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THE SIZE OF SOME CRITICAL SETS
BY MEANS OF DIMENSION

AND ALGEBRAIC ϕ-CATEGORY

Cornel Pintea

Abstract. Let Mn, Nn, n ≥ 2, be compact connected manifolds. We
first observe that mappings of zero degree have high dimensional critical

sets and show that the only possible degree is zero for maps f : M → N ,

under the assumption on the index [π1(N) : Im(f∗)] to be infinite. By
contrast with the described situation one shows, after some estimates on

the algebraic ϕ-category of some pairs of finite groups, that a critical set

of smaller dimension keeps the degree away from zero.

1. Introduction and preliminary results

The critical set and the set of critical values were of constant interest over
the last decades, mostly through their size, as they play important roles in
many theories such as Morse theory, Lusternik–Schnirelmann theory, variational
calculus etc. [12]. While the evaluation tool for size the critical sets within the
mentioned approaches is usually the cardinality, the remarkable Sard theorem
ensures us that the sets of critical values have zero measures and indirectly points
out that the measure cannot distinguish the sets of critical values of different
maps. For example the set of critical values of a constant map as well as the set
of critical values of the projection p:Sn → Rn, p(x1, . . . , xn+1) = (x1, . . . , xn)
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have both zero measure, yet one of them is a zero dimensional manifold while
the other one is the (n− 1)-dimensional sphere.

On the other hand the cardinality might not be a suitable tool for evaluating
the critical sets as soon as one knows that every map between two given manifolds
has infinitely many critical points/values. However the topological dimension
may play some role in this evaluation process, the series of works by P. T. Church
and J. G. Timourian from the mid-sixties to mid-seventies being good arguments
in this respect. We only mention here three of them, namely [3]–[5].

In this work we also employ the topological dimension to provide some ex-
amples of maps with large critical sets, showing that the main tool (algebraic
ϕ-category of pairs of fundamental groups) and the technique of [13] can be used
more effectively. Some different examples of maps with high dimensional critical
sets are provided by [14], where we use a different approach involving top volume
forms of the target oriented manifolds as the key tools.

In this section we show that the C1 maps of zero degree have high dimen-
sional critical sets and those with nonempty set of regular points which are not
onto have high dimensional sets of critical values. In this respect we first recall
a classical non-separation result and study the relations between the critical sets
and the sets of critical values of mappings related by a commutative diagram
with local diffeomorphisms on two parallel sides.

In the next section we prove that mappings acting between manifolds with
infinite algebraic ϕ-category of their fundamental groups have all zero degree
and, consequently, high dimensional critical sets.

Finally, in the last section, we first provide some estimates on the algebraic
ϕ-category of some pairs of finite groups. We next observe that the algebraic
ϕ-category of the pair of fundamental groups of two compact connected smooth
manifolds is a lower bound for the absolute degree of some mappings between
the two manifolds.

Theorem 1.1 ([10, p. 48]). Every connected manifold M is a Cantor man-
ifold. More precisely, no subset of M of dimension ≤ n− 2 separates M , where
n = dim M .

Let M , N be smooth manifolds and let f :M → N be a C1 mapping. Denote
by C(f) the critical set of f which consists in those points p ∈ M with the
property that rankpf < min{dim M,dim N} and denote by B(f) the set f(C(f))
of critical values of f . Recall that C(f) is closed and the set R(f) = M \ C(f)
of regular points of f is consequently open.

Lemma 1.2. Let M , M ′, N , N ′ be n-dimensional smooth manifolds. If
α:M → M ′, β:N → N ′ are surjective local diffeomorphisms and f ′:M ′ → N ′,
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f :M → N are such that the following diagram is commutative

M ′ f ′
//

α

��

N ′

β

��

M
f

// N

β ◦ f ′ = f ◦ α

then C(f) = α(C(f ′)) and B(f) = β(B(f ′)).

Proof. Indeed (dβ)f ′(x) ◦ (df ′)x = (df)α(x) ◦ (dα)x, namely

(df ′)x = [(dβ)f ′(x)]−1 ◦ (df)α(x) ◦ (dα)x

for every x ∈ M ′, which shows that rankx(f ′) = rankα(x)(f) for all x ∈ M ′ as well
as the equality C(f) = α(C(f ′)). For the second equality we have successively

β(B(f ′)) = β(f ′(C(f ′))) = (β ◦ f ′)(C(f ′))

= (f ◦ α)(C(f ′)) = f(α(C(f ′)) = f(C(f)) = B(f). �

Remark 1.3. If M ′, M , N ′, N and α, β are as in Lemma 1.2, then, accord-
ing to R. E. Hodel [9], one gets

dim[C(f)] = dim[C(f ′)] and dim[B(f)] = dim[B(f ′)].

Proposition 1.4 ([2]). Let M,N be smooth manifolds such that dim M ≥
dim N ≥ 2. If N is additionally connected and f :M → N is a closed non-
surjective C1 mapping such that C(f) 6= M , then dim[B(f)] = dim(N)− 1.

Corollary 1.5. Let Mm, Nn, m = n ≥ 2 be smooth manifolds such that
M is compact.

(a) If M,N are orientable and f :M → N has zero degree, then either
C(f) = M or the set R(f) = M \ C(f) is not connected. Conse-
quently, dim[C(f)] ≥ n − 1. In particular dim[C(f)] ≥ n − 1 for all
f ∈ C1(M,N), whenever N is orientable but not compact.

(b) If N is compact orientable and M non-orientable, then dim[C(f)] ≥
n− 1 for all f ∈ C1(M,N).

Proof. (a) We first recall that sign(df)x, x ∈ R(f), is defined to be +1 or
−1 as (df)x preserves or reverses the orientation and observe that the function
R(f) → Z is locally constant, i.e. it is actually constant on each component of
R(f). Recall that the degree deg(f) of f is defined to be

(1.1)
∑

x∈f−1(y)

sign(df)x,
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where y ∈ Im(f) is a regular value of f , as the sum (1.1) is independent of
y ∈ N \B(f) ([11, p. 28]). On the other hand the equalities

0 = deg(f) =
∑

x∈f−1(y)

sign(df)x,

show that the sign map sgn(df)( · ) takes both values ±1. Consequently, R(f) =
M \ C(f) is not connected, which shows, by using Theorem 1.1, that

dim[C(f)] ≥ n− 1.

(b) Consider the orientable double cover p: M̃ → M of M and recall that
Hn(M, Z) ∼= 0, which shows that Hn(f ◦ p):Hn(M̃, Z) → Hn(N, Z) is zero.

Consequently deg(f ◦ p) = 0, which implies, according to Remark 1.3, that
dim[C(f)] = dim[C(f ◦ p)] ≥ n− 1. �

The proof of Corollary 1.5(a) was suggested to the author by Andrzej Weber
and the statement (b) of Corollary 1.5 was proved before, in a slightly more
general context, by P. T. Church in [4] (see Remark 2.9).

Lemma 1.6. If Mm, Nn are smooth manifolds and f :M → N is a C1 map-
ping, then the following inequality holds dim[Im(f)] ≤ dim(M).

Proof. If m ≥ n, the required inequalities are obvious. Otherwise, consider
the C1 mapping g:M × Rn−m → N, g(x, y) = f(x) and observe that C(g) =
M × Rn−m. Indeed,

rank(x,y)g = rankxf ≤ m < n = dim(N) = dim(M × Rn−m).

Thus

Im(f) = Im(g) = g(C(g)) = B(g).

By using [1, Proposition 2.2], one gets that dim[Im(f)] = dim[B(g)] ≤ m. �

2. Mappings of zero degree

In this section we provide sufficient conditions, in terms of fundamental
groups and induced group homomorphisms, for high dimensional critical sets
and sets of critical values.

Theorem 2.1. If Mm, Nn are compact connected smooth manifolds and
f :M → N is a C1 map such that the index [π1(N) : Im(f∗)] is infinite, then the
following statements hold:

(a) dim[B(f)] = n− 1, whenever m ≥ n and C(f) 6= M .
(b) deg(f) = 0 whenever m = n and M,N are orientable.
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Proof. Using the theory of covering maps, there exists a covering mapping
p: Ñ → N such that Im(p∗) = Im(f∗) and a lifting f̃ :M → Ñ of f , namely
p ◦ f̃ = f . Because the number of sheets of the covering mapping p: Ñ → N

is the infinite index [π1(N) : Im(f∗)], where f∗:π1(M) → π1(N) is the induced
group homomorphism, it follows that Ñ is not compact. Since p is a local
diffeomorphism, we also get, by using Lemma 1.2 for α = idM and β = p, the
equalities C(f) = C(f̃) and p(B(f̃)) = B(f).

(a) We just need to apply Corollary 1.4 and use the equality dim[p(B(f̃))] =
dim[B(f̃)], which occur since p is open and has zero dimensional fibers [9].

(b) Indeed, since M is compact and Ñ is not compact, it follows that deg(f̃) =
0, that is deg(f) = deg(p ◦ f̃) = deg(p) deg(f̃) = 0. �

We are next interested in pairs (Mn, Nn) of connected orientable manifolds
with the property that deg(f) = 0 for all f ∈ C1(M,N). As we have already seen
in Theorem 2.1(b) , this is the case if ϕalg(π1(M), π1(N)) = ∞, where ϕalg(G, H),
for an arbitrary pair of groups (G, H), stands for the so called, algebraic ϕ-
category of the pair (G, H), defined by min{[H : Im(f)] | f ∈ Hom(G, H)}. If
[K : Im(f)] is infinite for all f ∈ Hom(G, H), then the notation ϕalg(G, K) = ∞
is used.

Theorem 2.2. If Mn, Nn (n ≥ 2) are compact connected manifolds, then
dim[C(f)] ≥ n− 1, for all f ∈ C1(M,N), in each of the following situations:

(a) ϕalg(π1(M), π1(N)) = ∞ and N is orientable.
(b) π1(M) is finite and π1(N) is infinite.

Proof. (a) Let f :M → N be a C1 map and f∗:π1(M) → π1(N) be the
induced homomorphism. Because ϕalg(π1(M), π1(N)) = ∞, it follows that the
index [π1(N) : Im(f∗)] is infinite.

• M is not orientable. This case was treated in Corollary 1.5(b).
• M is orientable: We just need to apply Theorem 2.1(b) and Corol-

lary 1.5(b).

(b) We first observe that ϕalg(π1(M), π1(N)) = ∞ for all f ∈ C1(M,N),
so that we only need to consider the case N -non-orientable, since the case N -
orientable was treated in (a). The universal covering M̃ of M is obviously com-
pact and, for every C1 map f :M → N , there exists a C1 mapping f : M̃ → N

making the following diagram

M̃
f

//

pM

��

N

πN

��

M
f

// N

πN ◦ f = f ◦ pM ,
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commutative, where N is the orientable double cover of N . Since π1(N) is
a subgroup of index 2 of π1(N) and π1(N) is infinite, it follows that π1(N)
is infinite, which, combined with the simply connectedness of M̃ , shows that
ϕalg(π1(M̃), π1(N)) = ∞. Therefore the following relations hold

dim[C(f)] ≥ dim(N)− 1 = dim(N)− 1.

The above diagram shows that C(f) = pM (C(f)), such that we have successively

dim[C(f)] = dim[pM (C(f))] = dim[C(f)] ≥ dim(N)− 1 = dim(N)− 1. �

For any group G we denote by [G, G] and by t(G) its commutator and torsion
subgroups respectively. Recall that both of them are normal subgroups of G.

Lemma 2.3 ([13]). If G, K are finitely generated abelian groups such that
the inequality rank(G/t(G)) < rank(K/t(K)) holds, then ϕalg(G, K) = ∞.

Lemma 2.4. For every groups G, K, the following inequalities hold:

(a) ϕalg(G, K) ≥ ϕalg

(
G

[G, G]
,

K

[K, K]

)
.

(b) ϕalg(G, K) ≥ ϕalg

(
G

t(G)
,

K

t(K)

)
.

Proof. Indeed, for any group homomorphism f :G → K there exists a group
homomorphism

[f ]:
G

[G, G]
→ K

[K, K]
,

whose image is Im([f ]) = (Im(f))[K, K], such that the following diagram is
commutative

G
f

//

pG
��

K

pK
��

G

[G, G] [f ]
//

K

[K, K]

Moreover, for every f ∈ Hom(G, K), we have successively:

[K : Im(f)] ≥ [K : (Im(f))[K, K]] =
[

K

[K, K]
:

(Im(f))[K, K]
[K, K]

]
=

[
K

[K, K]
: Im([f ])

]
≥ ϕalg

(
G

[G, G]
,

K

[K, K]

)
,

which shows that, indeed,

ϕalg(G, K) ≥ ϕalg

(
G

[G, G]
,

K

[K, K]

)
.

The second inequality can be justified in a similar way. �
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Corollary 2.5. Let X, Y be pathwise connected spaces and β1(X), β1(Y )
their first Betti numbers.

(a) ϕalg(π1(X), π1(Y )) ≥ ϕalg(H1(X),H1(Y )).
(b) If X, Y are compact ENR such that β1(X) < β1(Y ), then

ϕalg(π1(X), π1(Y )) = ∞.

In particular ϕalg(π1(M), π1(N)) = ∞ for every pair M , N of compact
manifolds such that β1(M) < β1(N).

Proof. (a) If follows immediately from Lemma 2.4(a) by using the isomor-
phisms

H1(X) ' π1(X)
[π1(X), π1(X)]

,H1(Y ) ' π1(Y )
[π1(Y ), π1(Y )]

.

(b) Indeed β1(X) < β1(Y ) if and only if

rank
[

H1(X)
t(H1(X))

]
< rank

[
H1(Y )

t(H1(Y ))

]
,

the last inequality shows, by using Lemmas 2.3 and 2.4(b), that

ϕalg(H1(M),H1(N)) = ∞. �

If M is a differentiable manifold, we denote by ]rM the connected sum
M]M] . . . ]M of r copies of M . Recall that the connected sum ]gT

2 of g copies
of the torus T 2 is also denoted by Tg and the connected sum ]gRP 2 of g copies
of the projective plane RP 2 by Pg.

Examples 2.6.

(a) If g < g′, then ϕalg(π1(Tg), π1(Tg′)) = ∞.
(b) If g < g′, then ϕalg(π1(Pg), π1(Pg′)) = ∞.
(c) If g < 2g′ + 1, then ϕalg(π1(Pg), π1(Tg′)) = ∞.
(d) If 2g < g′ − 1, then ϕalg(π1(Tg), π1(Pg′)) = ∞.

Indeed, the statements (a)–(d) follow because β1(Tg) = 2g and β1(Pg) =
g − 1.

Remark 2.7. Observe that the Examples 2.6(a), (b) can be generalized to
more general manifolds Mm, Nn (m,n ≥ 3 and M orientable) and their con-
nected sums ]rM , ]sN , where r, s are chosen to satisfy the inequality rβ1(M) <

sβ1(N). Indeed ϕalg(π1(]rM), π1(]sN)) = ∞ since β1(]rM) = rβ1(M) and
β1(]rN) ≥ sβ1(N), as the homology group H1(]rM) is isomorphic to the direct
sum of r copies of H1(M) and H1(]sN) has a subgroup isomorphic to the direct
sum of s copies of H1(N) ([6, p. 258]).
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Examples 2.8.

(a) If g < g′, then dim[C(f)] ≥ 1 for every C1 map f :Tg → Tg′ .
(b) If g < 2g′ + 1, then dim[C(f)] ≥ 1 for every C1 map f :Pg → Tg′ .
(c) If g ≥ 2, then dim[C(f)] ≥ 1 for every C1 map f :P 2 → Pg.
(d) If g < g′, then dim[B(f)] = 1 for every C1 non-constant map f :Pg →

Pg′ .
(e) If 2g < g′ − 1, then dim[B(f)] = 1 for every non-constant C1 map

f :Tg → Pg′ .
(f) If n > k ≥ 1 and r is an arbitrary positive integer, then dim[C(f)] ≥

n− 1, for every C1 map f : ]r(T k × Sn−k) → ]rT
n.

(g) If r, s are arbitrary positive integers, then the inequality dim[C(f)] ≥ 2
holds, for every C1 map f : ]rRP 3 → ]s(S1 × RP 2).

(h) If r, s are arbitrary positive integers, then the inequality dim[C(f)] ≥ 3
holds, for every C1 map f : ]rCP 2 → ]s(T 2 × RP 2).

Corollary 2.9. If Mm, Nn are compact connected manifolds such that
ϕalg(π1(M), π1(N)) = ∞ and m ≥ n ≥ 2, then no submanifold of M of dimen-
sion less than or equal to n − 2 is the critical set of any differentiable mapping
f :M → N .

Proof. Assume that C(f) is a submanifold of M and dim[C(f)] ≤ n − 2,
for some f :M → N . Combining Lemma 1.6 with Theorem 2.2(a) one gets the
following relations

dim[C(f)] ≥ dim[f(C(f))] = dim[B(f)] ≥ dim(N)− 1. �

Remark 2.10. (a) Corollary 2.9 still works if the submanifolds are replaced
with images of arbitrary differentiable mappings. For example, no union of
finitely many differential images of circles in ]rRP 3 is the critical set for any C1

map f : ]rRP 3 → ]s(S1 × RP 2). Similarly, no union of finitely many differential
images of Pg’s and/or of Tg’s in ]rRP 3 can be the critical set for any C1 mapping
f : ]rCP 2 → ]s(T 2 × RP 2).

(b) If M , E, N are three manifolds such that dim M ≥ dim N and p:E → N

is a submersion, observe that a mapping f :M → E does intersect transversally
the fiber Ff(x) := p−1(p(f(x))) of p through f(x), for some x ∈ M , if and only
if x ∈ R(p ◦ f), the last regular set R(p ◦ f) = {x ∈ M | f |∩xFf(x)} will be called
the transversal set of f .

Corollary 2.11. Let Mn, Nn be compact connected differential manifolds
such that n ≥ 2 and ϕalg(π1(M), π1(N)) = ∞. If p:E → N is a submersion,
then dim[C(p ◦ f)] ≥ n− 1 for every C1 map f :M → E. In fact the transversal
set R(p ◦ f) of f is either empty or it is is not connected.
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3. On the algebraic ϕ-category of some pairs of finite groups

In this section we estimate the algebraic ϕ-category of pairs of finite abelian
groups G, H in terms of their orders and some powers of the primes within the
prime decomposition of gcd(o(H), o(H)).

Remark 3.1. If G, H are finite groups, then

ϕalg(G, H) ≥ o(H)
gcd(o(G), o(H))

.

Indeed, for every group homomorphism f ∈ Hom(G, H), the following relations
hold

o(G) = [G : ker(f)]o(ker(f)) = o(G/ ker(f))o(ker(f)) = o(Im(f))o
(
ker(f)),

o(H) = [H : Im(f)]o(Im(f)).

Consequently o(Im(f)) is a common divisor of both o(G) and o(H), which shows
that o(Im(f))|gcd(o(G), o(H)) and o(Im(f)) ≤ gcd(o(G), o(H)). Thus, for all
f ∈ Hom(G, H), the following relations

[H : Im(f)] =
o(H)

o(Im(f))
≥ o(H)

gcd(o(G), o(H))

hold, which shows that

ϕalg(G, H) ≥ o(H)
gcd(o(G), o(H))

.

Lemma 3.2. If G = Zpα1 × . . . × Zpαm and H = Zpβ1 × . . . × Zpβn , α1 ≥
. . . ≥ αm and β1 ≥ . . . ≥ βn, for some prime number p, then

pβ1+...+βm

pmin(α1+...+αm,β1+...+βn)
≤ ϕalg(G, H) ≤ pβ1+...+βm

pmin(α1,β1)+...+min(αk,βk)
,

where k = min(m,n).

Proof. We only have to show that

ϕalg(G, H) ≤ pβ1+...+βm

pmin(α1,β1)+...+min(αk,βk)
,

since the other inequality was justified, in a more general context, in Remark 3.1.
In this respect we first consider the group homomorphism f : Zpα1 × . . .×Zpαm →
Zpβ1 × . . .× Zpβn ,

f(x1 + pα1Z, . . . , xm + pαmZ)

=



(
pβ1x1

pmin(α1,β1)
+ pβ1Z, . . . ,

pβmxm

pmin(αm,βm)
+ pβmZ, pβm+1Z, . . . , pβnZ

)
if m < n,(

pβ1

pmin(α1,β1)
x1 + pβ1Z, . . . ,

pβn

pmin(αn,βn)
xn + pβnZ

)
if m ≥ n,
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and observe that the image of f , Im(f), is{(
pβ1x1

pmin(α1,β1)
+ pβ1Z, . . . ,

pβmxm

pmin(αm,βm)
+ pβmZ, pβm+1Z, . . . , pβnZ

) ∣∣∣∣
0 ≤ xi < pmin(αi,βi), i = 1,m

}
,

if m < n and, for m ≥ n, the image of f is{(
pβ1x1

pmin(α1,β1)
+ pβ1Z, . . . ,

pβnxn

pmin(αn,βn)
+ pβnZ

) ∣∣∣∣
0 ≤ x1 < pmin(α1,β1), . . . , 0 ≤ xn < pmin(αn,βn)

}
.

These show that

o(Im(f)) = pmin(α1,β1) · . . . · pmin(αk,βk) = pmin(α1,β1)+...+min(αk,βk),

where k = min(m,n), since

pβixi

pmin(αi,βi)
+ pβiZ 6= pβiZ for 0 ≤ xi < pmin(αi,βi) and 0 ≤ i ≤ k.

Consequently o(Im(f)) = pmin(α1,β1)+...+min(αk,βk), which shows, by means of
Lagrange theorem, that

[H : Im(f)] = o(H/Im(f)) =
pβ1+...+βm

pmin(α1,β1)+...+min(αk,βk)

and

ϕalg(G, H) ≤ pβ1+...+βm

pmin(α1,β1)+...+min(αk,βk)
. �

Theorem 3.3. If G, H are finite abelian groups such that gcd(o(G), o(H)) =
pr1
1 · . . . · prk

k , then

o(H)
gcd(o(G), o(H))

≤ ϕalg(G, H) ≤ o(H)
pγ1
1 . . . pγk

k

,

where γi = min(α1, β1)+ . . .+min(αz, βz), z = min(x, y), and Si = Zp
α1
i
× . . .×

Zpαx
i

, Σi = Z
p

β1
i
× . . .×Z

p
βy
i

are the pi-Sylow subgroups of G and H respectively,
and the exponents α1, . . . , αx, β1, . . . , βy satisfy α1 ≥ . . . ≥ αx, β1 ≥ . . . ≥ βy.

Proof. If mi := α1 + . . . + αx and ni := β1 + . . . + βy, we first recall that

o(G) = pm1
1 · . . . · pmk

k r, o(H) = pn1
1 · . . . · pnk

k l,

pmi+1
i 6 | o(G), pni+1

i 6 | o(H), i = 1, k and (r, l) = 1,
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and that G = S1 × . . .× Sk ×R, H = Σ1 × . . .×Σk ×L and o(R) = r, o(L) = l.
By using Lemma 3.2, there exists some group homomorphisms fi ∈ Hom(Si,Σi)
such that

o(Im(fi)) = pγi

i and [Σi : Im(fi)] =
o(Σi)
pγi

i

.

Consider the composed group homomorphism

G = S1×. . .×Sk×R
Proj−−→ S1×. . .×Sk

f1×...×fk−−−−−−→ Σ1×. . .×Σk
Incl
↪→ Σ1×. . .×Σk×L,

namely f =Incl◦(f1×. . .×fk)◦Proj and show that [H : Im(f)]=o(H)/pγ1
i . . . pγk

k .
Indeed, we have successively:

o(Im(f)) = o(Im(f1 × . . .× fk)) = o(Im(f1)× . . .× Im(fk))

= o(Im(f1)) · . . . · o(Im(fk)) = pγ1
1 · . . . · pγk

k .

This shows that

[H : Im(f)] = o(H/Im(f)) =
o(H)

o(Im(f))
=

o(H)
pγ1
1 · . . . · pγk

k

. �

Corollary 3.4. ϕalg(Zm, Zn) = n/gcd(m,n).

Proof. Indeed, if o(Zm) = m = pα1
1 · . . . · pαk

k , o(Zn) = n = pβ1
1 · . . . · pβk

k ,
then the pi-Sylow subgroups of Zm and Zn are Zp

αi
i

and Z
p

βi
i

, respectively. Thus
γi = min(αi, βi), which shows that

pγ1
1 · . . . · pγk

k = p
min(α1,β1)
1 · . . . · pmin(αk,βk)

k = gcd(m,n). �

A direct proof of Corollary 3.4 appears in Hazar’s master thesis [7].

Theorem 3.5. If Mn, Nn, n ≥ 3 are compact orientable smooth manifolds
and f :M → N is a smooth mapping such that dim[C(f)] ≤ n− 3, then

|deg(f)| ≥ ϕalg(π1(M), π1(N)).

Proof. According to P. T. Church [3], there exists a factorization f = hg

such that g:M → Kn is a smooth monotone map onto the smooth manifold Kn,
i.e. a map with connected preimages of all points in Kn, and h:Kn → Nn is
a smooth k-to-1 diffeo-covering. Note that each preimage of the monotone map
g is actually a continuum ([8, p. 411]), as the manifold M is compact. According
to P. T. Church [4], g∗:π1(M) → π1(K) is an isomorphism and k = |deg(f)|. By
using the theory of covering mappings, it follows that the cardinality of h−1(y)
is [π1(N) : Im(h∗)], for all y ∈ N . Consequently, we have successively:

|deg(f)| = k = #[h−1(y)] = [π1(N) : Im(h∗)] = [π1(N) : Im(h∗ ◦ g∗)]

= [π1(N) : Im(hg)∗] = [π1(N) : Im(f∗)] ≥ ϕalg(π1(M), π1(N)). �
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Recall that the ıtlens space L(m; l1, . . . , ln) [6, p. 144], where m > 1 is an
integer and l1, . . . , ln are integers relatively prime to m, is defined to be the quo-
tient space S2n−1/Zm under the free action of Zm = {1, e2π/m, . . . , e2(m−1)π/m}
on S2n−1 ⊆ Cn given by

e2πi/m(z1, . . . , zm) := (e2πil1/mz1, . . . , e2πiln/mzm).

Corollary 3.6. If f :L(r; l1, . . . , ln) → L(s; q1, . . . , qn) is a smooth map-
ping such that dim[C(f)] ≤ 2n− 4, then |deg(f)| ≥ s/gcd(r, s). Equivalently, if
0 ≤ |deg(g)| < s/gcd(r, s) for some g:L(r; l1, . . . , ln) → L(s; q1, . . . , qm), then
dim[C(g)] ≥ 2n− 3.

Proof. We just need to combine Corollary 3.4 with Theorem 3.5, taking
into account that the lens spaces are orientable [6, p. 251] and

π1(L(r; p1, . . . , pn)) = Zr.

In fact, if deg(g) = 0, then actually the stronger inequality dim[C(g)] ≥ 2n

holds, according to Corollary 1.5(a). �

Acknowledgments. I would like to thank the referee for his (or her) valu-
able suggestions helping me to improve the presentation.
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