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NONTRIVIAL SOLUTIONS
OF p-SUPERLINEAR ANISOTROPIC p-LAPLACIAN SYSTEMS

VIA MORSE THEORY

Kanishka Perera — Ravi P. Agarwal — Donal O’Regan

Abstract. We obtain nontrivial solutions of a class of p-superlinear ani-

sotropic p-Laplacian systems using Morse theory.

1. Introduction

The purpose of this paper is to obtain nontrivial solutions of a class of p-
superlinear anisotropic p-Laplacian systems using Morse theory.

As motivation, we begin by recalling a well-known result for the semilinear
elliptic boundary value problem

(1.1)

{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rn, n ≥ 1, f ∈ C(Ω×R) satisfies the subcritical
growth condition

(1.2) |f(x, t)| ≤ C(|t|r−1 + 1) for all (x, t) ∈ Ω× R

for some r ∈ (1, 2∗),

2∗ =

{ 2n

n− 2
if n > 2

∞ if n ≤ 2,
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is the critical Sobolev exponent, and C denotes a generic positive constant.
Assume

(1.3) lim
t→0

f(x, t)
t

= λ, uniformly in x ∈ Ω

and the Ambrosetti–Rabinowitz condition

(1.4) 0 < F (x, t) :=
∫ t

0

f(x, s) ds ≤ t

µ
f(x, t) for all x ∈ Ω, |t| ≥ T,

for some µ > 2 and T > 0. Note that (1.3) implies f(x, 0) ≡ 0, so problem (1.1)
has the trivial solution u(x) ≡ 0. Integrating (1.4) gives

(1.5) F (x, t) ≥ c(x)|t|µ − C for all (x, t) ∈ Ω× R

where c(x) = minF (x,±T )/Tµ > 0, so f is superlinear. V. Benci [3] used a
new approach to the Morse–Conley theory to obtain a nontrivial solution of this
problem when λ /∈ σ(−∆), the Dirichlet spectrum of the negative Laplacian on
Ω.

The idea of the proof may be restated in terms of critical groups as follows
(see K. Chang [4] and Z. Q. Wang [14]). Weak solutions of (1.1) coincide with
the critical points of the C1-functional

Φ(u) =
∫

Ω

1
2
|∇u|2 − F (x, u), u ∈ H = H1

0 (Ω),

and (1.4) ensures that Φ satisfies the (PS) condition. Suppose that Φ has no
nontrivial critical points. Then the critical groups of Φ at zero are given by

Cq(Φ, 0) = Hq(Φ0,Φ0 \ {0}), q ≥ 0

where Φ0 is the sublevel set {u ∈ H : Φ(u) ≤ 0} and H∗ denotes cohomology.
By the second deformation lemma, Φ0 is a deformation retract of H and Φ0 \{0}
deformation retracts to Φa for any a < 0, so

Cq(Φ, 0) ≈ Hq(H,Φa).

By (1.4), if |a| is sufficiently large, Φa is homotopic to the unit sphere in H and
hence contractible, so

(1.6) Cq(Φ, 0) = 0 for all q.

On the other hand, if λ1 < λ2 ≤ . . . denote the Dirichlet eigenvalues of the
Laplacian on Ω and λk < λ < λk+1 in (1.3), then

Cq(Φ, 0) ≈ δqkG

where G is the coefficient group and δ · , · denotes the Kronecker delta. This
contradiction shows that Φ has a nontrivial critical point.
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Remark 1.1. In the case λ < λ1, A. Ambrosetti and P. H. Rabinowitz [1]
obtained a positive solution and a negative solution using their mountain pass
theorem, and Z. Q. Wang [14] obtained a third nontrivial solution using Morse
theory. When f satisfies a global sign condition, P. H. Rabinowitz [13] used
his linking theorem to obtain a nontrivial solution for all λ ∈ R. S. J. Li and
M. Willem [8] used a local linking to do the same when f satisfies only a local
sign condition near zero.

K. Perera [11] extended the above result to the corresponding p-Laplacian
problem

(1.7)

{
−∆p u = f(x, u) in Ω,

u = 0 on ∂Ω,

where ∆p u = div(|∇u|p−2∇u) is the p-Laplacian of u, p ∈ (1,∞), f now satisfies
(1.2) with r ∈ (1, p∗), and

p∗ =

{ np

n− p
if n > p,

∞ if n ≤ p.

Assume

(1.8) lim
t→0

f(x, t)
|t|p−2t

= λ, uniformly in x ∈ Ω

and (1.4) with µ > p and T > 0, so u(x) ≡ 0 is a solution of (1.7) and f is
p-superlinear by (1.5). K. Perera [11] obtained a nontrivial solution when λ is
not an eigenvalue of the problem{

−∆p u = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

This quasilinear eigenvalue problem is far more complicated. It is known
that the first eigenvalue λ1 is positive, simple, and has an associated eigen-
function ϕ1 that is positive in Ω (see A. Anane [2] and P. Lindqvist [9], [10]).
Moreover, λ1 is isolated in the spectrum σ(−∆p), so the second eigenvalue
λ2 = inf σ(−∆p) ∩ (λ1,∞) is well-defined. In the ODE case n = 1, where
Ω is an interval, the spectrum consists of a sequence of simple eigenvalues
λk ↗ ∞, and the eigenfunction ϕk associated with λk has exactly k − 1 in-
terior zeroes (see e.g. P. Drábek [6]). In the PDE case n ≥ 2, an increasing
and unbounded sequence of eigenvalues can be constructed using a standard
minimax scheme involving the Krasnoselskĭı’s genus, but it is not known whether
this gives a complete list of the eigenvalues.

The variational functional associated with problem (1.7) is

Φ(u) =
∫

Ω

1
p
|∇u|p − F (x, u), u ∈ W = W 1,p

0 (Ω).
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The argument of Wang [14] can easily be adapted to show that Φa is again con-
tractible for a < 0 with |a| sufficiently large, so (1.6) holds as before if zero is the
only critical point of Φ. So the idea of K. Perera [11] was to use a minimax scheme
involving the Z2-cohomological index of E. R. Fadell and P. H. Rabinowitz [7]
to construct a new sequence of eigenvalues λk ↗∞ such that if λk < λ < λk+1

in (1.8), then Ck(Φ, 0) 6= 0, again contradicting (1.6).

Remark 1.2. When f satisfies a local sign condition near zero, M. Degio-
vanni, S. Lancelotti and K. Perera [5] used the notion of a cohomological local
splitting introduced in K. Perera, R. P. Agarwal and D. O’Regan [12] to obtain
a nontrivial solution for all λ ∈ R.

Naturally we may ask whether there is an extension of these results to
anisotropic p-Laplacian systems of the form

(1.9)

{
−∆pi

ui =
∂F

∂ui
(x, u) in Ω,

ui = 0 on ∂Ω,
i = 1, . . . ,m

where each pi ∈ (1,∞), u = (u1, . . . , um) ∈ Rm, F ∈ C1(Ω × Rm) satisfies the
subcritical growth conditions

(1.10)
∣∣∣∣ ∂F

∂ui
(x, u)

∣∣∣∣ ≤ C

( m∑
j=1

|uj |rij−1 + 1
)

for all (x, u) ∈ Ω × Rm, i = 1, . . . ,m, for some rij ∈ (1, 1 + p∗j/(p∗i )
′), and

(p∗i )
′ = p∗i /(p∗i − 1) is the Hölder conjugate of p∗i . Here the associated functional

is
Φ(u) = I(u)−

∫
Ω

F (x, u), u ∈ W = W 1,p1
0 (Ω)× . . .×W 1,pm

0 (Ω)

where

I(u) =
∫

Ω

m∑
i=1

1
pi
|∇ui|pi .

Unlike in the scalar case, here I is not homogeneous except when p1 = . . . =
pm. However, it still has the following weaker property. Define continuous flows
on both W and Rm by

(α, u) 7→ uα := (|α|1/p1−1αu1, . . . , |α|1/pm−1αum), α ∈ R.

Then

(1.11) I(uα) = |α| I(u) for all α ∈ R, u ∈ W.

This suggests that the appropriate class of eigenvalue problems to consider here
are of the form{

−∆piui = λ
∂J

∂ui
(x, u) in Ω,

ui = 0 on ∂Ω,
i = 1, . . . ,m
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where J ∈ C1(Ω× Rm) satisfies

J(x, uα) = |α| J(x, u) for all α ∈ R, (x, u) ∈ Ω× Rm.

Differentiating this with respect to ui gives

∂J

∂ui
(x, uα) = |α|−1/piα

∂J

∂ui
(x, u) and ∆pi

(uα)i = |α|−1/piα∆pi
ui,

so if u is an eigenvector associated with λ, then so is uα for any α 6= 0.
To fix ideas, let us take

J(x, u) = V (x) |u1|r1 . . . |um|rm

where ri ∈ (1, pi) with r1/p1 + . . . + rm/pm = 1 and V ∈ C1(Ω) is a (possibly
indefinite) bounded weight function. Then

(1.12) J(x, uα) = |α|r1/p1+...+rm/pmV (x)|u1|r1 . . . |um|rm = |α|J(x, u),

and the corresponding eigenvalue problem is

(1.13)

{
−∆piui = λriV (x)|u1|r1 . . . |ui|ri−2ui . . . |um|rm in Ω,

ui = 0 on ∂Ω,

for i = 1, . . . , m. Assume u(x) ≡ 0 is a solution of (1.9) and the behavior of F

near zero is given by

(1.14) F (x, u) = λV (x)|u1|r1 . . . |um|rm + G(x, u),

where the higher-order term G satisfies

(1.15) |G(x, u)| ≤ C

m∑
i=1

|ui|si for all (x, u) ∈ Ω× Rm

for some si ∈ (pi, p
∗
i ).

It is natural to replace (1.4) with

(1.16) 0 < F (x, u) ≤
m∑

i=1

ui

µi

∂F

∂ui
(x, u) for all x ∈ Ω, |u| ≥ T

for some µi > pi, i = 1, . . . , m and T > 0. We will also need to assume that

(1.17) H(x, u) :=
m∑

i=1

ui

pi

∂F

∂ui
(x, u)− F (x, u) ≥ −C for all (x, u) ∈ Ω× Rm

for some C > 0. Note that in the scalar case this follows from (1.2) and (1.4).
We shall prove
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Theorem 1.3. Assume (1.10) and (1.14)–(1.17). If λ is not an eigenvalue
of (1.13), then the system (1.9) has a nontrivial solution.

Our proof will be based on an abstract framework for anisotropic systems
introduced in Perera, Agarwal, and O’Regan [12], which we will recall in the
next section, but first we show that (1.16) implies F is pi-superquadratic in ui,
analogous to (1.5).

Let µ = (µ1, . . . , µm) and set

rµ(u) =
m∑

i=1

|ui|µi , u ∈ Rm.

There is an R > 0 such that rµ(u) ≥ R implies |u| ≥ T . Then

(1.18) rµ(u) ≥ R ⇒ 0 < F (x, u) ≤
m∑

i=1

ui

µi

∂F

∂ui
(x, u)

by (1.16).

Lemma 1.4. If (1.10) and (1.18) hold, then

(1.19) F (x, u) ≥ c(x)rµ(u)− C for all (x, u) ∈ Ω× Rm

where

c(x) = min
rµ(u)=R

F (x, u)
R

> 0

and C > 0.

Proof. Fix u ∈ Rm with rµ(u) ≥ R. Let αu = rµ(u)/R ≥ 1 and

ũ = (α−1/µ1
u u1, . . . , α−1/µm

u um),

so that rµ(ũ) = α−1
u rµ(u) = R, and consider the path

u(α) = ((α/αu)1/µ1u1, . . . , (α/αu)1/µm um), 1 ≤ α ≤ αu

joining ũ to u. Noting that rµ(u(α)) = (α/αu) rµ(u) = αR ≥ R, we have

d

dα
(F (x, u(α))) = α−1

m∑
i=1

ui(α)
µi

∂F

∂ui
(x, u(α)) ≥ α−1F (x, u(α)) > 0

by (1.18), and integrating this from α = 1 to αu gives

F (x, u) ≥ F (x, ũ)αu =
F (x, ũ)

R
rµ(u) ≥ c(x)rµ(u). �
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2. Preliminaries

In this section we recall an abstract framework for anisotropic systems intro-
duced in K. Perera, R. P. Agarwal and D. O’Regan [12].

For i = 1, . . . , m, let (Wi, ‖ · ‖i) be a real reflexive Banach space with the
dual (W ∗

i , ‖ · ‖∗i ) and the duality pairing ( · , · )i. Then their product

W = W1 × . . .×Wm = {u = (u1, . . . , um) : ui ∈ Wi}

is also a reflexive Banach space with the norm

‖u‖ =
( m∑

i=1

‖ui‖2i
)1/2

and has the dual

W ∗ = W ∗
1 × . . .×W ∗

m = {L = (L1, . . . , Lm) : Li ∈ W ∗
i },

with the pairing

(L, u) =
m∑

i=1

(Li, ui)i

and the dual norm

‖L‖∗ =
( m∑

i=1

(‖Li‖∗i )2
)1/2

.

We consider the system of operator equations

(2.1) Ap u = F ′(u)

in W ∗, where p = (p1, . . . , pm) with each pi ∈ (1,∞),

Ap u = (Ap1u1, . . . , Apm
um),

Api ∈ C(Wi,W
∗
i ) is

(Ai1) (pi − 1)-homogeneous and odd:

Api(αui) = |α|pi−2αApiui for all ui ∈ Wi, α ∈ R,

(Ai2) uniformly positive: there exists ci > 0 such that

(Api
ui, ui)i ≥ ci‖ui‖pi

i for all ui ∈ Wi,

(Ai3) a potential operator: there is a functional Ipi
∈ C1(Wi, R), called a

potential for Api
, such that

I ′pi
(ui) = Api

ui for all ui ∈ Wi,

(A4) Ap is of type (S): for any sequence (uj) ⊂ W ,

uj ⇀ u, (Ap uj , uj − u) → 0 ⇒ uj → u,
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and F ∈ C1(W, R) with F ′ = (Fu1 , . . . , Fum
):W → W ∗ compact and F (0) = 0.

The following proposition is useful for verifying (A4).

Proposition 2.1 ([12, Proposition 10.0.5]). If each Wi is uniformly convex
and

(Api
ui, vi)i ≤ ri‖ui‖pi−1

i ‖vi‖i, (Api
ui, ui)i = ri‖ui‖pi

i for all ui, vi ∈ Wi

for some ri > 0, then (A4) holds.

By Proposition 1.0.2 of [12], Ap is also a potential operator and the potential
Ip of Ap satisfying Ip(0) = 0 is given by

Ip(u) =
m∑

i=1

1
pi

(Api
ui, ui)i.

Now the solutions of the system (2.1) coincide with the critical points of the
C1-functional

Φ(u) = Ip(u)− F (u), u ∈ W.

The following proposition is useful for verifying the (PS) condition for Φ.

Proposition 2.2 ([12, Lemma 3.1.3]). Every bounded (PS) sequence of Φ
has a convergent subsequence.

Unlike in the scalar case, here the functional Ip is not homogeneous except
when p1 = . . . = pm. However, Ip still has the following weaker property. Define
a continuous flow on W by

R×W → W, (α, u) 7→ uα := (|α|1/p1−1αu1, . . . , |α|1/pm−1αum).

Then Ip(uα) = |α|Ip(u) by (Ai1). This suggests that the appropriate class of
eigenvalue problems to study for the operator Ap are of the form

(2.2) Ap u = λJ ′(u)

where the functional J ∈ C1(W, R) satisfies

(2.3) J(uα) = |α|J(u) for all α ∈ R, u ∈ W

and J ′ is compact. Taking α = 0 shows that J(0) = 0, and taking α = −1
shows that J is even, so J ′ is odd, in particular, J ′(0) = 0. Moreover, if u is
an eigenvector associated with λ, then so is uα for any α 6= 0 (see Proposition
10.1.2 of [12]).

Let

M = {u ∈ W : Ip(u) = 1}, M± = {u ∈M : J(u) ≷ 0}.
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Then M ⊂ W \ {0} is a bounded complete symmetric C1-Finsler manifold
radially homeomorphic to the unit sphere in W , M± are symmetric open sub-
manifolds of M, and the positive (resp. negative) eigenvalues of (2.2) coincide
with the critical values of the even functionals

Ψ±(u) =
1

J(u)
, u ∈M±

(see Lemmas 10.1.4 and 10.1.5 of [12]).
Denote by F± the classes of symmetric subsets of M± and by i(M) the

Fadell–Rabinowitz cohomological index of M ∈ F±. Then

λ+
k := inf

M∈F+

i(M)≥k

sup
u∈M

Ψ+(u), 1 ≤ k ≤ i(M+),

λ−k := sup
M∈F−

i(M)≥k

inf
u∈M

Ψ−(u), 1 ≤ k ≤ i(M−)

define nondecreasing (resp. nonincreasing) sequences of positive (resp. negative)
eigenvalues of (2.2) that are unbounded when i(M±) = ∞ (see Theorems 10.1.8
and 10.1.9 of [12]). When i(M±) = 0 we set λ±1 = ±∞ for convenience.

Returning to (2.1), suppose that u = 0 is a solution and the asymptotic
behavior of F near zero is given by

(2.4) F (uα) = λJ(uα) + o(α) as α ↘ 0, uniformly in u ∈M.

Proposition 2.3 ([12, Proposition 10.2.1]). Assume that (Ai1)–(Ai3), (A4),
(2.3) and (2.4) hold, F ′ and J ′ are compact, and zero is an isolated critical point
of Φ.

(a) If λ−1 < λ < λ+
1 , then Cq(Φ, 0) ≈ δq0Z2.

(b) If λ−k+1 < λ < λ−k or λ+
k < λ < λ+

k+1, then Ck(Φ, 0) 6= 0.

3. Proof of Theorem 1.3

First let us verify that our problem fits into the abstract framework of the
previous section. Let Wi = W 1,pi

0 (Ω),

(Api
ui, vi)i =

∫
Ω

|∇ui|pi−2∇ui · ∇vi, F (u) =
∫

Ω

F (x, u),

J(u) =
∫

Ω

J(x, u) =
∫

Ω

V (x)|u1|r1 . . . |um|rm , G(u) =
∫

Ω

G(x, u).

Then (Ai1) is clear, (Apiui, ui)i = ‖ui‖pi

i in (Ai2) and (Ai3) holds with

Ipi
(ui) =

∫
Ω

1
pi
|∇ui|pi .
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By the Hölder inequality,

(Apiui, vi)i ≤
( ∫

Ω

|∇ui|pi

)1−1/pi
( ∫

Ω

|∇vi|pi

)1/pi

= ‖ui‖pi−1
i ‖vi‖i,

so (A4) follows from Proposition 2.1. Integrating (1.12) gives (2.3). By (1.15),

|G(uα)| ≤ C
m∑

i=1

|α|si/pi‖ui‖si
i ,

so (2.4) also holds.
By the growth condition (1.10),

|(F ′(u), v)| =
∣∣∣∣ ∫

Ω

m∑
i=1

∂F

∂ui
(x, u)vi

∣∣∣∣ ≤ C
m∑

i=1

( m∑
j=1

‖uj‖
rij−1

L
(rij−1)(p∗

i
)′

(Ω)
+ 1

)
‖vi‖i.

Since (rij − 1)(p∗i )
′ < p∗j and hence the imbedding W

1,pj

0 (Ω) ↪→ L(rij−1)(p∗i )′(Ω)
is compact, the compactness of F ′ follows. We have∣∣∣∣ ∂J

∂ui
(x, u)

∣∣∣∣ = ri|V (x)| |u1|r1 . . . |ui|ri−1 . . . |um|rm ≤ C

m∑
j=1

|uj |pj/p′i

since r1/p1+. . .+(ri−1)/pi+. . .+rm/pm = 1−1/pi = 1/p′i, and pj/p′i < p∗j/(p∗i )
′,

so the compactness of J ′ follows similarly.
Since λ is not an eigenvalue of (1.13), it now follows from Proposition 2.3 that

Ck(Φ, 0) 6= 0 for some k ≥ 0. Now we show that Φ satisfies the (PS) condition
and, for a < 0 with |a| sufficiently large, Φa is homotopic to

M = {u ∈ W : I(u) = 1}

and hence contractible. As in the scalar case, this then leads to a contradiction
if Φ has no nontrivial critical points.

Lemma 3.1. If (1.10) and (1.16) hold, then Φ satisfies the (PS) condition.

Proof. By (1.10) and (1.16),

(3.1) Hµ(x, u) :=
m∑

i=1

ui

µi

∂F

∂ui
(x, u)− F (x, u) ≥ −C for all (x, u) ∈ Ω× Rm

for some C > 0.
Let (uj) be a (PS) sequence, i.e. Φ(uj) = O(1) and Φ′(uj) = o(1). By Propo-

sition 2.2, it suffices to show that (uj) is bounded. Writing (uj
1/µ1, . . . , uj

m/µm)
= uj/µ, we have

Φ(uj)− (Φ′(uj), uj/µ) =
∫

Ω

m∑
i=1

(
1
pi
− 1

µi

)
|∇uj

i |
pi + Hµ(x, uj),
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which together with (3.1) gives

m∑
i=1

(
1
pi
− 1

µi

)
‖uj

i‖
pi

i ≤ o(1)
( m∑

i=1

1
µ2

i

‖uj
i‖

2
i

)1/2

+ O(1).

Since µi > pi > 1, it follows from this that (uj) is bounded. �

Let p = (p1, . . . , pm). Writing (u1/p1, . . . , um/pm) = u/p, we have

Φ(u)− (Φ′(u), u/p) =
∫

Ω

H(x, u) ≥ −C|Ω| =: a0

where C is as in (1.17) and |Ω| is the volume of Ω, so all critical values of Φ are
greater than or equal to a0.

Lemma 3.2. If a < a0, then there is a C1-map Aa:M→ (0,∞) such that

Φa = {uα : u ∈M, α ≥ Aa(u)} ' M.

Proof. For u ∈M and α > 0,

Φ(uα) = α−
∫

Ω

F (x, uα) ≤ α−
m∑

i=1

αµi/pi

∫
Ω

c(x)|ui|µi + C|Ω|

by (1.11) and (1.19), so Φ(uα) ≤ a for sufficiently large α. Moreover,

d

dα
(Φ(uα)) = 1− α−1

∫
Ω

m∑
i=1

(uα)i

pi

∂F

∂ui
(x, uα)

= α−1

(
Φ(uα)−

∫
Ω

H(x, uα)
)
≤ α−1(Φ(uα)− a0),

so

Φ(uα) ≤ a ⇒ d

dα
(Φ(uα)) ≤ −α−1(a0 − a) < 0.

Thus, there is a unique Aa(u) > 0 such that

α < resp. =, > Aa(u) ⇒ Φ(uα) > resp. =, <a

and the map Aa is C1 by the implicit function theorem. Then W \ {0}, which
is 'M, deformation retracts to Φa = {uα : u ∈M, α ≥ Aa(u)} via

(W \ {0})× [0, 1] → W \ {0},

(u, t) 7→

{
u1−t+tAa(u1/I(u))/I(u) for u ∈ (W \ {0}) \ Φa,

u for u ∈ Φa.

�
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Inc., Boston, MA, 1993.

[5] M. Degiovanni, S. Lancelotti and K. Perera, Nontrivial solutions of p-superlinear

p-Laplacian problems via a cohomological local splitting, Comm. Contemp. Math. (to

appear).
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