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AVERAGING METHOD
FOR NEUTRAL DIFFERENTIAL EQUATIONS

IN FINITE DIMENSION

Jean-François Couchouron — Mikhail Kamenskĭı

Abstract. We prove in this paper a periodic existence theorem for neutral

differential equations in finite dimension with high frequency terms. This

study completes previous works about applications of averaging methods
to periodic problems.

1. Introduction

The aim of this paper is to work out existence of periodic solutions for a class
of differential equations with delay in RN .

More precisely we consider equations of neutral type

(1.1) y′(τ) = Φ
(
τ

ε
, y(τ − h(ε)), y′(τ − h(ε)), ε

)
, τ ∈ R,

where Φ is a continuous map on R × RN × RN × [0, 1], T -periodic in its first
variable, Lipschitz in its third variable and h is an arbitrary map from [0, 1]
to [0,∞[.

Really such equations with high periodic frequency term τ/ε concerns in
physical applications the field of high frequency phenomenoms.
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By setting t = τ/ε and x(t) = y(εt) in the previous equation we are led to
study the following equation

(1.2) x′(t) = εΦ
(
t, x

(
t− h(ε)

ε

)
,
1
ε
x′

(
t− h(ε)

ε

)
, ε

)
, t ∈ R.

From the classical works of N. N. Bogoljubov, M. N. Krylov (see for instance
[10] and [3]) the existence problem of periodic solutions for ordinary differential
equations with high frequency terms reduced to a form of averaging principle.
It consists in replacing the right hand side of the considered equation by its
average and then looking for equilibriums which are the first approximations of
high frequency periodic solutions of the initial equation. In order to ground this
method N. N. Bogoljubov and M. N. Krylov supposed that the averaging term at
the equilibrium has a non degenerated derivative. In the sixties of the twentieth
century J. Mawhin (see [11]) remarked that this condition may be replaced by
assuming that the Poincaré topological index of this equilibrium is different from
zero. In the seventies such a method has been applied to averaging principles for
equations with delay (see V. V. Strygin [13], Perestuk A. M. Samŏılenko [12])
and for neutral equations with deviating argument (see [1] and [2]). Other appli-
cations of the topological degree theory to the averaging method to the periodic
problems for differential inclusions can be found in [4], [5].

About neutral equations which is the case studied in this article, let us recall
the framework and the kind of results considered in [1] and [2]. These papers
are concerned in the simpler case by equations of the form

(1.3) x′(t) = εΦ(t, x(t− h), x′(t− h)),

with ε > 0 and where Φ is a continuous map on R×RN×RN which is T -periodic
in its first variable and Lipschitz in its third variable. It was assumed that

Φ0(y) =
1
T

∫ T

0

Φ(t, y, 0) dt

has an equilibrium y∗, namely Φ0(y∗) = 0 and that the condition deg(−Φ0, U) 6=
0 holds, U being a neighbourhood of y∗ which does not contain other equilibrium
than y∗ and deg being the topological degree of −Φ0 on U (see for instance [9]).
In these conditions it was proved that (1.3) has at least a T -periodic solution
x(t, ε) satisfying x(t, ε) ∈ U and x(t, ε)−→

ε→0
y∗ uniformly in t ∈ R.

Now if we consider the following neutral equation

(1.4) y′(τ) = εΦ
(
τ

ε
, y(τ − h), y′(τ − h)

)
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containing high frequency terms like (1.1) the variable change t = τ/ε in (1.4)
does not reduce to (1.3). Indeed we find the expression

1
ε
x′

(
t− h

ε

)
in the third variable of Φ like in (1.2) with a deviating argument. And we will
give an example showing that in this situation the recalled results of [1] and [2]
are no longer valid. We will need then an auxiliary condition.

This paper is organized as follows. In Section 2 we give in a suitable form
some basic recalls about measures of noncompactness, condensing mappings
(see [2]) and Degree Theory (see [6] or [8]). Assumptions and notations are
detailed in Section 3. The fundamental existence theorem is stated and proved
in Section 4. An example which show the necessity of the auxiliary condition
mentioned above is given in Section 11.

2. Backgrounds

The main tool in our study is the topological degree theory applied to con-
densing operators. We will be satisfied here to recall basic facts in this theory
put in an adapted form for the sequel. For more details we refer the reader to [2].
Let X be a Banach space.

The Hausdorff measure of noncompactness χ is defined by

χ(Ω) = inf{d > 0 : Ω has a finite d-net in X}

for each bounded subset Ω ⊂ X.

Definition 2.1. Let U be an open bounded subset of X. The continuous
operator F :U → X is said to be condensing if the inequality

χ(F (Ω)) ≥ χ(Ω)

for Ω ⊆ U , holds only if Ω is totally bounded in X.

Definition 2.2. Let Λ be a metric space. The continuous operator H:
Λ × U → X is said to be condensing with respect to the couple of variables if
the inequality

χ(H(Λ× Ω)) ≥ χ(Ω)

for Ω bounded in X, holds only if Ω is totally bounded in X.

As proved in [2]

(2.1) H(λ, x) = λF0(x) + (1− λ)F1(x)

is condensing with respect to the couple of variables when F0 and F1 are condens-
ing. Let U be a bounded open subset of X and F be a continuous condensing
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operator. Assume that we have x 6= F (x) for x ∈ ∂U . Then it is possible to
define an integer deg(I − F,U) which enjoys the following properties.

(I1) If deg(I − F,U) 6= 0 then F has a fixed point in U , i.e. there is x ∈ U
satisfying

x = F (x).

(I2) If U =
n⋃

i=1

Ui with Ui pairwise disjoint bounded open subsets in X and

x /∈ F (x) for x ∈ ∂Ui, i = 1, . . . , n, then

deg(I − F,U) =
n∑

i=1

deg(I − F,Ui).

(I3) If F ≡ I − x0 then it comes

deg(I − F,U) =

{
1 if x0 ∈ U,
0 if x0 /∈ U.

(I4) If H: [0, 1]×U → X is condensing continuous with respect to the couple
of variables and such that x /∈ H(λ, x) for x ∈ ∂U and λ ∈ [0, 1], then
deg(I −H(λ, · ), U) does not depend upon λ.

In (I4) the maps F0( · ) = H(0, · ) and F1( · ) = H(1, · ) are said to be homo-
top. In the sequel we sometimes need the following definition: the condensing
operators F0 and F1 are linearly homotop if formula (2.1) gives an homotopy.
Let us end these recalls by a useful restriction degree theorem.

Theorem 2.3. Let E be a Banach space and U ⊂ E a bounded open subset.
Let R ⊂ E be a linear subspace of E. Suppose the map F :U → R satisfies
F (x) 6= x for all x ∈ ∂U . Then we have

degE(I − F,U) = degR((I − F ) |R,U ∩R).

3. Assumptions and notations

Let T > 0. In the sequel CT (respectively, C1
T ) stands for the space of

continuous (respectively, continuously differentiable) T -periodic functions from
R to RN . We will denote by ‖ · ‖ the supremum norm in CT , and by | · | the
euclidian norm in RN . The space C1

T is endowed with its usual norm, namely

(3.1) ‖x‖C1
T

= |x(0)|+ ‖x′‖.

Now we make the following assumptions:

(A1) Let h: [0, 1] → R+ be an arbitrary map;
(A2) The map Φ: R× RN × RN × [0, 1] → RN is continuous;
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(A3) The map Φ is T -periodic in its first variable, that is

Φ(t+ T, u, v, ε) = Φ(t, u, v, ε)

for all (t, u, v, ε) ∈ R× RN × RN × [0, 1];
(A4) There is k ∈ [0, 1[ such that

|Φ(t, u, v1, ε)− Φ(t, u, v2, ε)| ≤ k|v1 − v2|

for all (t, u, vi, ε) ∈ R× RN × RN × [0, 1], i ∈ {1, 2}.

Notation. Let

Φ0(x0) =
1
T

∫ T

0

Φ(s, x0, 0, 0) ds, for all x0 ∈ RN .

(A5) There is some y∗ ∈ RN and some bounded open subset U ⊂ RN satis-
fying Φ0(y∗) = 0, y∗ ∈ U and degRn(−Φ0, U) 6= 0.

Notation. We will set

M = sup{|Φ(t, y, 0, 0)| : t ∈ R, y ∈ ∂U},

M =
{
y ∈ CT : ‖y‖ ≤ 1

1− k
M max

(
1,

2
T

)
and

∫ T

0

y(t) dt = 0
}
.

Let us introduce the multivalued map Z: ∂U → RN defined by

Z(x) =
{
z ∈ RN : z =

∫ T

0

Φ(t, x, y(t), 0) dt, y ∈M
}
.

Remark 3.1. The map Z is single valued if we have for instance

Φ(t, u, v, ε) = ϕ(t, u, ε) +Bv,

with ϕ continuous and B linear, or if we have for instance

Φ(t, u, v, ε) = Ψ(t, u, εv, ε),

with Ψ continuous.

4. The existence theorem: statement and proof

We are in position to state our main result.

Theorem 4.1. Let (A1)–(A5) be fulfilled. In addition, suppose that we have

(4.1) 0 /∈ coZ(x),

for all x ∈ ∂U . Then there is ε0 ∈ ]0, 1[ such that for all ε ∈ ]0, ε0[ equation
(1.2) has at least a periodic solution t 7→ x(t, ε) satisfying

x(t, ε) ∈ U and lim
ε→0

‖x′( · , ε)‖ = 0.
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Notation. In the proof we will need the following bounded open subset
of C1

T : U = {x ∈ C1
T : x(t) ∈ U, t ∈ [0, T ], ‖x′‖ < 1}. Introduce also the

operators F 1
ε and F 0

ε on C1
T defined by

F 1
ε (x)(t) =x(0) + ε

∫ t

0

Φ
(
s, x

(
s− h(ε)

ε

)
,
1
ε
x′

(
s− h(ε)

ε

)
, ε

)
ds

− ε

(
t

T
− 1

2

) ∫ T

0

Φ
(
s, x

(
s− h(ε)

ε

)
,
1
ε
x′

(
s− h(ε)

ε

)
, ε

)
ds,

and F 0
ε (x)(t) = x(0) + εΦ0(x(0)).

Let us give now in three lemmas some useful immediate properties (see [2]
for the proofs) of the above operators F 0

ε and F 1
ε .

Lemma 4.2. The operator F 0
ε is compact in C1

T .

Lemma 4.3. The fixed points of F 1
ε are the periodic solutions of (1.2).

Lemma 4.4. The operator F 1
ε is condensing with respect to the Hausdorff

measure of noncompactness χ of C1
T .

The proof of Theorem 4.1 will be deduced from the following proposition:

Proposition 4.5. There is ε0 ∈ ]0, 1[ such that F 1
ε and F 0

ε are linearly
homotop on U for all ε ∈ ]0, ε0[.

Proof. By Lemmas 4.2 and 4.4 the maps F 1
ε and F 0

ε are condensing with
respect to the Hausdorff measure of noncompactness of C1

T endowed with the
norm (3.1).

So according to the continuity of Φ (assumption (A2)) we have just to prove
that, for all λ ∈ [0, 1] and all ε > 0 sufficiently small, the map λF 1

ε + (1− λ)F 0
ε

has no fixed point on ∂U . In this goal, by contradiction suppose the contrary. In
other words suppose that there exist sequences (εm)m, (λm)m, (xm)m satisfying

εm → 0, εm > 0, λm ∈ [0, 1], λm → λ0,

xm ∈ ∂U and (λmF
1
ε + (1− λm)F 0

ε )(xm) = xm.

Then, we have

(4.2) xm(t) =xm(0)

+ λmεm

∫ t

0

Φ
(
s, xm

(
s− h(εm)

εm

)
,

1
εm

x′m

(
s− h(εm)

εm

)
, εm

)
ds

− λmεm

(
t

T
− 1

2

)
·
∫ T

0

Φ
(
s, xm

(
s− h(εm)

εm

)
,

1
εm

x′
(
s− h(εm)

εm

)
, εm

)
ds

+ (1− λm)εmΦ0(xm(0)).
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Putting t = T , using xm(0) = xm(T ) and dividing by εm in (4.2) we obtain:

(4.3)
1
2
λm

∫ T

0

Φ
(
s, xm

(
s− h(εm)

εm

)
,

1
εm

x′
(
s− h(εm)

εm

)
, εm

)
ds

= −(1− λm)Φ0(xm(0)).

Since xm is continuously derivable, relation (4.2) gives

(4.4) x′m(t) = λmεmΦ
(
t, xm

(
t− h(εm)

εm

)
,
1
ε
x′m

(
t− h(εm)

εm

)
, εm

)
− λmεm

1
T

∫ T

0

Φ
(
s, xm

(
s− h(εm)

εm

)
,

1
εm

x′
(
s− h(εm)

εm

)
, εm

)
ds.

Accordingly to (4.3) relation (4.4) becomes

(4.5)
x′m(t)
εm

= λmΦ
(
t, xm

(
t− h(εm)

εm

)
,
1
ε
x′m

(
t− h(εm)

εm

)
, εm

)
+

2
T

(1− λm)Φ0(xm(0)).

Now we need the following lemma.

Lemma 4.6. The sequence (x′m/εm)m is relatively compact in CT .

Proof. First let us establish that (x′m/εm)m is bounded in CT . Since xm(t)
belongs to the compact subset U of Rn and since Φ is continuous there is a con-
stant K > 0 satisfying∣∣∣∣Φ(

t, xm

(
t− h(εm)

εm

)
, 0, εm

)∣∣∣∣ ≤ K and |Φ0(xm(0))| ≤ K,

for all t and m. For each m let tm ∈ R be defined by∣∣∣∣ 1
εm

x′m(tm)
∣∣∣∣ = sup

t∈R

∣∣∣∣ 1
εm

x′m(t)
∣∣∣∣.

Then from (4.5) and the triangle inequality we deduce∣∣∣∣ 1
εm

x′m(tm)
∣∣∣∣ ≤λm

∣∣∣∣Φ(
tm, xm

(
tm − h(εm)

εm

)
,

1
εm

x′m

(
tm − h(εm)

εm

)
, εm

)
− Φ

(
tm, xm

(
tm − h(εm)

εm

)
, 0, εm

)∣∣∣∣
+ λm

∣∣∣∣Φ(
tm, xm

(
tm − h(εm)

εm

)
, 0, εm

)∣∣∣∣
+

2
T

(1− λm)|Φ0(xm(0))|

≤λmk

∣∣∣∣ 1
εm

x′m

(
tm − h(εm)

εm

)∣∣∣∣ +
2
T
K.
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Whence

(4.6)
∣∣∣∣ 1
εm

x′m(tm)
∣∣∣∣ ≤ 2K

T (1− k)
.

Of course (4.6) involves

(4.7) ‖x′m‖ ≤
2Kεm

T (1− k)
.

What follows by the Ascoli–Arzelà Theorem that (xm)m is relatively compact
in CT . Without loss of generality we can suppose xm

CT−→ x0. Clearly x0 is
a constant function with constant value in ∂U . So we will set in the sequel
x0(t) = y ∈ ∂U . From the previous conclusions and from (4.7) we see that we

have xm
C1

T−→ x0, and that (xm)m is relatively compact in C1
T .

Now, for some ρ > 0, let {zi : i = 1, . . . , p} be a finite ρ-net in CT of
(x′m/εm)m. We are going to construct in CT a relatively compact kρ-net Ω of
(x′m/εm)m, what implies the relative compactness in CT of (x′m/εm)m because
k < 1. This next construction will end the proof of Lemma 4.6.

In order to construct a suitable kρ-net introduce the following subsetW ⊂ CT

defined by

W = {wi,m : i = 1, . . . , p and m ∈ N∗}, wi,m(t) = zi

(
t− h(εm)

εm

)
.

It is obvious that W is relatively compact in CT . Let

ωi,m(t) :=λmΦ
(
t, xm

(
tm − h(εm)

εm

)
, zi

(
t− h(εm)

εm

)
, εm

)
+

2
T

(1− λm)Φ0(xm(0)),

Ω = {ωi,m : i = 1, . . . , p and m ∈ N∗}.

Then due to assumptions (A2)–(A4), the set Ω is relatively compact in CT and
from (A4) we have∣∣∣∣ 1

εm
x′m(t) − ωi,m(t)

∣∣∣∣
≤λm

∣∣∣∣Φ(
t, xm

(
tm − h(εm)

εm

)
,

1
εm

x′m

(
t− h(εm)

εm

)
, εm

)
− Φ

(
t, xm

(
tm − h(εm)

εm

)
, zi

(
t− h(εm)

εm

)
, εm

)∣∣∣∣
≤ k

∣∣∣∣ 1
εm

x′m

(
t− h(εm)

εm

)
− zi

(
t− h(εm)

εm

)∣∣∣∣.
Since {zi : i = 1, . . . , p} is a ρ-net in CT of (x′m/εm)m it follows

inf
i=1,... ,p

∣∣∣∣ 1
εm

x′m(t)− ωi,m(t)
∣∣∣∣ ≤ kρ.
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Consequently, Ω is a relatively compact kρ-net of (x′m/εm)m in CT . The proof
of Lemma 4.6 is now complete. �

End of Proof of Proposition 4.5. Let w be a cluster point in CT of
(x′m/εm)m and without loss of generality suppose

1
εm

x′m
CT−→ w, and dist

(
h(εm)
εm

, h0 + TN
)

m→∞−→ 0, h0 ∈ [0, T ].

Letting m→∞ in (4.5) we obtain

w(t) = λ0Φ(t, y, w(t− h0), 0) +
2
T

(1− λ0)Φ0(y)

for all t ∈ R. Now let t0 ∈ R be defined by

|w(t0)| = sup
t∈R

|w(t)|.

Then from (4.5) and the triangle inequality we deduce

|w(t0)| ≤λ0|Φ(t0, y, w(t0 − h0), 0)− Φ(t0, y, 0, 0)|

+ λ0|Φ(t0, y, 0, 0)|+ 2
T

(1− λ0)|Φ0(y)|

≤λ0k|w(t0 − h0)|+M max(1, 2/T ).

Thus

|w(t0)| ≤
1

1− k
M max(1, 2/T ).

Moreover, we have ∫ T

0

w(t) dt = 0,

since
∫ T

0
(x′m/εm)(t) dt = 0, for all m. Consequently, it comes w ∈M, and thus

w( · − h0) ∈M. Then, we deduce

(4.8) z0 :=
∫ T

0

Φ(t, y, w(t− h0), 0) dt ∈ Z(y).

Passing to the limit (4.3) yields

(4.9) λ0
1
2
z0 + (1− λ0)Φ0(y) = 0.

But (4.9) contains a contradiction with (4.1) as we are going to show now.
Indeed, let ψ: RN → R be a linear functional strictly positive on the closed
convex subset coZ(y) which does not contain zero. Our definitions and relation
(4.8) yield

Φ0(y) ∈ Z(y) and λ0z0 + (1− λ0)Φ0(y) ∈ coZ(y).
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Then, using (4.9), we obtain the following contradiction

0 =ψ

(
λ0

1
2
z0 + (1− λ0)Φ0(y)

)
=

1
2
ψ(λ0z0 + (1− λ0)Φ0(y)) +

1
2
(1− λ0)ψ(Φ0(y)) > 0.

The proof is now complete. �

End of Proof of Theorem 2.3. Since, by Proposition 4.5, F 1
ε and F 0

ε

are homotop for all ε ∈ ]0, ε0[, the Degree Theory gives

degC1
T
(I − F 1

ε ,U) = degC1
T
(I − F 0

ε ,U),

for each ε ∈ ]0, ε0[. Now remarking that

(I − F 0
ε )(x0) = −εΦ0(x0(0)),

for all constant function x0, and using the restriction theorem we conclude

degC1
T
(I − F 1

ε ,U) = degC1
T
(I − F 0

ε ,U) = degRN (−εΦ0, U)

Since, from (A5), −εΦ0 and −Φ0 are homotop it comes

degRN (−εΦ0, U) = degRN (−Φ0, U)

and thus (using again (A5))

degC1
T
(I − F 1

ε ,U) = degRN (−Φ0, U) 6= 0,

for each ε ∈ ]0, ε0[. Consequently, from the degree property, F 1
ε has at least one

fixed point x( · , ε) ∈ U for ε ∈ ]0, ε0[. In other words (1.2) has periodic solution
x( · , ε) for ε ∈ ]0, ε0[, and x(t, ε) ∈ U for all t ∈ R. Moreover, likewise for (4.6),
we can show

|x′(t, ε)| ≤ 2Lε
T (1− k)

for all t ∈ R, where we have set

L := sup{|Φ(t, u, 0, ε)| : t ∈ R, u ∈ U, ε ∈ [0, 1]}. �

5. A counterexample

Let β ∈ ]0, 1], q ∈ [0, 1/2[ and ϕ: R → R be the continuous map defined by

ϕ(x) =

{
qx2 if x ∈ [−1, 1],

q if x /∈ [−1, 1].

Put U = ]−ρ, ρ[ for some ρ > 0. Consider the following neutral differential
equation

(5.1) x′(t) = εϕ

(
1
ε
x′

(
t− π

2

))
− εx

(
t− π

2

)
− εβ sin t.
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Here we have:

Φ(t, x, y, ε) = ϕ(y)− x+ β sin t,

T = 2π, k = 2q, Φ0(x) = −x, deg(−Φ0, U) = 1,

M = sup{|Φ(t, x, 0, 0)| : t ∈ R, x ∈ ∂U} = ρ+ β.

Therefore, in this example, (A1)–(A5) are obviously fulfilled. But we will prove
the following proposition:

Proposition 5.1. The equation (5.1) has no 2π-periodic solution x( · , ε)
satisfying x( · , ε) → 0 in C2π as ε→ 0, ε > 0.

In view of Theorem 4.1 this example shows that condition (4.1) of this the-
orem is not satisfied here. Indeed Proposition 5.1 implies that the conclusion
of Theorem 4.1 does not hold on U = ]−ρ, ρ[ for each ρ > 0. The additional
condition (4.1) is thus necessary in Theorem 4.1.

Proof of Proposition 5.1. By contradiction, assume that equation (5.1)
has 2π-periodic solution x( · , ε) satisfying x( · , ε) → 0 in C2π as ε→ 0. Then, it
comes ∫ 2π

0

x(t, ε) dt =
∫ 2π

0

ϕ

(
1
ε
x′

(
t− π

2
, ε

))
dt,

and consequently ,

(5.2)
∫ 2π

0

ϕ

(
1
ε
x′(t, ε)

)
dt =

∫ 2π

0

ϕ

(
1
ε
x′

(
t− π

2
, ε

))
dt

ε→0−→ 0.

Because we have ϕ ≥ 0 relation (5.1) involves

1
ε
x′(t, ε) ≥ β

√
2

2
+ δ(t, ε), t ∈

[
3π
4
, π

]
= J

with supt∈J |δ(t, ε)|
ε→0−→ 0. Then, using again ϕ ≥ 0, we obtain∫ 2π

0

ϕ

(
1
ε
x′(t, ε)

)
dt ≥

∫ π

3π/4

ϕ

(
1
ε
x′(t, ε)

)
dt ≥ π

4
ϕ

(
β

√
2

2

)
+ oε(1).

This last inequality contradicts (5.2). �

Really we can see directly that condition (4.1) fails for ρ > 0 sufficiently
small if we take for instance

(5.3) β ≥ 1− 2q.

Let us choose ρ such that we have √
2ρ
q
≤ 1.
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Such a choice is clearly possible by taking for instance ρ > 0 sufficiently small.
Then, by setting

y(t) =
√

2ρ
q

cos t,

owing to (5.3), we easily check y ∈M and ϕ(y(t)) = 2ρ cos2 t. So it follows

0 =
∫ 2π

0

Φ(t, ρ, y(t), 0) dt ∈ Z(ρ).

Therefore, condition (4.1) does not hold.
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