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NONTRIVIAL SOLUTIONS
OF p-SUPERLINEAR ANISOTROPIC p-LAPLACIAN SYSTEMS
VIA MORSE THEORY

KANISHKA PERERA — RAVI P. AGARWAL — DoONAL O’REGAN

ABSTRACT. We obtain nontrivial solutions of a class of p-superlinear ani-
sotropic p-Laplacian systems using Morse theory.

1. Introduction

The purpose of this paper is to obtain nontrivial solutions of a class of p-
superlinear anisotropic p-Laplacian systems using Morse theory.

As motivation, we begin by recalling a well-known result for the semilinear
elliptic boundary value problem

(L.1) —Au = f(x,u) inQ,
u=20 on 01},

where Q is a bounded domain in R, n > 1, f € C(2xR) satisfies the subcritical
growth condition

(1.2) |f(z,t)] <Ot +1) forall (z,t) € QxR
f *
or some r € (1,2%), om
ifn>2
2* = TL—2
{ o0 if n <2,
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is the critical Sobolev exponent, and C denotes a generic positive constant.
Assume

(1.3) lim f@t)

lim == = A, uniformly in x € Q

and the Ambrosetti-Rabinowitz condition
t
t
(1.4) 0< F(z,t) := / flx,8)ds < — f(z,t) forallz e Q, |¢t| >T,
0 1%

for some > 2 and T > 0. Note that (1.3) implies f(x,0) = 0, so problem (1.1)
has the trivial solution u(xz) = 0. Integrating (1.4) gives

(1.5) F(z,t) > c(x)t|* — C for all (z,t) e QxR

where ¢(x) = min F(z, £T)/T* > 0, so f is superlinear. V. Benci [3] used a
new approach to the Morse-Conley theory to obtain a nontrivial solution of this
problem when A ¢ o(—A), the Dirichlet spectrum of the negative Laplacian on
Q.

The idea of the proof may be restated in terms of critical groups as follows
(see K. Chang [4] and Z. Q. Wang [14]). Weak solutions of (1.1) coincide with
the critical points of the C'-functional

q)(u):/ %|Vu|2—F(33,u), uwe H=H}Q),
Q

and (1.4) ensures that @ satisfies the (PS) condition. Suppose that ® has no
nontrivial critical points. Then the critical groups of ® at zero are given by

Cq((bﬂo):Hq((I)O7(I)0\{0})v qg=>0

where ®° is the sublevel set {u € H : ®(u) < 0} and H* denotes cohomology.
By the second deformation lemma, ®° is a deformation retract of H and ®°\ {0}
deformation retracts to ®* for any a < 0, so

C4(®,0) ~ HI(H, d).

By (1.4), if |a| is sufficiently large, ®* is homotopic to the unit sphere in H and
hence contractible, so

(1.6) C%®,0) =0 for all q.

On the other hand, if Ay < Ay < ... denote the Dirichlet eigenvalues of the
Laplacian on ©Q and A\ < A < Agy1 in (1.3), then

C9(®,0) ~ 510

where G is the coefficient group and 6. . denotes the Kronecker delta. This
contradiction shows that ® has a nontrivial critical point.
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REMARK 1.1. In the case A < A1, A. Ambrosetti and P. H. Rabinowitz [1]
obtained a positive solution and a negative solution using their mountain pass
theorem, and Z. Q. Wang [14] obtained a third nontrivial solution using Morse
theory. When f satisfies a global sign condition, P. H. Rabinowitz [13] used
his linking theorem to obtain a nontrivial solution for all A € R. S. J. Li and
M. Willem [8] used a local linking to do the same when f satisfies only a local

sign condition near zero.

K. Perera [11] extended the above result to the corresponding p-Laplacian
problem

(1.7)

—Apu= f(z,u) inQ,
u=0 on 01,

where A, u = div(|Vu|P~2Vu) is the p-Laplacian of u, p € (1,00), f now satisfies
(1.2) with r € (1,p*), and

np if n > p,
pr=<S =P
00 if n <p.
Assume
flz,t) . :
(1.8) 1 2y A, uniformly in z € Q

and (1.4) with ¢ > p and T > 0, so u(z) = 0 is a solution of (1.7) and f is
p-superlinear by (1.5). K. Perera [11] obtained a nontrivial solution when A is
not an eigenvalue of the problem

—Apu=AulP"2u in Q,
u=0 on 0N).

This quasilinear eigenvalue problem is far more complicated. It is known
that the first eigenvalue \; is positive, simple, and has an associated eigen-
function ¢ that is positive in Q (see A. Anane [2] and P. Lindqvist [9], [10]).
Moreover, A; is isolated in the spectrum o(—A,), so the second eigenvalue
A2 = info(—A,) N (A1, 0) is well-defined. In the ODE case n = 1, where
Q is an interval, the spectrum consists of a sequence of simple eigenvalues
Ax /" oo, and the eigenfunction ¢y associated with Ax has exactly k& — 1 in-
terior zeroes (see e.g. P. Drébek [6]). In the PDE case n > 2, an increasing
and unbounded sequence of eigenvalues can be constructed using a standard
minimax scheme involving the Krasnoselskii’s genus, but it is not known whether
this gives a complete list of the eigenvalues.

The variational functional associated with problem (1.7) is

1
®(u) = / . |VulP — F(z,u), weW =W,P").
Q
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The argument of Wang [14] can easily be adapted to show that ®“ is again con-
tractible for a < 0 with |a| sufficiently large, so (1.6) holds as before if zero is the
only critical point of ®. So the idea of K. Perera [11] was to use a minimax scheme
involving the Zs-cohomological index of E. R. Fadell and P. H. Rabinowitz [7]
to construct a new sequence of eigenvalues A\, * 0o such that if Ay < A < Agq1
in (1.8), then C*(®,0) # 0, again contradicting (1.6).

REMARK 1.2. When f satisfies a local sign condition near zero, M. Degio-
vanni, S. Lancelotti and K. Perera [5] used the notion of a cohomological local
splitting introduced in K. Perera, R. P. Agarwal and D. O’Regan [12] to obtain
a nontrivial solution for all A € R.

Naturally we may ask whether there is an extension of these results to
anisotropic p-Laplacian systems of the form

(1.9) Ou; i=1,...,m

{ —Apu; = a—F(:r,u) in €,
U
u; =0 on 0,

where each p; € (1,00), u = (u1,...,uy,) € R™, F € C1(Q x R™) satisfies the

subcritical growth conditions
m
<o( Ll 41)
j=1

for all (z,u) € @ x R™, i = 1,...,m, for some r;; € (1,1 + p}/(p;)’), and
(pr) = pr/(pF —1) is the Holder conjugate of pf. Here the associated functional

1S

(1.10) ‘8F(x,u)

5ui

P = 1) [ Fle, e W =W (@) x.x W)

Pi

m 1
I(u) = / — |Vu;
Q ZZ:; bi '
Unlike in the scalar case, here I is not homogeneous except when p; = ... =

Pm. However, it still has the following weaker property. Define continuous flows
on both W and R™ by

(o, 1) — ug = (Ja|YP " Lauy, ... |aP"tau,,), ocR.
Then
(1.11) I(ug) = |a| I(u) foralla e R, ue W.

This suggests that the appropriate class of eigenvalue problems to consider here
are of the form

aJ
—Ap.u; = A—(x,u) in Q,
{ P 31&1'( ) i=1,....m

u; =0 on 0f,
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where J € C1(Q2 x R™) satisfies
J(x,uq) = |a| J(z,u) forall @ € R, (z,u) € QxR™.

Differentiating this with respect to u; gives

0.7 iy O i/
(@ ua) = o] P S5 (@) and Ay (ua) = o] TP Al ui,

so if u is an eigenvector associated with A, then so is u, for any a # 0.

To fix ideas, let us take
J(x,u) =V(e) lug|™ .. Jum|™

where r; € (1,p;) with r1/p1 + ...+ rm/pm = 1 and V € C*(Q) is a (possibly
indefinite) bounded weight function. Then

(L12)  J(@,ua) = [a] /Py @) [ ] = ol (),

and the corresponding eigenvalue problem is

—Ap u; = A V(@) w2 Ju | in €,
(1.13) pi (@)™ - |t

u; =0 on 02,
fori=1,...,m. Assume u(xz) = 0 is a solution of (1.9) and the behavior of F

near zero is given by
(1.14) F(z,u) = AV () |u[™ .. Jum|™ + Gz, ),

where the higher-order term G satisfies

m
(1.15) |G(z,u)] < C’Z |u;]®*  for all (z,u) € 2 x R™
i=1

for some s; € (pi, p}).

It is natural to replace (1.4) with

" u; OF
1.16 0< F(z,u) < = (z, for all z € Q, >T
( ) (xu)_izzluiauz_(xu) or all = lu| >
for some pu; > p;,i=1,... ,mand T > 0. We will also need to assume that

(1.17)  H(z,u):= i — (z,u) — F(x,u) > —C for all (z,u) € & x R™

for some C' > 0. Note that in the scalar case this follows from (1.2) and (1.4).
‘We shall prove
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THEOREM 1.3. Assume (1.10) and (1.14)—(1.17). If A is not an eigenvalue
of (1.13), then the system (1.9) has a nontrivial solution.

Our proof will be based on an abstract framework for anisotropic systems
introduced in Perera, Agarwal, and O’Regan [12], which we will recall in the
next section, but first we show that (1.16) implies F' is p;-superquadratic in u;,
analogous to (1.5).

Let = (u1,- .., ttm) and set

m

ru(u) = Z lug ", weR™.

i=1

There is an R > 0 such that r,(u) > R implies |u| > T. Then

(1.18) ()>R:>O<F(xugzzgj: )
by (1.16).
LEMMA 1.4. If (1.10) and (1.18) hold, then
(1.19) F(z,u) > c(z)ry(u) —C  for all (x,u) € Q& x R™
where -
)= i S >0
and C > 0.

ProoF. Fix u € R™ with r,(u) > R. Let a, = r,(u)/R > 1 and
U= (o, My, o P ,),
so that r, (@) = a;'r,(u) = R, and consider the path
w(e) = (/o) Mur, . (o) P ug), 1< a<ay,

joining @ to u. Noting that r,(u(a)) = (/) ru(u) = R > R, we have

d ol u; (@ 1
o (F(z,u(w ; " 8% z,u(a)) > o F(z,u(a)) >0

by (1.18), and integrating this from a =1 to «, gives

F(z,u) > F(z,u)a, = F(g ) ru(u) > c(x)r,(u). O
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2. Preliminaries

In this section we recall an abstract framework for anisotropic systems intro-
duced in K. Perera, R. P. Agarwal and D. O’Regan [12].

For i = 1,...,m, let (W;,| - |l;) be a real reflexive Banach space with the
dual (W}, | - ||I¥) and the duality pairing (-, -);. Then their product

W=Wy x...x Wy, ={u=(u1,... ,un):u; €W;}

is also a reflexive Banach space with the norm

m 1/2
Jull = (Znuiﬁ)
=1

and has the dual
W*=W!x...xWy ={L=(Ly,...,Lp): L; € W/},

with the pairing

m

(La u) = Z(L“ ul)Z
i=1
and the dual norm

) = (i(HLin:f)m.

We consider the system of operatl(?r1 equations
(2.1) Apu=F'(u)
in W*, where p = (p1,... ,pm) with each p; € (1,00),
Apu=(Aput,...,Ap, Unm),
Ay, € C(W;, W) is
(A1) (pi — 1)-homogeneous and odd:

pi*QaApiulv for all u; € W;, a € R,

Ay (au;) = |a
(A;2) uniformly positive: there exists ¢; > 0 such that
(Apiui,ui)i > cl||uz||f7 for all u; € Wi,

(A;3) a potential operator: there is a functional I,, € C'(W;,R), called a
potential for A,,, such that
Iz'% (wi) = Ap,u;  for all u; € W,
(Ag) A, is of type (S): for any sequence (u’) C W,

W —u, (Apu, v —u) = 0= —u,
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and F € CY(W,R) with F' = (F,,,...,F,, ):W — W* compact and F(0) = 0.

The following proposition is useful for verifying (A4).

PRrOPOSITION 2.1 ([12, Proposition 10.0.5]). If each W; is uniformly convex

and
(Ap,ui,vi)i < rillwslP " Hvills, (Ap,ui,ue)i = rllul|? for all ug,v; € Wy

for some r; > 0, then (A4) holds.

By Proposition 1.0.2 of [12], 4, is also a potential operator and the potential
I, of A, satisfying I,(0) = 0 is given by

1
Ip(u) = —(Apui, wi)s.
1=1

Now the solutions of the system (2.1) coincide with the critical points of the
C-functional

O(u) = Ip(u) — F(u), ueW.
The following proposition is useful for verifying the (PS) condition for ®.

PROPOSITION 2.2 ([12, Lemma 3.1.3]). Every bounded (PS) sequence of ®
has a convergent subsequence.

Unlike in the scalar case, here the functional I, is not homogeneous except
when p; = ... = p,,. However, I, still has the following weaker property. Define
a continuous flow on W by

RxW =W, (a,u)— u:= (o] Lauy,...,|a"P" Tau,,).

Then I,(uq) = |a|I,(u) by (As1). This suggests that the appropriate class of
eigenvalue problems to study for the operator A, are of the form

(2.2) Apu =N (u)
where the functional J € C'(W, R) satisfies
(2.3) J(ug) =|a|J(u) foralla e R, ue W

and J' is compact. Taking a = 0 shows that J(0) = 0, and taking a = —1
shows that J is even, so J' is odd, in particular, J'(0) = 0. Moreover, if u is
an eigenvector associated with A, then so is u, for any o # 0 (see Proposition
10.1.2 of [12]).

Let

M={ueW:I(u) =1}, ME ={ue M: J(u) =0}
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Then M C W \ {0} is a bounded complete symmetric C'-Finsler manifold
radially homeomorphic to the unit sphere in W, M¥* are symmetric open sub-
manifolds of M, and the positive (resp. negative) eigenvalues of (2.2) coincide
with the critical values of the even functionals

b
J(u)’
(see Lemmas 10.1.4 and 10.1.5 of [12]).

Denote by F* the classes of symmetric subsets of M* and by i(M) the
Fadell-Rabinowitz cohomological index of M € F*. Then

Ut (u) = ue M*

M o= inf osup U(u), 1<k <i(MP),
MeFr* ueM
i(M)>k

A, = sup inf ¥ (u), 1<k<i(M™)
MeF- ueM
i(M)>k

define nondecreasing (resp. nonincreasing) sequences of positive (resp. negative)
eigenvalues of (2.2) that are unbounded when i(M*) = oo (see Theorems 10.1.8
and 10.1.9 of [12]). When i(M*) = 0 we set A\ = 400 for convenience.

Returning to (2.1), suppose that v = 0 is a solution and the asymptotic
behavior of F' near zero is given by

(2.4) F(ua) = AJ(uq) +0o(a) as a0, uniformly in u € M.

PROPOSITION 2.3 ([12, Proposition 10.2.1]). Assume that (A;1)—(Ais), (Ag),
(2.3) and (2.4) hold, F’ and J' are compact, and zero is an isolated critical point
of ®.

(a) If A\] < A< ], then C9(®,0) ~ §,0Z2.
(b) If Ay A< A or MNo<A< A1, then CF(®,0) # 0.

3. Proof of Theorem 1.3

First let us verify that our problem fits into the abstract framework of the
previous section. Let W; = W, (Q),

(Apiui,v,-),- :/ |Vu1
Q

J(u):/QJ(x,u) :/QV(x)|u1|”...|um|rm, G(u) :/Qa(x,u).

Then (A;1) is clear, (Ap,u;,u;); = [Jug|}" in (As2) and (A;3) holds with

Pim2y; - Vo,  F(u) = / F(z,u),
Q

Pi

1
I, (u) = / L \vu;

) Di
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By the Holder inequality,

1—1/p; 1/pi
(Ap,ui,v;); < (/ |Vu; |p‘> (/ |sz|p‘> = ||u;

o (A4) follows from Proposition 2.1. Integrating (1.12) gives (2.3). By (1.15),

pL—leZ”“

|Glua)] < CY_ laf*i/?

i=1

o (2.4) also holds.
By the growth condition (1.10),

”>|:‘/Qggu T, u)v; <C;<Z” ’

Since (ri; — 1)(p;)’ < pj and hence the imbedding Wol’pj(Q) s Lrii =D (Q)
is compact, the compactness of F’ follows. We have
oJ

ii—1
o ot + 1) Il

m
=il V(@) Jua [T ] <O [P/
j=1

since r1 /p1+...+(ri—1)/pit. . +rm/pm = 1-1/p; = 1/p;, and p; /p; < p;/(pi)'s
so the compactness of J’ follows similarly.

Since A is not an eigenvalue of (1.13), it now follows from Proposition 2.3 that
C*(®,0) # 0 for some k > 0. Now we show that ® satisfies the (PS) condition
and, for a < 0 with |a| sufficiently large, ®* is homotopic to

M={ueW:I(u)=1}

and hence contractible. As in the scalar case, this then leads to a contradiction
if ® has no nontrivial critical points.

LEMMA 3.1. If (1.10) and (1.16) hold, then ® satisfies the (PS) condition.

PRrOOF. By (1.10) and (1.16),

GNP 8F m
(3.1) Hu(z,u):= Z " 8uz — F(z,u) > —C forall (z,u) € 2 xR

for some C' > 0.

Let (u?) be a (PS) sequence, i.e. ®(u’) = O(1) and & (u?) = o(1). By Propo-
sition 2.2, it suffices to show that (u?) is bounded. Writing (ul /1, ... ,u, /fim)
=l /1, we have

() — (B (w!),u? ) = /Z(>|w

Pi H,(x,u?),
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which together with (3.1) gives

m 1 1 i moq i 1/2
— — — |l <o(1 — |Ju; ||3 + O(1).
;(p )i ()(;M?n ) +ow
Since p; > p; > 1, it follows from this that (u?) is bounded. O

Let p = (p1,... ,pm). Writing (u1/p1,... s Um/Pm) = u/p, we have
®(u) — (®'(u),u/p) = / H(z,u) > —C|Q] =: ag
Q

where C'is as in (1.17) and || is the volume of Q, so all critical values of ® are
greater than or equal to ag.

LEMMA 3.2. Ifa < ag, then there is a C'-map Ay: M — (0,00) such that

O ={ug:ueM, a>A(u)} ~ M.
ProoF. For u € M and a > 0,
D(ug) = o — / F(z,ue) <a— Y ati/r / () ug| 4 C|Q|
Q Py Q

by (1.11) and (1.19), so ®(us) < a for sufficiently large a. Moreover,

d B . m (Ua)i OF
L (@) =10 /QZ e (o)

W
=1 a v

=a! <<I>(ua) - / H(x,ua)> < a N (®(ua) — ao),
Q
S0
d

D(uq) <a= %(q)(ua)) < —at(ag—a) <0.
Thus, there is a unique A4(u) > 0 such that

a <resp. =, > Ay(u) = P(uy) > resp. =, <a
and the map A, is C! by the implicit function theorem. Then W \ {0}, which
is ~ M, deformation retracts to ®* = {u, : u € M, a > A,(u)} via

(WAA{0}) x [0,1] — W\ {0},

(u,t) — Uttt Aa (/1) /10w) - fOr w € (WA{0}) \ @7,
7 U for u € ®°.
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