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DYNAMICS OF THE MODIFIED VISCOUS
CAHN–HILLIARD EQUATION IN RN

Tomasz Dlotko — Chunyou Sun

Abstract. Global solvability and dynamical behaviour of the modified

viscous Cahn–Hilliard equation is studied in the Sobolev space H1(RN ).
For ν ∈ [0, 1] we construct H1(RN ) global attractors and show their upper

semicontinuity at ν = 0.

1. Introduction

Viscous Cahn–Hilliard equation, a generalization of the classical Cahn–Hi-
lliard model describing decomposition of binary alloys, was introduced by A. No-
vick–Cohen in [13] to analyze the dynamics of viscous first order phase transi-
tions. The viscous Cahn–Hilliard equation

(1.1) (1− ν)ut = −∆(∆u+ f(u)− νut), in Ω,

where ν ∈ [0, 1] and Ω is a bounded smooth domain in RN , includes as limiting
cases the Cahn–Hilliard equation (ν = 0) and semilinear heat equation (ν = 1).
The transition of the asymptotic behaviour, as parameter ν varies from 0 to 1,
was studied in [7]. This result was extended recently in [4].

The dynamics of the viscous Cahn–Hilliard equation considered in bounded
domains with both ‘bi-Neumann’ or ‘bi-Dirichlet’ boundary conditions is quite
well understood (see e.g. [13], [4]–[8], [17], [19], [23]). A rather natural extension

2010 Mathematics Subject Classification. 35B41, 35K30, 37L15.

Key words and phrases. Modified viscous Cahn–Hilliard equation, attractors, upper semi-
continuity.

c©2010 Juliusz Schauder Center for Nonlinear Studies

277



278 T. Dlotko — Ch. Sun

is to study that problem in unbounded domains Ω. The case of an unbounded
domains in which the Poincaré inequality still holds was considered recently
in [3] while considerations related to global existence of solutions corresponding
to particular (‘close to a constant’) initial data were presented in [11]. Note that
the equation (1.1) in RN is satisfied by an arbitrary constant function; u(t, x) ≡ c.
This observation shows that there is no chance for existence of a compact in
a reasonable phase space, global attractor for the semigroup generated by (1.1)
when Ω = RN . A local analysis around fixed stationary solution, as in [11], gives
valuable information about the dynamics for such problem.

This paper is devoted to the global solvability and asymptotic behaviour of
solutions to the Cauchy problem in RN for the modified viscous Cahn–Hilliard
equation

(1.2)

{
(1− ν)ut = (−∆ + εI)((∆− εI)u+ f(x, u)− νut), t > 0, x ∈ RN ,

u(0, x) = u0(x),

where ν ∈ [0, 1], ε > 0, and the assumption on the nonlinear function f will be
made more precise later. We modify the original viscous Cahn–Hilliard equation,
for the needs of the Cauchy problem in RN , by adding the first term εI at the
right hand side to deal with the invertible operator (−∆+ εI) (in L2(RN )). The
spectrum of the sole operator (−∆) in L2(R)N equals [0,∞) (see [10, p. 33]) and
is purely absolutely continuous. That means (−∆)−1 exists but is unbounded,
with the domain dense in L2(R)N . In a bounded domain Ω the operator (−∆)
with Dirichlet boundary condition is invertible and this property is substantial
in considerations of (1.1) with ‘bi-Dirichlet’ boundary data.

Remark 1.1. When we consider long time behaviour of solutions to the
Cauchy problem in RN (especially in term of the global attractors), due to the
lack of the Poincaré inequality, it seems necessary to add a term −ε2u, ε > 0, to
the nonlinearity of the original viscous Cahn–Hilliard equation to deduce some
dissipation, see [16], [18], [20]–[22] for other models (although sometimes this
requirement is included implicitly in the assumptions on the nonlinearity).

This paper is devoted to solvability, existence of the global attractors and
their upper semicontinuity when the problem (1.2) is considered in the Sobolev
spaces over RN . Since the equilibria need not be isolated in general (see [15,
p. 680] for the description of the contents of the global attractor in the case
ν = 1), the characterization of the global attractor as used in [4] fails to hold
and we were unable to prove the lower semicontinuity of attractors as in the last
reference.

The difficulty we face in this paper is twofold. First, we study the Cauchy
problem in RN , so the (lack of) compact embedding is always a serious prob-
lem (we are using the technique of tail estimate as in [18], [16] to handle that
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problem). Second, we deal with the fourth order elliptic operators, which again
is much more involved than the case of the second order problems with all its
specific tools of comparison and maximum principle type techniques. Dealing
with the fourth order problems we are also forced to stay inside the L2-setting;
the general Lp-setting p 6= 2 is much more complicated in that case.

This paper is organized as follows. In Section 2 we recall some known aux-
iliary results including a sufficient condition for the upper semicontinuity of the
family of global attractors. In Section 3, for arbitrary ν ∈ [0, 1], we prove global
solvability of (1.2) in H1(RN ). Then, after giving some uniform (w.r.t. ν ∈ [0, 1])
a priori estimates in Section 4, we prove existence of the H1(RN ) global attrac-
tors (Theorem 5.4) in Section 5; and finally, in Section 6, upper semicontinuity
of the family of global attractors at ν = 0 is obtained (Theorem 6.1).

2. Preliminaries

In this section, we recall some information used in the main part of the paper.

Lemma 2.1. For A = (−∆ + εI)−1 with ε > 0 the following estimate holds:
there exists a positive constant C such that for any v ∈ H−1(RN ),

(2.1) ‖v‖H−1(RN ) ≤ C(‖Av‖L2(RN ) + ‖∇Av‖L2(RN )).

Proof. To verify the estimate (2.1), observe that for any u ∈ H1(RN ) and
v ∈ H−1(RN )

〈u, v〉H1(RN ),H−1(RN ) = 〈u, (−∆ + εI)Av〉H1(RN ),H−1(RN )

= ε

∫
RN

uAv dx+
∫

RN

∇u · ∇Av dx

≤ ε‖u‖L2(RN )‖Av‖L2(RN ) + ‖∇u‖L2(RN )‖∇Av‖L2(RN )

≤ C(‖Av‖L2(RN ) + ‖∇Av‖L2(RN ))‖u‖H1(RN ). �

We recall next a criterion for the upper semicontinuity of attractors taken
from [9], [14]:

Proposition 2.2 ([9], [14]). Let {Sλ(t)}t≥0 (λ ∈ Λ) be a family of semi-
groups defined on Banach space X, and for each λ ∈ Λ, {Sλ(t)}t≥0 has a global
attractor Aλ. Assume further that λ0 is a nonisolated point of Λ and there exist
s > 0, t0 > 0 and a compact set K ⊂ X such that⋃
λ∈NΛ(λ0,s)

Aλ ⊂ K, and if λn → λ0 and xn → x0, then Sλn(t0)xn → Sλ0(t0)x0.

Then the global attractors Aλ are upper semicontinuous on Λ at λ = λ0; that is,

lim
Λ3λ→λ0

distX(Aλ,Aλ0) = 0.
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Notation. To simplify the notation inside the calculations we agree here-
after that all the unspecified norms are taken over L2(RN ), that is, ‖ · ‖ =
‖ · ‖L2(RN ). Also, from now on we cancel the dependence of the function spaces
on RN ; thus L2 means L2(RN ), W s,p means W s,p(RN ) and so on. Moreover, all
the unspecified integrals are taken over RN . The letter C is used to denote vari-
ous positive constants and sometimes we also mention explicitly (in the bracket)
the quantities on which the constant C depends.

3. Well-posedness in H1

In this section, we will investigate the solvability of (1.2) in H1:

(3.1) (1− ν)ut = (−∆ + εI)((∆− εI)u+ f(x, u)− νut), t > 0, x ∈ RN ,

where ε > 0 and ν ∈ [0, 1].
We will consider problem (3.1) within the framework of the approach of [10]

as an equation with sectorial operator. Rewrite (1.2) in an abstract form

ut = (−∆ε)Bνu+Bν(f(·, u)),

where Bν = (−∆ + εI)[(1 − ν)I + ν(−∆ + εI)]−1 = −∆ε[(1 − ν)I − ν∆ε]−1

and (−∆ε) is the realization in L2 of the operator (−∆ + εI) considered on the
domain D(−∆ε) = H2. Note also, that the operator Bν will be, for ν ∈ (0, 1],
written in an equivalent form:

Bν =
1
ν
I − 1− ν

ν
((1− ν)I − ν∆ε)−1,

which proves that Bν is a bounded operator from L2 into itself. Also, the oper-
ator (−∆ε)Bν is a bounded perturbation of the sectorial operator (1/ν)(−∆ε):

(−∆ε)Bν =
1
ν

(−∆ε)−
1− ν

ν2
I +

(1− ν)2

ν2
((1− ν)I − ν∆ε)−1,

hence is sectorial itself in L2 with the domain H2 (see [10, p. 27]).
With the above observations it is easy to get local solvability of the problem

(1.2), ν ∈ (0, 1], in the space X := L2. Indeed, following the approach of
D. Henry it is sufficient to check that the nonlinearity

F(φ) = Bν(f( · , φ))

acting from Xα = H2α into X is Lipschitz continuous on bounded subsets of
Xα. Assume that the function f : RN × R → R is (locally) Lipschitz continuous
with respect to u with the Lipschitz constant uniform in the sets RN × [−M,M ].
We will study below the X1/2 solution of (1.2), ν ∈ (0, 1] (which will vary in H1).
To obtain such a local solution we need to assume

(3.2) f(x, · ) is continuous w.r.t. s for a.e. x ∈ RN and f( · , s) is measurable
w.r.t. x for each s ∈ R,
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also impose, additionally to the local Lipschitz continuity, the following growth
restriction on the nonlinear function f ; there exists q ∈ [1, N/(N − 2)] such that

(3.3) there exists 0 ≤ β(·) ∈ L∞ such that for all s1, s2 ∈ R and all x ∈ RN

|f(x, s1)− f(x, s2)| ≤ β(x)|s1 − s2|(1 + |s1|q−1 + |s2|q−1).

Local Lipschitz continuity of the nonlinear term F then follows from (3.3), Hölder
inequality and Sobolev embeddings. Let B ⊂ X1/2 = H1 be bounded and let
φ, ψ ∈ B, then:

‖F(φ) −F(ψ)‖X = ‖Bν(f( · , φ))−Bν(f( · , ψ))‖X(3.4)

≤‖Bν‖L(X,X)‖f( · , φ)− f( · , ψ)‖X

≤‖Bν‖L(X,X)‖β‖L∞ [‖φ− ψ‖L2

+ ‖φ− ψ‖L2N/(N−2)(‖φ‖L2N/(N−2) + ‖ψ‖L2N/(N−2))2/(N−2)]

≤‖Bν‖L(X,X)LB‖φ− ψ‖X1/2 .

Therefore local solvability of (1.2) in X1/2 follows immediately ([10]). We also
have

u ∈ C([0, τ), X1/2) ∩ C((0, τ), D((−∆ε))),

ut ∈ C((0, τ), Xκ) for every κ ∈ [0, 1),

where τ > 0 is the maximal time of existence of the local X1/2-solution u(t). In
addition the variation of constants formula is valid for such local solution

u(t) = e−(−∆ε)Bνtu0 +
∫ t

0

e−(−∆ε)Bν(t−s)F(u(s)) ds, for t ∈ [0, τ).

In general, for ν ∈ (0, 1], problem (1.2) behaves as a second order parabolic
equation.

For ν = 0 the modified Cahn–Hilliard equation is the fourth order parabolic
equation:

(3.5)

{
ut = (−∆ + εI)((∆− εI)u+ f(x, u)), t > 0, x ∈ RN ,

u(0, x) = u0(x).

This will be again treated in the framework of the Henry’s approach. We will
use the lower index 0 in notation of the fractional order scale corresponding to
realization of sectorial operator (−∆ + εI)2 in the space X0 = (H2)∗, with the
domain X1

0 = H2 and with X
1/2
0 = L2. We are interested in the X3/4

0 -solution,
that is the case when the phase space equals to H1. The problem (3.5) is then
written abstractly as

(3.6)

{
ut = −(−∆ε)2u+ (−∆ε)f( · , u) in X0,

u(0) = u0 ∈ X3/4
0 .



282 T. Dlotko — Ch. Sun

To justify local solvability of that problem, we need to check that the nonlin-
ear operator F(φ) = (−∆ε)(f( · , φ)) is locally Lipschitz continuous as a map
from X

3/4
0 to X0. Take a bounded set B ⊂ X

3/4
0 and let φ, ψ ∈ B. Since

(−∆ε):X
1/2
0 → X0 is a linear isomorphism, we have

‖F(φ)−F(ψ)‖X0 = ‖(−∆ε)(f( · , φ)− f( · , ψ))‖X0

≤ c‖f( · , φ)− f( · , ψ)‖
X

1/2
0

≤ CB‖φ− ψ‖
X

3/4
0
,

precisely as in the estimate (3.4) and with the same assumptions on the func-
tion f . Hence local solvability of (3.6) follows immediately.

To justify the global solvability of (1.2), we need to impose additional as-
sumptions on the nonlinear term. We will borrow such assumptions from [15],
where the set of stationary solutions to the second order parabolic Cauchy prob-
lem in Sobolev spaces (ν = 1) was recently analyzed. In many cases this set
is rich (compare [15, Theorem 1.1]) and the whole global attractor is located
between the minimal and the maximal equilibrium solutions.

Following [15] we will assume that:

(3.7) there exists µ ∈ (0, ε/2) such that for all s ∈ R, x ∈ RN

F (x, s) ≤ µs2 + α1(x)|s|+ γ1(x),

and that:

(3.8) there exists l ∈ (0, ε), k ∈ (0, (ε− l)/µ) such that for all s ∈ R, x ∈ RN

sf(x, s)− kF (x, s) ≤ ls2 + α2(x)|s|+ γ2(x),

where αi( · ), γi( · ) ≥ 0, αi( · ) ∈ L2, γi( · ) ∈ L1 and F (x, s) =
∫ s

0
f(x, z) dz.

Remark 3.1. (a) The constants µ, l (and so k) depend on ε, which is natural
since in RN the Poincaré inequality is not true and our dissipation comes from
the term ε2u; see Remark 1.1;

(b) Note, that such condition is satisfied in particular for the standard non-
linearities f(s) = αs− s|s|p−1, p > 1 and α ∈ (0, ε).

Remark 3.2. Our assumptions allow a rich set of stationary solutions of
(1.2), consequently rich global attractor. For example, let

L(v) := −(∆− εI)v, v(x) =
1

(1 + |x|2)N

and take

f(x, s) = sin
(

s

2v(x)
π

)
L(v(x))− cos

(
s

2v(x)
π

)
L(2v(x)).

Then, one can verify that such nonlinearity f satisfies (3.2)–(3.3) and (3.7)–(3.8)
(with arbitrary small positive µ, l, k), and also (4.5) below, with some proper αi
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and γi. Obviously, the functions v(x) and 2v(x) are two different solutions of
the stationary equation (∆− εI)u+ f(x, u) = 0 with the above function f(x, s).

Having already local solvability, combining it with the a priori estimate (4.3)
given in Section 4 below, we obtain the global well-posedness of (1.2) in H1 for
every ν ∈ [0, 1] when f satisfies (3.2)–(3.3) and (3.7)–(3.8), and then we can
define the corresponding semigroup in H1 through the solution of (1.2).

Hereafter, we will use the notation: {Sν(t)}t≥0 (ν ∈ [0, 1]) denotes the semi-
group generated by the solution of (1.2) in H1.

4. A priori estimates

4.1. H1-estimates. Let A = (−∆ + εI)−1. Then (1.2) is equivalent to

(4.1) (1− ν)Aut + νut = (∆− εI)u+ f(x, u).

To get the required a priori estimate inH1, multiplying (4.1) by u one obtains

1− ν

2
d

dt

∫
|∇Au|2 dx+

ε(1− ν)
2

d

dt

∫
|Au|2 dx+

ν

2
d

dt

∫
|u|2 dx

+ ε

∫
|u|2 dx+

∫
|∇u|2 dx− k

∫
F (x, u) dx

≤ l
∫
|u|2 dx+

∫
α2(x)|u| dx+

∫
γ2(x) dx

≤ (l + δ)
∫
|u|2 dx+ Cδ

∫
α2

2(x) dx+
∫
γ2(x) dx,

where we have used (3.8) and δ > 0 is small enough.
Also, multiplying (4.1) by ut and integrating, one gets:

(4.2)
ε

2
d

dt

∫
|u|2 dx+

1
2
d

dt

∫
|∇u|2 dx− d

dt

∫
F (x, u) dx

+ (1− ν)
∫
|∇Aut|2 dx+ (1− ν)ε

∫
|Aut|2 dx+ ν

∫
|ut|2 dx = 0.

Adding these two estimates, one obtains (similar to that in the proof of Lem-
ma 5.1 below) the H1 a priori estimate of the solution u of the form:

(4.3) ‖u(t, · )‖2H1 ≤ E′u(0)e−M ′t + const,

where

E′u(0) = (1− ν)
∫
|∇Au0|2 dx+ ε(1− ν)

∫
|Au0|2 dx

+ (ν + ε)
∫
|u0|2 dx+

∫
|∇u0|2 dx− 2

∫
F (x, u0) dx,

where M ′ depends on µ, ε, l, the const depends on µ, ε, l, ‖αi‖, ‖γi‖L1 , but both
M ′, const are chosen uniformly in ν ∈ [0, 1].
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Remark 4.1. Note that using only the estimate (4.2) we obtain the usual
Lyapunov function for the modified viscous Cahn–Hilliard equation. Conse-
quently, global solvability in H1 phase space follows, since due to (3.7) we have

ε

2

∫
|u|2 dx+

1
2

∫
|∇u|2 dx−

∫
F (x, u) dx

≥
(
ε

2
− µ− δ

) ∫
|u|2 dx+

1
2

∫
|∇u|2 dx− Cδ

∫
α2

1(x) dx− ‖γ1‖L1 ,

which provides a (not necessary uniform in time) H1-estimate of the solution u.

We summarize the global H1 estimate (4.3) in the following:

Theorem 4.2. Let f satisfy (3.2)–(3.3), (3.7)–(3.8), then there exists a pos-
itive constant r1 > 0 such that: for any bounded set B ⊂ H1 there is a T1B =
T1(B) (which only depends on ‖B‖H1) that

‖Sν(t)B‖H1 ≤ r1 for all t ≥ T1B and any ν ∈ [0, 1].

Remark 4.3. From (4.2), (3.7), (3.3) and Theorem 4.2, we have that for
any H1-bounded subset B, there is a T1B (which only depends on ‖B‖H1) such
that the following estimate holds: for any t ≥ T1B ,

(4.4)
∫ t+1

t

(
(1− ν)

∫
|∇Aut(s)|2 dx

+ (1− ν)ε
∫
|Aut(s)|2 dx+ ν

∫
|ut(s)|2 dx

)
ds

≤ Q(r1, µ, l, k, ‖αi‖, ‖γi‖L1 , ‖β‖L∞),

where Q( · ) is a continuous increasing function in each component.

4.2. H2-estimates. Multiplying the equation (1.2) by (∆−εI)u it is possi-
ble to obtain a H2 estimate of the solution u to (1.2) with our previous assump-
tions on the nonlinear term f only. But such an estimate will not be uniform,
as ν → 0+.

To obtain the uniform in ν ∈ [0, 1] estimate of the solution u in H2 we need
to strengthen the assumptions concerning the nonlinear term f to the following
one; f(x, · ) ∈ C1(R) and

(4.5) there exists C > 0 such that for all x ∈ RN , s ∈ R

|f ′s(x, s)| ≤ C(1 + α3(x) + |s|2/(N−2)),

where 0 ≤ α3( · ) ∈ L(N/2)+ .
Here and below, the symbol a− (respectively, a+) denotes a real number

strictly less (respectively, strictly greater) than a (but eventually arbitrarily close
to a). As before, B denotes a bounded subset of H1.
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Set v(t) = ut(t) and differentiate (4.1) with respect to time t, to obtain

(4.6) (1− ν)Avt + νvt = (∆− εI)v + f ′u(x, u)v.

Multiplying (4.6) by v and integrating over RN , we find that

(4.7)
d

dt

∫
((1− ν)(|∇Av|2 + ε|Av|2) + ν|v|2) dx+ 2ε

∫
|v|2 dx+ 2

∫
|∇v|2 dx

≤
∫
|f ′u(x, u)|v2 dx ≤ C

∫
(1 + α3(x) + |u|2/(N−2))v2 dx,

where (4.5) was used.
Note that, for each r ∈ [2, 2N/(N − 2)), we have an interpolation inequality

(see [1, Chapter V])

(4.8) there exists C > 0 for all φ ∈ H1

‖φ‖Lr ≤ c‖φ‖Hs ≤ C‖φ‖θ
H−1‖φ‖1−θ

H1 ,

where s = N/2−N/r and θ = (s+ 1)/2 ∈ (0, 1) depends on r.

So, for any 0 < δ << 1,

(4.9)
∫
v2 dx = ‖v‖2 ≤ C‖v‖H−1‖v‖H1 ≤ Cδ‖v‖2H−1 + δ‖v‖2H1 ,

and since α3 ∈ L(N/2)+ , by the Hölder inequality and (4.8) we have∫
α3(x)v2 dx ≤ ‖α3‖L(N/2)+‖v‖2L(2N/(N−2))−(4.10)

≤ Cδ‖α3‖1/θ

L(N/2)+‖v‖
2
H−1 + δ‖v‖2H1 ,

and ∫
|u|2/(N−2)v2 dx ≤ C‖u‖2/(N−2)

H1 ‖v‖2L2N/(N−1)(4.11)

≤ Cδ‖u‖(2/(N−2))·4/3
H1 ‖v‖2H−1 + δ‖v‖2H1 .

Taking δ small enough (depending on ε) and inserting (4.9)–(4.11) into (4.7),
we obtain
d

dt

∫
((1− ν)(|∇Av|2 + ε|Av|2)+ ν|v|2) dx ≤ Q(ε, ‖u(t)‖H1 , ‖α3‖L(N/2)+ )‖v‖2H−1 .

Then, from (2.1) and (4.4), applying the Uniform Gronwall Lemma, for t ≥ T1B

and u0 ∈ B, we have

(4.12) (1− ν)(‖∇Av(t)‖2 + ε‖Av(t)‖2) + ν‖v(t)‖2

≤ C(r1, ε, µ, l, ‖α3‖L(N/2)+ , ‖αi‖, ‖γi‖L1).

Now, returning to (4.1),

(∆− εI)u = (1− ν)Aut + νut − f(x, u),
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for the right hand side terms, we note that when t ≥ T1B , (4.12) implies that

‖(1− ν)Aut(t) + νut(t)‖ ≤ C(r1, ε, µ, l, ‖α3‖L(N/2)+ , ‖αi‖, ‖γi‖L1),

and (3.3) and Theorem 4.2 imply

‖f( · , u(t))‖ ≤ C(r1, ‖β‖L∞).

Hence
‖u(t)‖H2 ≤ C(r1, ε, µ, l, ‖α3‖L(N/2)+ , ‖αi‖, ‖γi‖L1 , ‖β‖L∞)

for all t ≥ T1B , u0 ∈ B. That is, we obtain a uniform with respect to ν ∈ [0, 1]
estimate of the solution u in H2:

Theorem 4.4. Let f satisfy (3.2)–(3.3), (3.7)–(3.8) and (4.5). Then there
exists a positive constant r2 > 0 such that for any bounded set B ⊂ H1, there is
a time T2B = T2(B) (depending only on ‖B‖H1) such that

‖Sν(t)B‖H2 ≤ r2 for all t ≥ T2B and any ν ∈ [0, 1].

5. H1-attractors

In this section, based on the a priori estimates obtained in Section 4, we will
show that for each ν ∈ [0, 1], the semigroup {Sν(t)}t≥0 has a global H1-attractor
(see [9]).

As shown in [18], [16], in order to obtain the necessary (H1,H1)-asymptotic
compactness, where thanks to Theorem 4.4, we only need to prove the following
tail estimate:

Lemma 5.1. Under the assumption of Theorem 4.4, for any η > 0 and any
bounded set B ⊂ H1, there exist h = h(η, ‖B‖H1) and T = t(η, ‖B‖H1) such
that∫

Oh

(|Sν(t)u0|2 + |∇Sν(t)u0|2) dx ≤ η for all t ≥ T, u0 ∈ B and ν ∈ [0, 1],

where Oh = {x ∈ RN : |x| ≥ h}.

Proof. Choose a smooth function θ such that 0 ≤ θ(s) ≤ 1 for any s ∈ R+,
and

θ(s) = 0 for 0 ≤ s ≤ 1, and θ(s) = 1 for s ≥ 2.

Then there exists a constant C such that |θ′(s)|+ |θ′′(s)| ≤ C for any s ∈ R+.
Multiplying (4.1) by λ(θ2(|x|2/h2) · u) and (θ2(|x|2/h2) · ut), respectively,

integrating in RN , adding and using (3.9)–(3.10) we obtain

(5.1)
d

dt
Eu(t) + 2Gu(t) ≤ 2Lu(t),
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where λ ∈ (0, 1) is a small constant which will be fixed later,

(5.2) Eu(t) = (νλ+ ε)
∫
θ2

(
|x|2

h2

)
|u|2 dx

+
∫
θ2

(
|x|2

h2

)
|∇u|2 dx− 2

∫
θ2(

|x|2

h2
)F (x, u) dx,

(5.3) Gu(t) =λ(ε− l − δ)
∫
θ2

(
|x|2

h2

)
|u|2 dx+ λ

∫
θ2

(
|x|2

h2

)
|∇u|2 dx

− λk

∫
θ2

(
|x|2

h2

)
F (x, u) dx+ (1− ν)

∫
θ2

(
|x|2

h2

)
|∇Aut|2 dx

+ (1− ν)ε
∫
θ2

(
|x|2

h2

)
|Aut|2 dx+ ν

∫
θ2

(
|x|2

h2

)
|ut|2 dx,

(δ ∈ (0, ε − l − kµ)) and, with a small positive constant λ1 to be determined
later,

Lu(t) = (1− ν)λ1

∫
θ2

(
|x|2

h2

)
|Aut|2 dx(5.4)

+ (1− ν)Cλ1λ
2

∫
θ2

(
|x|2

h2

)
|u|2 dx

+ (1− ν)
∫
Aut

(
∇Aut · ∇θ2

(
|x|2

h2

))
dx

− λ

∫
u∇u · ∇θ2

(
|x|2

h2

)
dx+ λ‖γ2‖L1(Oh)

−
∫
ut∇u · ∇θ2

(
|x|2

h2

)
dx+ λCδ

∫
θ2

(
|x|2

h2

)
α2

2(x) dx.

At first, denote Cε = 1 + ε, from (5.2) we have

Eu(t) ≤ Cε

∫
θ2

(
|x|2

h2

)
(|u|2 + |∇u|2) dx− 2

∫
θ2

(
|x|2

h2

)
F (x, u) dx,

and from (3.9)–(3.10) we have

ε− l − kµ > 0 and µs2 + α1(x)|s|+ γ1(x)− F (x, s) ≥ 0 for all s ∈ R.

Therefore,

(5.5) Gu(t) ≥λ(ε− l − δ)
∫
θ2

(
|x|2

h2

)
|u|2 dx+ λ

∫
θ2

(
|x|2

h2

)
|∇u|2 dx

− λk

∫
θ2

(
|x|2

h2

)
F (x, u) dx+ (1− ν)ε

∫
θ2

(
|x|2

h2

)
|Aut|2 dx

=λ(ε− l − kµ− δ)
∫
θ2

(
|x|2

h2

)
|u|2 dx+ λ

∫
θ2

(
|x|2

h2

)
|∇u|2 dx

+ λk

∫
θ2

(
|x|2

h2

)
(µu2 + α1(x)|u|+ γ1(x)− F (x, u)) dx
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− λk

∫
θ2

(
|x|2

h2

)
(α1(x)|u|+ γ1(x)) dx

+ (1− ν)ε
∫
θ2

(
|x|2

h2

)
|Aut|2 dx

≥λCε,l,k,δ

(
Cε

∫
θ2

(
|x|2

h2

)
(|u|2 + |∇u|2) dx

+ 2
∫
θ2

(
|x|2

h2

)
(µu2 + α1(x)|u|+ γ1(x)− F (x, u)) dx

)
− λk

∫
θ2

(
|x|2

h2

)
(α1(x)|u|+ γ1(x)) dx

+
1
2
λ(ε− l − δ)

∫
θ2

(
|x|2

h2

)
|u|2 dx

+ (1− ν)ε
∫
θ2

(
|x|2

h2

)
|Aut|2 dx

≥λCε,l,k,δEu(t)− λk(‖u‖‖α1‖L2(Oh) + ‖γ1‖L1(Oh))

+
1
2
λ(ε− l − δ)

∫
θ2

(
|x|2

h2

)
|u|2 dx

+ (1− ν)ε
∫
θ2

(
|x|2

h2

)
|Aut|2 dx.

In the following we will estimate the required terms in (5.4) one by one (recall
that the symbol ‖ · ‖ denotes the L2 norm) :

−
∫
u∇u · ∇θ2

(
|x|2

h2

)
dx ≤ C ′

h
‖u‖‖∇u‖;(5.6)

−
∫
Aut

(
∇Aut · ∇θ2

(
|x|2

h2

))
dx ≤ C ′

h
‖Aut‖‖∇Aut‖;(5.7)

and

(5.8)
∣∣∣∣ ∫

ut∇u · ∇θ2
(
|x|2

h2

)
dx

∣∣∣∣ =
∣∣∣∣ ∫

utθ
′
(
|x|2

h2

)
θ

(
|x|2

h2

)
4x
h2

· ∇u dx
∣∣∣∣

≤ 4
h
‖ut‖H−1

∥∥∥∥θ′( |x|2h2

)
θ

(
|x|2

h2

)
x

h
· ∇u

∥∥∥∥
H1

,

with∥∥∥∥θ′( |x|2h2

)
θ

(
|x|2

h2

)
x

h
· ∇u

∥∥∥∥2

H1

=
∫ ∣∣∣∣θ′( |x|2h2

)
θ

(
|x|2

h2

)
x

h
· ∇u

∣∣∣∣2 dx
+

∫ ∣∣∣∣∇(
θ′

(
|x|2

h2

)
θ

(
|x|2

h2

)
x

h
· ∇u)

∣∣∣∣2 dx,
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where∫ ∣∣∣∣θ′( |x|2h2

)
θ

(
|x|2

h2

)
x

h
· ∇u

∣∣∣∣2 dx =
∫

h≤|x|≤
√

2h

∣∣∣∣θ′( |x|2h2

)
θ

(
|x|2

h2

)
x

h
· ∇u

∣∣∣∣2 dx
≤ Cθ

∫
h≤|x|≤

√
2h

|∇u|2 dx,

and, similarly,∫ ∣∣∣∣∇(
θ′

(
|x|2

h2

)
θ

(
|x|2

h2

)
x

h
· ∇u

)∣∣∣∣2 dx ≤ Cθ

∫
h≤|x|≤

√
2h

(|∇u|2 + |∆u|2) dx,

where the constant Cθ depends only on the cutoff function θ. Hence,

(5.9)
∣∣∣∣ ∫

ut∇u · ∇θ2
(
|x|2

h2

)
dx

∣∣∣∣ ≤ Cθ

h
‖ut‖H−1(‖∇u‖+ ‖∆u‖).

Summarizing (5.6)–(5.9) and inserting into (5.4), we deduce that

Lu(t) ≤ Cθ

h
(‖u‖‖∇u‖+ ‖|Aut‖‖∇Aut‖+ ‖ut‖H−1(‖∇u‖+ ‖∆u‖))

+ Cδ‖α2‖2L2(Oh) + ‖γ2‖L1(Oh) + (1− ν)λ1

∫
θ2

(
|x|2

h2

)
|Aut|2 dx

+ (1− ν)Cλ1λ
2

∫
θ2

(
|x|2

h2

)
|u|2 dx,

which, combined with Lemma 2.1, Theorems 4.2 and 4.4, implies that when
t ≥ T1B + T2B ,

(5.10) Lu(t) ≤ Cθ

h
(‖Aut(t)‖2 + ‖∇Aut(t)‖2 + r21 + r22)

+ Cδ‖α2‖2L2(Oh) + ‖γ2‖L1(Oh) + (1− ν)λ1

∫
θ2

(
|x|2

h2

)
|Aut|2 dx

+ (1− ν)Cλ1λ
2

∫
θ2

(
|x|2

h2

)
|u|2 dx.

Now, noting the final estimate of (5.5), we first fix λ1 small enough such that
λ1 < ε, then fix λ small enough such that (1 − ν)Cλ1λ < (ε − l − δ)/2. From
(5.1), (5.2), (5.5) and (5.10), we have that: as t ≥ T1B + T2B ,

(5.11)
d

dt
Eu(t) + 2λCε,l,k,δEu(t) ≤ Cθ

h
(‖Aut(t)‖2 + ‖∇Aut(t)‖2 + r21 + r22)

+ Cδ‖α2‖2L2(Oh) + ‖γ2‖L1(Oh) + λk(r1‖α1‖L2(Oh) + ‖γ1‖L1(Oh)).

On the other hand, (4.7) implies

(5.12)
1
2

∫ t+1

t

(‖Aut(s)‖2+‖∇Aut(s)‖2) ds ≤ Q(r1, µ, l, k, ‖αi‖, ‖γi‖L1 , ‖β‖L∞)

for all t ≥ T1B + T2B and any ν ∈ [0, 1].
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Hence, combining with (5.11) and (5.12), applying the Uniform Gronwall
Lemma to (5.11), we have that for any t ≥ t1 = T1B + T2B ,

(5.13) Eu(t) ≤ e−C(t−t1)Eu(t1)

+
eC

1− e−C

[
Cθ

h
Q(ri, µ, l, k, ‖αi‖, ‖γi‖L1 , ‖β‖L∞) + Cδ‖α2‖2L2(Oh)

+ λk‖α1‖L2(Oh)r1 + λk‖γ1‖L1(Oh) + ‖γ2‖L1(Oh)

]
,

for all u0 ∈ B. Then, combining with (5.2) and applying (3.7) again we find
(note also that ‖αi‖L2(Oh), ‖γi‖L1(Oh) → 0 as h→∞)∫

Oh

(|Sν(t)u0|2 + |∇Sν(t)u0|2) dx ≤ η

as t, h are taken large enough. �

Lemma 5.2 ((H1,H1)-asymptotic compactness). Under the assumptions of
Theorem 4.4, for each ν ∈ [0, 1], the semigroup {Sν(t)}t≥0 is (H1,H1)-asympto-
tically compact.

Proof. This is a direct consequence of Lemma 5.1, Theorem 4.4 and the
compact embedding H2(RN \ Oh) ↪→ H1(RN \ Oh). �

To apply the standard abstract results guarantying existence of the H1 at-
tractor, we also need (H1,H1)-continuity of {Sν(t)}t≥0.

Lemma 5.3 ((H1,H1)-continuity). Under the assumptions (3.7), (3.8) and
(4.5), for each ν ∈ [0, 1], the semigroup {Sν(t)}t≥0:H1 → H1 is continuous.

The above lemma is a direct consequence of our local existence theorems
presented in Section 3.

We are now ready to state the main result of this section, which is a direct
consequence of Lemmas 5.2 and 5.3 (see [2], [9]):

Theorem 5.4 (H1-attractor). Let the conditions (3.2)–(3.3), (3.7)–(3.8) and
(4.5) be satisfies. Then, for each ν ∈ [0, 1], the semigroup {Sν(t)}t≥0:H1 → H1

has a H1 global attractor Aν , that is, Aν is compact in H1, invariant under
{Sν(t)}t≥0 and attracts every H1-bounded set with respect to the H1 norm.

6. Upper semicontinuity at ν = 0

The main purpose of this section is the following upper semicontinuity result:

Theorem 6.1. Under the assumptions of Theorem 5.4, the global attractors
{Aν}ν∈[0,1] obtained in Theorem 5.4 are upper semicontinuous at ν = 0:

distH1(Aν ,A0) → 0 as ν → 0+,
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where distH1( · , · ) denotes the usual Hausdorff semidistance in H1.

Let ν ∈ (0, 1/2) and u(t) = Sν(t)u0 with u0 ∈ Aν ⊂ H1. Also let v(t) =
S0(t)v0 with v0 ∈ H1, then u(t) and v(t) satisfy the following equations, respec-
tively, {

(1− ν)Aut + νut = (∆− εI)u+ f(x, u),

u(0) = u0,

when ν ∈ (0, 1], and the limit equation (1.2) (parameter ν = 0),{
Avt = (∆− εI)v + f(x, v),

v(0) = v0,

where A = (−∆ + εI)−1.
Denote w(t) = u(t)− v(t). Then w solves the following problem:

(6.1)

{
(1− ν)Awt + νwt = (∆− εI)w + f(x, u)− f(x, v)− ν(vt −Avt),

w(0) = u0 − v0 ∈ H1.

Multiplying (6.1) by w and integrating over RN , we obtain

1− ν

2
d

dt

∫
|∇Aw|2 dx+

ε(1− ν)
2

d

dt

∫
|Aw|2 dx

+
ν

2
d

dt

∫
|w|2 dx+ ε

∫
|w|2 dx+

∫
|∇w|2 dx

≤
∫

(f(x, u)− f(x, v))w dx− ν

∫
(vt −Avt)w dx.

From the assumption (3.3) we have (here we take N ≥ 3)∣∣∣∣ ∫
(f(x, u)− f(x, v))w dx

∣∣∣∣ ≤ C

∫
(1 + |u|2/(N−2) + |v|2/(N−2))|w|2 dx

≤ C‖w‖2 + C(1 + ‖u‖4/(N−2)
H1 + ‖v‖4/(N−2)

H1 )‖w‖2H1 ,

and

ν

∣∣∣∣ ∫
(vt −Avt)w dx

∣∣∣∣ ≤ ν(‖vt‖H−1‖w‖H1 + ‖Avt‖‖w‖)

≤ νC(‖vt‖H−1 + ‖Avt‖)‖w‖H1

≤ νC(‖∇Avt‖+ ‖Avt‖)‖w‖H1 ,

where we have used (2.1). Therefore, from (4.3) we have

1− ν

2
d

dt

∫
|∇Aw|2 dx+

ε(1− ν)
2

d

dt

∫
|Aw|2 dx+

ν

2
d

dt

∫
|w|2 dx

≤ Q(‖u0‖H1 , ‖v0‖H1)‖w‖2H1 + ν2C(‖∇Avt‖2 + ‖Avt‖2),
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which implies that, for ν ∈ [0, 1/2],

(6.2)
1
4

∫
|∇Aw(t)|2 dx+

ε

4

∫
|Aw(t)|2 dx

≤ eQ(‖u0‖H1 ,‖v0‖H1 )t

( ∫
|∇Aw(0)|2 dx+ ε

∫
|Aw(0)|2 dx+

∫
|w(0)|2 dx

)
+ ν2CeQ(‖u0‖H1 ,‖v0‖H1 )t

∫ t

0

(‖∇Avt(s)‖2 + ‖Avt(s)‖2) ds.

Hence, combining with (4.4) and the uniform (w.r.t. ν ∈ [0, 1]) boundedness of
Aν in H1 (e.g. see Theorem 4.2), we deduce the following result:

Lemma 6.2. For any νm ∈ (0, 1/2] and u0m ∈ Aνm , if νm → 0 and u0m → v0
in H1 then

Sνm
(t0)u0m → S0(t0)v0 in H1

for any fixed t0 > 0.

Proof. For arbitrary sequence u0m ∈ Aνm , u0m → v0 in H1 as νm → 0, let
wm(t) = Sνm

(t)u0m − S0(t)v0. Then (6.2) implies that

1
4

∫
|∇Awm(t)|2 dx+

ε

4

∫
|Awm(t)|2 dx

≤ eQ(‖u0m‖H1 ,‖v0‖H1 )t

( ∫
|∇A(u0m − v0)|2 dx

+ ε

∫
|Aw(u0m − v0)|2 dx+

∫
|w(u0m − v0)|2 dx

)
+ ν2

mCe
Q(‖u0m‖H1 ,‖v0‖H1 )t

∫ t

0

(‖∇A(S0(s)v0)(s)‖2 + ‖A(S0(s)v0)(s)‖2) ds.

So, using (4.2) and Theorem 4.2, since νm → 0 and u0m → v0 inH1, for arbitrary
fixed t0 > 0 (e.g. t0 = 1), we have∫

|∇Awm(t0)|2 dx+ ε

∫
|Awm(t0)|2 dx→ 0 as νm → 0,

which, combined with (2.1), implies

‖wm(t0)‖H−1 → 0 as νm → 0.

Thanks to the uniform (w.r.t. ν) H2 estimate of Theorem 4.4, we complete the
proof using interpolation inequality. �

To apply the abstract result of Lemma 2.2, we need the following property:

Lemma 6.3.
⋃

ν∈[0,1/2]Aν is precompact in H1.

Proof. At first, from Theorem 4.4 we know that

(6.3)
⋃

ν∈[0,1/2]

Aν is bounded in H2,



Modified Viscous Cahn–Hilliard Equation in RN 293

and {u ∈ H2 : ‖u‖H2 ≤ r2} is a uniformly w.r.t. ν ∈ [0, 1/2] absorbing set for
{Sν(t)}ν∈[0,1/2].

Next, take B = {u ∈ H2 : ‖u‖H2 ≤ r2} and apply Lemma 5.1, then from
the construction of global attractor (as the ω-limit set of an absorbing set B),
we know that for any η > 0, there exists h = h(η) such that

(6.4)
∫
Oh

(|u|2 + |∇u|2) dx ≤ η for all u ∈
⋃

ν∈[0,1/2]

Aν ,

where Oh = {x ∈ RN : |x| ≥ h}.
Hence, precompactness of

⋃
ν∈[0,1/2]Aν in H1 follows from (6.3)–(6.4) im-

mediately. �

Proof of Theorem 6.1. Based on the Lemmas 6.2 and 6.3, this is a direct
application of Lemma 2.2. �
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