Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 35, 2010, 367–378

NONTRIVIAL SOLUTIONS OF *p*-SUPERLINEAR ANISOTROPIC *p*-LAPLACIAN SYSTEMS VIA MORSE THEORY

Kanishka Perera — Ravi P. Agarwal — Donal O'Regan

ABSTRACT. We obtain nontrivial solutions of a class of p-superlinear anisotropic p-Laplacian systems using Morse theory.

1. Introduction

The purpose of this paper is to obtain nontrivial solutions of a class of *p*-superlinear anisotropic *p*-Laplacian systems using Morse theory.

As motivation, we begin by recalling a well-known result for the semilinear elliptic boundary value problem

(1.1)
$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

for some $r \in (1, 2^*)$,

where Ω is a bounded domain in \mathbb{R}^n , $n \ge 1$, $f \in C(\Omega \times \mathbb{R})$ satisfies the subcritical growth condition

(1.2)
$$|f(x,t)| \le C(|t|^{r-1} + 1) \text{ for all } (x,t) \in \Omega \times \mathbb{R}$$

$$2^* = \begin{cases} \frac{2n}{n-2} & \text{if } n > 2\\ \infty & \text{if } n \le 2, \end{cases}$$

 $Key\ words\ and\ phrases.\ p-Laplacian\ systems,\ anisotropic,\ p-superlinear,\ nontrivial\ solutions,\ Morse\ theory.$

©2010 Juliusz Schauder Center for Nonlinear Studies

²⁰¹⁰ Mathematics Subject Classification. Primary 35J50; Secondary 47J10, 58E05.

is the critical Sobolev exponent, and ${\cal C}$ denotes a generic positive constant. Assume

(1.3)
$$\lim_{t \to 0} \frac{f(x,t)}{t} = \lambda, \quad \text{uniformly in } x \in \Omega$$

and the Ambrosetti–Rabinowitz condition

(1.4)
$$0 < F(x,t) := \int_0^t f(x,s) \, ds \le \frac{t}{\mu} f(x,t) \quad \text{for all } x \in \Omega, \ |t| \ge T,$$

for some $\mu > 2$ and T > 0. Note that (1.3) implies $f(x, 0) \equiv 0$, so problem (1.1) has the trivial solution $u(x) \equiv 0$. Integrating (1.4) gives

(1.5)
$$F(x,t) \ge c(x)|t|^{\mu} - C \quad \text{for all } (x,t) \in \Omega \times \mathbb{R}$$

where $c(x) = \min F(x, \pm T)/T^{\mu} > 0$, so f is superlinear. V. Benci [3] used a new approach to the Morse–Conley theory to obtain a nontrivial solution of this problem when $\lambda \notin \sigma(-\Delta)$, the Dirichlet spectrum of the negative Laplacian on Ω .

The idea of the proof may be restated in terms of critical groups as follows (see K. Chang [4] and Z. Q. Wang [14]). Weak solutions of (1.1) coincide with the critical points of the C^{1} -functional

$$\Phi(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - F(x, u), \quad u \in H = H_0^1(\Omega),$$

and (1.4) ensures that Φ satisfies the (PS) condition. Suppose that Φ has no nontrivial critical points. Then the critical groups of Φ at zero are given by

$$C^q(\Phi, 0) = H^q(\Phi^0, \Phi^0 \setminus \{0\}), \quad q \ge 0$$

where Φ^0 is the sublevel set $\{u \in H : \Phi(u) \leq 0\}$ and H^* denotes cohomology. By the second deformation lemma, Φ^0 is a deformation retract of H and $\Phi^0 \setminus \{0\}$ deformation retracts to Φ^a for any a < 0, so

$$C^q(\Phi, 0) \approx H^q(H, \Phi^a).$$

By (1.4), if |a| is sufficiently large, Φ^a is homotopic to the unit sphere in H and hence contractible, so

(1.6)
$$C^q(\Phi, 0) = 0 \quad \text{for all } q.$$

On the other hand, if $\lambda_1 < \lambda_2 \leq \ldots$ denote the Dirichlet eigenvalues of the Laplacian on Ω and $\lambda_k < \lambda < \lambda_{k+1}$ in (1.3), then

$$C^q(\Phi,0) \approx \delta_{qk} \mathcal{G}$$

where \mathcal{G} is the coefficient group and $\delta_{\cdot,\cdot}$ denotes the Kronecker delta. This contradiction shows that Φ has a nontrivial critical point.

REMARK 1.1. In the case $\lambda < \lambda_1$, A. Ambrosetti and P. H. Rabinowitz [1] obtained a positive solution and a negative solution using their mountain pass theorem, and Z. Q. Wang [14] obtained a third nontrivial solution using Morse theory. When f satisfies a global sign condition, P. H. Rabinowitz [13] used his linking theorem to obtain a nontrivial solution for all $\lambda \in \mathbb{R}$. S. J. Li and M. Willem [8] used a local linking to do the same when f satisfies only a local sign condition near zero.

K. Perera [11] extended the above result to the corresponding p-Laplacian problem

(1.7)
$$\begin{cases} -\Delta_p \, u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplacian of $u, p \in (1, \infty)$, f now satisfies (1.2) with $r \in (1, p^*)$, and

$$p^* = \begin{cases} \frac{np}{n-p} & \text{if } n > p, \\ \infty & \text{if } n \le p. \end{cases}$$

Assume

(1.8)
$$\lim_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} = \lambda, \quad \text{uniformly in } x \in \Omega$$

and (1.4) with $\mu > p$ and T > 0, so $u(x) \equiv 0$ is a solution of (1.7) and f is p-superlinear by (1.5). K. Perera [11] obtained a nontrivial solution when λ is not an eigenvalue of the problem

$$\begin{cases} -\Delta_p \, u = \lambda |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

This quasilinear eigenvalue problem is far more complicated. It is known that the first eigenvalue λ_1 is positive, simple, and has an associated eigenfunction φ_1 that is positive in Ω (see A. Anane [2] and P. Lindqvist [9], [10]). Moreover, λ_1 is isolated in the spectrum $\sigma(-\Delta_p)$, so the second eigenvalue $\lambda_2 = \inf \sigma(-\Delta_p) \cap (\lambda_1, \infty)$ is well-defined. In the ODE case n = 1, where Ω is an interval, the spectrum consists of a sequence of simple eigenvalues $\lambda_k \nearrow \infty$, and the eigenfunction φ_k associated with λ_k has exactly k - 1 interior zeroes (see e.g. P. Drábek [6]). In the PDE case $n \ge 2$, an increasing and unbounded sequence of eigenvalues can be constructed using a standard minimax scheme involving the Krasnoselskii's genus, but it is not known whether this gives a complete list of the eigenvalues.

The variational functional associated with problem (1.7) is

$$\Phi(u) = \int_{\Omega} \frac{1}{p} |\nabla u|^p - F(x, u), \quad u \in W = W_0^{1, p}(\Omega).$$

The argument of Wang [14] can easily be adapted to show that Φ^a is again contractible for a < 0 with |a| sufficiently large, so (1.6) holds as before if zero is the only critical point of Φ . So the idea of K. Perera [11] was to use a minimax scheme involving the \mathbb{Z}_2 -cohomological index of E. R. Fadell and P. H. Rabinowitz [7] to construct a new sequence of eigenvalues $\lambda_k \nearrow \infty$ such that if $\lambda_k < \lambda < \lambda_{k+1}$ in (1.8), then $C^k(\Phi, 0) \neq 0$, again contradicting (1.6).

REMARK 1.2. When f satisfies a local sign condition near zero, M. Degiovanni, S. Lancelotti and K. Perera [5] used the notion of a cohomological local splitting introduced in K. Perera, R. P. Agarwal and D. O'Regan [12] to obtain a nontrivial solution for all $\lambda \in \mathbb{R}$.

Naturally we may ask whether there is an extension of these results to anisotropic p-Laplacian systems of the form

(1.9)
$$\begin{cases} -\Delta_{p_i} u_i = \frac{\partial F}{\partial u_i}(x, u) & \text{in } \Omega, \\ u_i = 0 & \text{on } \partial \Omega, \end{cases} \quad i = 1, \dots, m$$

where each $p_i \in (1, \infty)$, $u = (u_1, \ldots, u_m) \in \mathbb{R}^m$, $F \in C^1(\Omega \times \mathbb{R}^m)$ satisfies the subcritical growth conditions

(1.10)
$$\left|\frac{\partial F}{\partial u_i}(x,u)\right| \le C\left(\sum_{j=1}^m |u_j|^{r_{ij}-1} + 1\right)$$

for all $(x, u) \in \Omega \times \mathbb{R}^m$, i = 1, ..., m, for some $r_{ij} \in (1, 1 + p_j^*/(p_i^*)')$, and $(p_i^*)' = p_i^*/(p_i^*-1)$ is the Hölder conjugate of p_i^* . Here the associated functional is

$$\Phi(u) = I(u) - \int_{\Omega} F(x, u), \quad u \in W = W_0^{1, p_1}(\Omega) \times \ldots \times W_0^{1, p_m}(\Omega)$$

where

$$I(u) = \int_{\Omega} \sum_{i=1}^{m} \frac{1}{p_i} |\nabla u_i|^{p_i}.$$

Unlike in the scalar case, here I is not homogeneous except when $p_1 = \ldots = p_m$. However, it still has the following weaker property. Define continuous flows on both W and \mathbb{R}^m by

$$(\alpha, u) \mapsto u_{\alpha} := (|\alpha|^{1/p_1 - 1} \alpha u_1, \dots, |\alpha|^{1/p_m - 1} \alpha u_m), \quad \alpha \in \mathbb{R}.$$

Then

(1.11)
$$I(u_{\alpha}) = |\alpha| I(u) \text{ for all } \alpha \in \mathbb{R}, \ u \in W.$$

This suggests that the appropriate class of eigenvalue problems to consider here are of the form

$$\begin{cases} -\Delta_{p_i} u_i = \lambda \frac{\partial J}{\partial u_i}(x, u) & \text{in } \Omega, \\ u_i = 0 & \text{on } \partial \Omega, \end{cases} \qquad i = 1, \dots, m$$

where $J \in C^1(\Omega \times \mathbb{R}^m)$ satisfies

$$J(x, u_{\alpha}) = |\alpha| J(x, u) \text{ for all } \alpha \in \mathbb{R}, \ (x, u) \in \Omega \times \mathbb{R}^{m}.$$

Differentiating this with respect to u_i gives

$$\frac{\partial J}{\partial u_i}(x, u_\alpha) = |\alpha|^{-1/p_i} \alpha \frac{\partial J}{\partial u_i}(x, u) \quad \text{and} \quad \Delta_{p_i}(u_\alpha)_i = |\alpha|^{-1/p_i} \alpha \Delta_{p_i} u_i,$$

so if u is an eigenvector associated with λ , then so is u_{α} for any $\alpha \neq 0$.

To fix ideas, let us take

$$J(x, u) = V(x) |u_1|^{r_1} \dots |u_m|^{r_m}$$

where $r_i \in (1, p_i)$ with $r_1/p_1 + \ldots + r_m/p_m = 1$ and $V \in C^1(\Omega)$ is a (possibly indefinite) bounded weight function. Then

(1.12)
$$J(x, u_{\alpha}) = |\alpha|^{r_1/p_1 + \ldots + r_m/p_m} V(x) |u_1|^{r_1} \ldots |u_m|^{r_m} = |\alpha| J(x, u),$$

and the corresponding eigenvalue problem is

(1.13)
$$\begin{cases} -\Delta_{p_i} u_i = \lambda r_i V(x) |u_1|^{r_1} \dots |u_i|^{r_i - 2} u_i \dots |u_m|^{r_m} & \text{in } \Omega, \\ u_i = 0 & \text{on } \partial\Omega, \end{cases}$$

for i = 1, ..., m. Assume $u(x) \equiv 0$ is a solution of (1.9) and the behavior of F near zero is given by

(1.14)
$$F(x,u) = \lambda V(x) |u_1|^{r_1} \dots |u_m|^{r_m} + G(x,u),$$

where the higher-order term G satisfies

(1.15)
$$|G(x,u)| \le C \sum_{i=1}^{m} |u_i|^{s_i} \quad \text{for all } (x,u) \in \Omega \times \mathbb{R}^m$$

for some $s_i \in (p_i, p_i^*)$.

It is natural to replace (1.4) with

(1.16)
$$0 < F(x,u) \le \sum_{i=1}^{m} \frac{u_i}{\mu_i} \frac{\partial F}{\partial u_i}(x,u) \quad \text{for all } x \in \Omega, \ |u| \ge T$$

for some $\mu_i > p_i$, i = 1, ..., m and T > 0. We will also need to assume that

(1.17)
$$H(x,u) := \sum_{i=1}^{m} \frac{u_i}{p_i} \frac{\partial F}{\partial u_i}(x,u) - F(x,u) \ge -C \quad \text{for all } (x,u) \in \Omega \times \mathbb{R}^m$$

for some C > 0. Note that in the scalar case this follows from (1.2) and (1.4). We shall prove

THEOREM 1.3. Assume (1.10) and (1.14)–(1.17). If λ is not an eigenvalue of (1.13), then the system (1.9) has a nontrivial solution.

Our proof will be based on an abstract framework for anisotropic systems introduced in Perera, Agarwal, and O'Regan [12], which we will recall in the next section, but first we show that (1.16) implies F is p_i -superquadratic in u_i , analogous to (1.5).

Let $\mu = (\mu_1, \ldots, \mu_m)$ and set

$$r_{\mu}(u) = \sum_{i=1}^{m} |u_i|^{\mu_i}, \quad u \in \mathbb{R}^m.$$

There is an R > 0 such that $r_{\mu}(u) \ge R$ implies $|u| \ge T$. Then

(1.18)
$$r_{\mu}(u) \ge R \Rightarrow 0 < F(x,u) \le \sum_{i=1}^{m} \frac{u_i}{\mu_i} \frac{\partial F}{\partial u_i}(x,u)$$

by (1.16).

LEMMA 1.4. If (1.10) and (1.18) hold, then

(1.19)
$$F(x,u) \ge c(x)r_{\mu}(u) - C \quad for \ all \ (x,u) \in \Omega \times \mathbb{R}^m$$

where

$$c(x) = \min_{r_{\mu}(u)=R} \frac{F(x,u)}{R} > 0$$

and C > 0.

PROOF. Fix $u \in \mathbb{R}^m$ with $r_{\mu}(u) \ge R$. Let $\alpha_u = r_{\mu}(u)/R \ge 1$ and

$$\widetilde{u} = (\alpha_u^{-1/\mu_1} u_1, \dots, \alpha_u^{-1/\mu_m} u_m),$$

so that $r_{\mu}(\tilde{u}) = \alpha_u^{-1} r_{\mu}(u) = R$, and consider the path

$$u(\alpha) = ((\alpha/\alpha_u)^{1/\mu_1} u_1, \dots, (\alpha/\alpha_u)^{1/\mu_m} u_m), \quad 1 \le \alpha \le \alpha_u$$

joining \widetilde{u} to u. Noting that $r_{\mu}(u(\alpha)) = (\alpha/\alpha_u) r_{\mu}(u) = \alpha R \ge R$, we have

$$\frac{d}{d\alpha}\left(F(x,u(\alpha))\right) = \alpha^{-1} \sum_{i=1}^{m} \frac{u_i(\alpha)}{\mu_i} \frac{\partial F}{\partial u_i}(x,u(\alpha)) \ge \alpha^{-1} F(x,u(\alpha)) > 0$$

by (1.18), and integrating this from $\alpha = 1$ to α_u gives

$$F(x,u) \ge F(x,\widetilde{u})\alpha_u = \frac{F(x,\widetilde{u})}{R} r_\mu(u) \ge c(x)r_\mu(u).$$

2. Preliminaries

In this section we recall an abstract framework for anisotropic systems introduced in K. Perera, R. P. Agarwal and D. O'Regan [12].

For i = 1, ..., m, let $(W_i, \|\cdot\|_i)$ be a real reflexive Banach space with the dual $(W_i^*, \|\cdot\|_i^*)$ and the duality pairing $(\cdot, \cdot)_i$. Then their product

$$W = W_1 \times \ldots \times W_m = \{ u = (u_1, \ldots, u_m) : u_i \in W_i \}$$

is also a reflexive Banach space with the norm

$$||u|| = \left(\sum_{i=1}^{m} ||u_i||_i^2\right)^{1/2}$$

and has the dual

$$W^* = W_1^* \times \ldots \times W_m^* = \{L = (L_1, \ldots, L_m) : L_i \in W_i^*\},\$$

with the pairing

$$(L,u) = \sum_{i=1}^{m} (L_i, u_i)_i$$

and the dual norm

$$||L||^* = \left(\sum_{i=1}^m (||L_i||_i^*)^2\right)^{1/2}.$$

We consider the system of operator equations

$$(2.1) A_p u = F'(u)$$

in W^* , where $p = (p_1, \ldots, p_m)$ with each $p_i \in (1, \infty)$,

$$A_p u = (A_{p_1}u_1, \dots, A_{p_m}u_m),$$

 $A_{p_i} \in C(W_i, W_i^*)$ is

(A_{i1}) $(p_i - 1)$ -homogeneous and odd:

$$A_{p_i}(\alpha u_i) = |\alpha|^{p_i - 2} \alpha A_{p_i} u_i \quad \text{for all } u_i \in W_i, \ \alpha \in \mathbb{R},$$

(A_{i2}) uniformly positive: there exists $c_i > 0$ such that

$$(A_{p_i}u_i, u_i)_i \ge c_i \|u_i\|_i^{p_i}$$
 for all $u_i \in W_i$,

(A_{i3}) a potential operator: there is a functional $I_{p_i} \in C^1(W_i, \mathbb{R})$, called a potential for A_{p_i} , such that

$$I'_{p_i}(u_i) = A_{p_i}u_i \quad \text{for all } u_i \in W_i,$$

(A₄) A_p is of type (S): for any sequence $(u^j) \subset W$,

$$u^j \rightharpoonup u, \quad (A_p \, u^j, u^j - u) \rightarrow 0 \Rightarrow u^j \rightarrow u,$$

and $F \in C^1(W, \mathbb{R})$ with $F' = (F_{u_1}, \ldots, F_{u_m}) \colon W \to W^*$ compact and F(0) = 0. The following proposition is useful for verifying (A_4) .

PROPOSITION 2.1 ([12, Proposition 10.0.5]). If each W_i is uniformly convex and

 $(A_{p_i}u_i, v_i)_i \le r_i \|u_i\|_i^{p_i-1} \|v_i\|_i, \quad (A_{p_i}u_i, u_i)_i = r_i \|u_i\|_i^{p_i} \quad \text{for all } u_i, v_i \in W_i$

for some $r_i > 0$, then (A_4) holds.

By Proposition 1.0.2 of [12], A_p is also a potential operator and the potential I_p of A_p satisfying $I_p(0) = 0$ is given by

$$I_p(u) = \sum_{i=1}^m \frac{1}{p_i} (A_{p_i} u_i, u_i)_i.$$

Now the solutions of the system (2.1) coincide with the critical points of the C^1 -functional

$$\Phi(u) = I_p(u) - F(u), \quad u \in W.$$

The following proposition is useful for verifying the (PS) condition for Φ .

PROPOSITION 2.2 ([12, Lemma 3.1.3]). Every bounded (PS) sequence of Φ has a convergent subsequence.

Unlike in the scalar case, here the functional I_p is not homogeneous except when $p_1 = \ldots = p_m$. However, I_p still has the following weaker property. Define a continuous flow on W by

$$\mathbb{R} \times W \to W, \quad (\alpha, u) \mapsto u_{\alpha} := (|\alpha|^{1/p_1 - 1} \alpha u_1, \dots, |\alpha|^{1/p_m - 1} \alpha u_m).$$

Then $I_p(u_\alpha) = |\alpha|I_p(u)$ by (A_{i1}). This suggests that the appropriate class of eigenvalue problems to study for the operator A_p are of the form

(2.2)
$$A_p u = \lambda J'(u)$$

where the functional $J \in C^1(W, \mathbb{R})$ satisfies

(2.3)
$$J(u_{\alpha}) = |\alpha|J(u) \text{ for all } \alpha \in \mathbb{R}, \ u \in W$$

and J' is compact. Taking $\alpha = 0$ shows that J(0) = 0, and taking $\alpha = -1$ shows that J is even, so J' is odd, in particular, J'(0) = 0. Moreover, if u is an eigenvector associated with λ , then so is u_{α} for any $\alpha \neq 0$ (see Proposition 10.1.2 of [12]).

Let

$$\mathcal{M} = \{ u \in W : I_p(u) = 1 \}, \qquad \mathcal{M}^{\pm} = \{ u \in \mathcal{M} : J(u) \ge 0 \}.$$

Then $\mathcal{M} \subset W \setminus \{0\}$ is a bounded complete symmetric C^1 -Finsler manifold radially homeomorphic to the unit sphere in W, \mathcal{M}^{\pm} are symmetric open submanifolds of \mathcal{M} , and the positive (resp. negative) eigenvalues of (2.2) coincide with the critical values of the even functionals

$$\Psi^{\pm}(u) = \frac{1}{J(u)}, \quad u \in \mathcal{M}^{\pm}$$

(see Lemmas 10.1.4 and 10.1.5 of [12]).

Denote by \mathcal{F}^{\pm} the classes of symmetric subsets of \mathcal{M}^{\pm} and by i(M) the Fadell–Rabinowitz cohomological index of $M \in \mathcal{F}^{\pm}$. Then

$$\lambda_k^+ := \inf_{\substack{M \in \mathcal{F}^+ \\ i(M) \ge k}} \sup_{u \in M} \Psi^+(u), \quad 1 \le k \le i(\mathcal{M}^+),$$
$$\lambda_k^- := \sup_{\substack{M \in \mathcal{F}^- \\ i(M) > k}} \inf_{u \in M} \Psi^-(u), \quad 1 \le k \le i(\mathcal{M}^-)$$

define nondecreasing (resp. nonincreasing) sequences of positive (resp. negative) eigenvalues of (2.2) that are unbounded when $i(\mathcal{M}^{\pm}) = \infty$ (see Theorems 10.1.8 and 10.1.9 of [12]). When $i(\mathcal{M}^{\pm}) = 0$ we set $\lambda_1^{\pm} = \pm \infty$ for convenience.

Returning to (2.1), suppose that u = 0 is a solution and the asymptotic behavior of F near zero is given by

(2.4)
$$F(u_{\alpha}) = \lambda J(u_{\alpha}) + o(\alpha)$$
 as $\alpha \searrow 0$, uniformly in $u \in \mathcal{M}$.

PROPOSITION 2.3 ([12, Proposition 10.2.1]). Assume that $(A_{i1})-(A_{i3})$, (A_4) , (2.3) and (2.4) hold, F' and J' are compact, and zero is an isolated critical point of Φ .

(a) If $\lambda_1^- < \lambda < \lambda_1^+$, then $C^q(\Phi, 0) \approx \delta_{q0}\mathbb{Z}_2$. (b) If $\lambda_{k+1}^- < \lambda < \lambda_k^-$ or $\lambda_k^+ < \lambda < \lambda_{k+1}^+$, then $C^k(\Phi, 0) \neq 0$.

3. Proof of Theorem 1.3

First let us verify that our problem fits into the abstract framework of the previous section. Let $W_i = W_0^{1,p_i}(\Omega)$,

$$(A_{p_i}u_i, v_i)_i = \int_{\Omega} |\nabla u_i|^{p_i - 2} \nabla u_i \cdot \nabla v_i, \quad F(u) = \int_{\Omega} F(x, u),$$
$$J(u) = \int_{\Omega} J(x, u) = \int_{\Omega} V(x) |u_1|^{r_1} \dots |u_m|^{r_m}, \quad G(u) = \int_{\Omega} G(x, u).$$

Then (A_{i1}) is clear, $(A_{p_i}u_i, u_i)_i = ||u_i||_i^{p_i}$ in (A_{i2}) and (A_{i3}) holds with

$$I_{p_i}(u_i) = \int_{\Omega} \frac{1}{p_i} |\nabla u_i|^{p_i}.$$

By the Hölder inequality,

$$(A_{p_i}u_i, v_i)_i \le \left(\int_{\Omega} |\nabla u_i|^{p_i}\right)^{1-1/p_i} \left(\int_{\Omega} |\nabla v_i|^{p_i}\right)^{1/p_i} = \|u_i\|_i^{p_i-1} \|v_i\|_i,$$

so (A_4) follows from Proposition 2.1. Integrating (1.12) gives (2.3). By (1.15),

$$|G(u_{\alpha})| \le C \sum_{i=1}^{m} |\alpha|^{s_i/p_i} ||u_i||_i^{s_i},$$

so (2.4) also holds.

By the growth condition (1.10),

$$|(F'(u),v)| = \left| \int_{\Omega} \sum_{i=1}^{m} \frac{\partial F}{\partial u_{i}}(x,u)v_{i} \right| \le C \sum_{i=1}^{m} \left(\sum_{j=1}^{m} \|u_{j}\|_{L^{(r_{ij}-1)(p_{i}^{*})'}(\Omega)}^{r_{ij}-1} + 1 \right) \|v_{i}\|_{i}.$$

Since $(r_{ij} - 1)(p_i^*)' < p_j^*$ and hence the imbedding $W_0^{1,p_j}(\Omega) \hookrightarrow L^{(r_{ij}-1)(p_i^*)'}(\Omega)$ is compact, the compactness of F' follows. We have

$$\left|\frac{\partial J}{\partial u_i}(x,u)\right| = r_i |V(x)| |u_1|^{r_1} \dots |u_i|^{r_i-1} \dots |u_m|^{r_m} \le C \sum_{j=1}^m |u_j|^{p_j/p'_i}$$

since $r_1/p_1 + \ldots + (r_i-1)/p_i + \ldots + r_m/p_m = 1 - 1/p_i = 1/p'_i$, and $p_j/p'_i < p^*_j/(p^*_i)'$, so the compactness of J' follows similarly.

Since λ is not an eigenvalue of (1.13), it now follows from Proposition 2.3 that $C^k(\Phi, 0) \neq 0$ for some $k \geq 0$. Now we show that Φ satisfies the (PS) condition and, for a < 0 with |a| sufficiently large, Φ^a is homotopic to

$$\mathcal{M} = \{ u \in W : I(u) = 1 \}$$

and hence contractible. As in the scalar case, this then leads to a contradiction if Φ has no nontrivial critical points.

LEMMA 3.1. If (1.10) and (1.16) hold, then Φ satisfies the (PS) condition.

PROOF. By (1.10) and (1.16),

(3.1)
$$H_{\mu}(x,u) := \sum_{i=1}^{m} \frac{u_i}{\mu_i} \frac{\partial F}{\partial u_i}(x,u) - F(x,u) \ge -C \quad \text{for all } (x,u) \in \Omega \times \mathbb{R}^m$$

for some C > 0.

Let (u^j) be a (PS) sequence, i.e. $\Phi(u^j) = O(1)$ and $\Phi'(u^j) = o(1)$. By Proposition 2.2, it suffices to show that (u^j) is bounded. Writing $(u_1^j/\mu_1, \ldots, u_m^j/\mu_m) = u^j/\mu$, we have

$$\Phi(u^{j}) - (\Phi'(u^{j}), u^{j}/\mu) = \int_{\Omega} \sum_{i=1}^{m} \left(\frac{1}{p_{i}} - \frac{1}{\mu_{i}}\right) |\nabla u_{i}^{j}|^{p_{i}} + H_{\mu}(x, u^{j}),$$

which together with (3.1) gives

$$\sum_{i=1}^{m} \left(\frac{1}{p_i} - \frac{1}{\mu_i}\right) \|u_i^j\|_i^{p_i} \le o(1) \left(\sum_{i=1}^{m} \frac{1}{\mu_i^2} \|u_i^j\|_i^2\right)^{1/2} + O(1).$$

Since $\mu_i > p_i > 1$, it follows from this that (u^j) is bounded.

Let
$$p = (p_1, \ldots, p_m)$$
. Writing $(u_1/p_1, \ldots, u_m/p_m) = u/p$, we have

$$\Phi(u) - (\Phi'(u), u/p) = \int_{\Omega} H(x, u) \ge -C|\Omega| =: a_0$$

where C is as in (1.17) and $|\Omega|$ is the volume of Ω , so all critical values of Φ are greater than or equal to a_0 .

LEMMA 3.2. If $a < a_0$, then there is a C^1 -map $A_a: \mathcal{M} \to (0, \infty)$ such that

$$\Phi^a = \{ u_\alpha : u \in \mathcal{M}, \ \alpha \ge A_a(u) \} \simeq \mathcal{M}.$$

PROOF. For $u \in \mathcal{M}$ and $\alpha > 0$,

$$\Phi(u_{\alpha}) = \alpha - \int_{\Omega} F(x, u_{\alpha}) \le \alpha - \sum_{i=1}^{m} \alpha^{\mu_i/p_i} \int_{\Omega} c(x) |u_i|^{\mu_i} + C|\Omega|$$

by (1.11) and (1.19), so $\Phi(u_{\alpha}) \leq a$ for sufficiently large α . Moreover,

$$\frac{d}{d\alpha}(\Phi(u_{\alpha})) = 1 - \alpha^{-1} \int_{\Omega} \sum_{i=1}^{m} \frac{(u_{\alpha})_i}{p_i} \frac{\partial F}{\partial u_i}(x, u_{\alpha})$$
$$= \alpha^{-1} \left(\Phi(u_{\alpha}) - \int_{\Omega} H(x, u_{\alpha}) \right) \le \alpha^{-1} (\Phi(u_{\alpha}) - a_0),$$

 \mathbf{so}

$$\Phi(u_{\alpha}) \le a \Rightarrow \frac{d}{d\alpha}(\Phi(u_{\alpha})) \le -\alpha^{-1}(a_0 - a) < 0.$$

Thus, there is a unique $A_a(u) > 0$ such that

$$\alpha < \text{resp.} =, > A_a(u) \Rightarrow \Phi(u_\alpha) > \text{resp.} =,$$

and the map A_a is C^1 by the implicit function theorem. Then $W \setminus \{0\}$, which is $\simeq \mathcal{M}$, deformation retracts to $\Phi^a = \{u_\alpha : u \in \mathcal{M}, \ \alpha \ge A_a(u)\}$ via

$$(W \setminus \{0\}) \times [0,1] \to W \setminus \{0\},$$
$$(u,t) \mapsto \begin{cases} u_{1-t+tA_a(u_{1/I(u)})/I(u)} & \text{for } u \in (W \setminus \{0\}) \setminus \Phi^a, \\ u & \text{for } u \in \Phi^a. \end{cases}$$

References

- [1] A. AMBROSETTI AND P. H. RABINOWITZ, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
- [2] A. ANANE, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725–728.
- [3] V. BENCI, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231–305.
- [4] K. CHANG, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston Inc., Boston, MA, 1993.
- [5] M. DEGIOVANNI, S. LANCELOTTI AND K. PERERA, Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting, Comm. Contemp. Math. (to appear).
- [6] P. DRÁBEK, Solvability and bifurcations of nonlinear equations, Pitman Research Notes in Mathematics Series, vol. 264, Longman Scientific & Technical, Harlow, 1992.
- [7] E. R. FADELL AND P. H. RABINOWITZ, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139–174.
- [8] S. J. LI AND M. WILLEM, Applications of local linking to critical point theory, J. Math. Anal. Appl. 189 (1995), 6–32.
- [9] P. LINDQVIST, On the equation div $(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc. **109** (1990), 157–164.
- [10] _____, Addendum: "On the equation div $(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$ ", Proc. Amer. Math. Soc. **109** (1990), 157–164; Proc. Amer. Math. Soc. **116** (1992), 583–584.
- [11] K. PERERA, Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal. 21 (2003), 301–309.
- [12] K. PERERA, R. P. AGARWAL AND D. O'REGAN, Morse-Theoretic Aspects of p-Laplacian Type Operators, Math. Surveys Monogr., vol. 161, Amer. Math. Soc., Providence, RI, 2010.
- [13] P. H. RABINOWITZ, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 215–223.
- [14] Z. Q. WANG, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 43–57.

Manuscript received May 8, 2009

KANISHKA PERERA AND RAVI P. AGARWAL Department of Mathematical Sciences Florida Institute of Technology Melbourne, FL 32901, USA

E-mail address: kperera@fit.edu agarwal@fit.edu

DONAL O'REGAN Department of Mathematics National University of Ireland Galway, IRELAND

 $E\text{-}mail\ address:\ donal.oregan@nuigalway.ie$

 TMNA : Volume 35 – 2010 – Nº 2