])(1−β2[1])−α2[1]β2[−γ] > 0.

We sketch the proof of the fact that the index is 1 on the set Kρ. Suppose
there exist u ∈ K with ‖u‖ = ρ and λ ≥ 1 such that λu(t) = T̃ u(t). Then we
have

λu(t) = − γ(t)(α̃[u] + χ(τ,1](−N)(u(τ)))

+ tβ[u] + χ[0,τ ](−I + (τ − 1)N)(u(τ)) + Fu(t)

≤ − γ(t)(α̃[u] + χ(τ,1](−N)(u(τ)))

+ β[u] + χ[0,τ ](−I + (τ − 1)N)(u(τ)) + Fu(t).

Since

α2[u] ≥ α̃[u]+χ(τ,1](−N)(u(τ)) and β2[u] ≥ β[u]+χ[0,τ ](−I+(τ−1)N)(u(τ)),
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we obtain

(5.5) λu(t) ≤ −γ(t)α2[u] + β2[u] + Fu(t).

Applying α2 and β2 to both sides of (5.5) we obtain

λα2[u] ≤ α2[−γ]α2[u] + α2[1]β2[u] + α2[Fu],

λβ2[u] ≤ β2[−γ]α2[u] + β2[1]β2[u] + β2[Fu].

Thus we have (
λ− α2[−γ] −α2[1]
−β2[−γ] λ− β2[1]

) (
α2[u]
β2[u]

)
≤

(
α2[Fu]
β2[Fu]

)
.

Then, by suitably modifying (4.4), we can proceed as in Lemma 4.6.
We now sketch the proof of the fact that the index is zero on Vρ. Instead of

(4.1) we assume that there exist ρ > 0 such that

fρ,ρ/c

((
1− b

Da
(1− aβ[δ]) +

a

Da
β[−γ]

) ∫ b

a

KA1(s)g(s) ds

+
(

a(1− b)
Da

α1[δ] +
a

Da
(1− α1[−γ])

) ∫ b

a

KB(s)g(s) ds +
1
M

)
> 1,

where Da := (1− α1[−γ])(1− aβ[δ])− aα1[δ]β[−γ] is positive from (5.4).
Let u0 ∈ K \ {0}. Suppose that there exist u ∈ ∂Vρ and λ ≥ 0 such that

u = T̃ u + λu0. Then for t ∈ [a, b] we get

u(t) = −γ(t)(α̃[u]−N(u(τ))) + tβ[u] + Fu(t) + λu0

≥ −γ(t)α1[u] + tβ[u] + Fu(t) + λu0 ≥ −γ(t)α1[u] + aβ[u] + Fu(t) + λu0.

Applying α1 and β to left and right-hand sides of the above inequality gives

α1[u] ≥ α1[−γ]α1[u] + aα1[δ]β[u] + α1[Fu] + λα1[u0],

β[u] ≥ β[−γ]α1[u] + aβ[δ]β[u] + β[Fu] + λβ[u0].

This can be rewritten in the form

(5.6)
(

1− α1[−γ] −aα1[δ]
−β[−γ] 1− aβ[δ]

) (
α1[u]
β[u]

)
≥

(
α1[Fu] + λα1[u0]
β[Fu] + λβ[u0]

)
≥

(
α1[Fu]
β[Fu]

)
.

If we set

Ma =
(

1− α1[−γ] −aα1[δ]
−β[−γ] 1− aβ[δ]

)
and apply

(Ma)−1 =
1

Da

(
1− aβ[δ] aα1[δ]

β[−γ] 1− α1[−γ]

)
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to left and right-hand sides of the inequality (5.6), we obtain(
α1[u]
β[u]

)
≥ 1

Da

(
1− aβ[δ] aα1[δ]

β[−γ] 1− α1[−γ]

) (
α1[Fu]
β[Fu]

)
.

The rest of the proof follows as in Lemma 4.5.

5.3. A case with a signed measure. We illustrate an example where β

is a functional given by a signed measure and α is given by a positive measure;
in particular we utilize as β the continuously distributed signed measure given
in Example 5.4 of [33].

Consider the IBVP

u′′(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), t 6= τ,

∆u|t=τ = I(u(τ)), ∆u′|t=τ = N(u(τ)), τ ∈ (0, 1),

u(0) = α[u], u′(1) = β[u],

where β[u] :=
∫ 1

0
u(s)β(s) ds with β(t) = − cos(πt).

In this case we have γ(t) = 1, δ(t) = t and

k(t, s) =

{
s for s ≤ t,

t for s > t,

and consider the operator

T̃ u(t) := (1− t)α[u] + tβ̃[u] + χ(τ,1](I − τN)(u(τ)) + tχ[0,τ ](−N)(u(τ)) + Fu(t),

where β̃[u] := β[u] + α[u].
We assume that β̃[u] is a positive functional. We introduce the measures

α1[u] := (1− b)(α[u] + h1u(τ)),

α2[u] := α[u] + h2u(τ),

β2[u] := β̃[u] + h3u(τ).

The indices can be computed with the same assumptions as in Lemmas 4.6
and 4.5, but the proofs are slightly different. We sketch the proofs.

Suppose that there exist u ∈ K with ‖u‖ = ρ and λ ≥ 1 such that λu(t) =
T̃ u(t). Then we have

λu(t) = (1− t)α[u] + tβ̃[u] + χ(τ,1](I − τN)(u(τ)) + tχ[0,τ ](−N)(u(τ)) + Fu(t)

≤α[u] + (I − τN)(u(τ)) + t(β̃[u]−N(u(τ))) + Fu(t)

≤α2[u] + tβ2[u] + Fu(t) = γ(t)α2[u] + δ(t)β2[u] + Fu(t).

The rest of the proof follows as in Lemma 4.6.
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Now, let u0 ∈ K \ {0}. Suppose that there exist u ∈ ∂Vρ and λ ≥ 0 such
that u = T̃ u + λu0. Then for t ∈ [a, b] we get

u(t) = (1− t)α[u] + tβ̃[u] + (I − τN)(u(τ)) + Fu(t) + λu0

≥ (1− b)α[u] + (1− b)h1u(τ) + tβ̃[u] + Fu(t) + λu0

= γ(t)α1[u] + δ(t)β̃[u] + Fu(t) + λu0.

The rest of the proof follows as in Lemma 4.5. We omit further details.
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