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AN APPLICATION
OF NONSMOOTH CRITICAL POINT THEORY

Zhouxin Li — Yaotian Shen — Yimin Zhang

Abstract. We consider a class of elliptic equation with natural growth.
We obtain a region of the natural growth term with precise lower boundary

less than zero.

1. Introduction and main results

Let Ω be a bounded domain in RN (N ≥ 3) with smooth boundary. In this
paper we consider the functional I:W 1,p

0 (Ω) → R, 2 ≤ p < N , given by

(1.1) I(u) =
∫

Ω

j(x, u,∇u)−
∫

Ω

G(x, u).

Here j(x, s, ξ): Ω × R × RN is a function which is measurable with respect to x

for all (s, ξ) ∈ R × RN , and of class C1 with respect to (s, ξ) for almoast every
x ∈ Ω, G(x, s) =

∫ s

0
g(x, t) dt, where g(x, s) is a Carathéodory function.

We are concerned with the existence and nonexistence of nontrivial critical
points of the functional I. Let js(x, s, ξ) and jξ(x, s, ξ) denote the derivatives of
j(x, s, ξ) with respect to s and ξ respectively, we know that the Euler–Lagrange
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equation of the functional I is

(1.2)

{
−div(jξ(x, u,∇u)) + js(x, u,∇u) = g(x, u) in Ω,

u = 0 on ∂Ω.

As pointed out by D. Arcoya and L. Boccardo [1] (one can see also [6]) that since
the function j(x, u,∇u) depends on u, the functional I is not even Gâteaux differ-
entiable on W 1,p

0 (Ω) but only differentiable along directions in W 1,p
0 (Ω)∩L∞(Ω).

For example, when p = 2, if we set j(x, u,∇u) = u2|∇u|2, then js(x, u,∇u) =
2u|∇u|2, it is easy to verify that 2u|∇u|2 not necessarily belong to W−1,p′(Ω),
the topological dual of W 1,p

0 (Ω). js(x, s, ξ) is called the natural growth term of
Problem (1.2).

The study of Problem (1.2) arise from more concrete case as, for example,
when p = 2,

(1.3)



−
N∑

ij=1

Dj(aij(x, u)Diu)

+
1
2

N∑
ij=1

∂saij(x, u)DiuDju = g(x, u) in Ω,

u = 0 on ∂Ω.

Existence and multiplicity results for equations like (1.3) have been object of
a very careful analysis since 1994 (see e.g. [1], [3], [4], [6], [13] and references
therein). In these papers, the approaches are variational and the nontrivial crit-
ical points were obtained via the techniques of nonsmooth critical point theory.

In order to get the compactness result, one of the important assumptions in
[1], [3], [4], [6] is

s
N∑

ij=1

∂saij(x, s)ξiξj ≥ 0.

This sign condition plays an important part in the proof of the compactness for
a Palais-Smale sequence. But if we consider another assumption, which says,
there exist ν, σ with 2 < σ < 2N/(N − 2), ν ∈ (0, σ − 2) such that

s
N∑

ij=1

∂saij(x, s)ξiξj ≤ ν
N∑

ij=1

aij(x, s)ξiξj ,

we find that the region in which s
∑N

ij=1 ∂saij(x, s)ξiξj exists will vanish as the
parameter σ tends to 2. It is interesting that the author in [13] studied the case
σ = 2, and assume that there exists 0 < α1 < 1 such that

−2α1

N∑
i,j

aij(x, s)ξiξj ≤ s
N∑
i,j

∂saij(x, s)ξiξj ≤ 0.
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Under this condition and other certain hypotheses, the author in [13] proved
that there exists at least one weak solution of problem (1.3).

As to the general case j(x, s, ξ), problem (1.1) was also studied by many
authors, see for example [11] for p = 2 and [1], [15], [16] for 1 ≤ p < N . In
these papers, the assumption on the natural growth term is sjs(x, s, ξ) ≥ 0. As
mentioned above, this sign condition plays an important part in the proof of
the compactness for a Palais–Smale sequence. On the other hand, the technique
in [11], [15], [16] is variational via the nonsmooth critical point theory based
on the notion of weak slope proposed by J. N. Corvellec, M. Degiovanni and
M. Marzocchi in [7], [8], which is different to [1].

Let a ≥ 0, 2 ≤ p < N and

j(x, s, ξ) =
1
p

(
1 +

1
1 + |s|a

)
|ξ|p,

then by direct computation, one gets

sjs(x, s, ξ) = −1
p

a|s|a

(1 + |s|a)2
|ξ|p ≤ 0.

The equality holds if and only if s = 0 or ξ = 0. Thus, it remains an in-
teresting question whether problem (1.1) has a nontrivial critical point when
sjs(x, s, ξ) < 0.

In this paper we discuss the general case of problem (1.1) for j(x, s, ξ) and
2 ≤ p < N . Motivated by [11], [13], we study the existence of nontrivial critical
points for Problem (1.1) when the sign condition is dropped (see condition (j3)
in this section).

A crucial step in proving our main result is to show the compactness of the
Palais–Smale sequence of the functional I when the sign condition is dropped.
Under certain hypotheses on the functions j and g, we get the desire result.
We use the nonsmooth critical point theory in [7], [8] to prove the existence of
one or infinitely many nontrivial critical points of I. Moreover, we use the Po-
hozaev identity in [12] to prove that the corresponding Euler–Lagrange equation
of problem (1.1), i.e. (1.2), has no weak solution in C2(Ω) ∩ C1(Ω) when Ω is
star-shaped and condition (j3) fails (see (j6) in this section).

In this paper, we give the following assumptions on the functions j and g.
The function j(x, s, ξ): Ω × R × RN is measurable with respect to x for all

(s, ξ) ∈ R × RN , and of class C1 with respect to (s, ξ) for almost every x ∈ Ω.
We also assume that there exist α, β with β ≥ α > 0 and γ > 0 such that for
almost every x ∈ Ω and every (s, ξ) ∈ R× RN

α|ξ|p ≤ jξ(x, s, ξ)ξ ≤ β|ξ|p,(j1)

|js(x, s, ξ)| ≤ γ|ξ|p.(j2)
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Regarding the function g(x, s), we assume that g is a Carathéodory function
and that there exist p < q < p∗ := Np/(N − p) and a(x) ∈ L∞(Ω), b > 0 such
that

(g1) |g(x, s)| ≤ a(x) + b|s|q−1.

We also assume that there exist p < σ < p∗, and a0(x) ∈ L1(Ω), b0(x) ∈ Lm(Ω)
with m = p∗/(p∗ − r), 1 < r < p such that

(g2) σG(x, s) ≤ sg(x, s) + a0(x) + b0(x)|s|r.

Let µ = (1 − σ
p∗ ), we assume that there exist ν > 0, R > 0 such that, for

almost every x ∈ Ω and every (s, ξ) ∈ R× RN with |s| > R,

−µjξ(x, s, ξ)ξ ≤ js(x, s, ξ)s,(j3)

jξ(x, s, ξ)ξ ≤ pj(x, s, ξ),(j4)

and

(j5) σj(x, s, ξ)− jξ(x, s, ξ)ξ − js(x, s, ξ)s ≥ ν|ξ|p,

where σ is given by (g2).
We will prove different existence of critical points for the functional I in

dependence on different growth rate of the function g(x, s). First we study the
nonsymmetric case. In this case, we assume that for almost every x ∈ Ω,

(g3) lim sup
|s|→0

g(x, s)
|s|p−1

< αλ1 ≤ βλ1 < lim inf
|s|→∞

g(x, s)
|s|p−2s

,

where λ1 is the first eigenvalue of the p-Laplacian operator −∆p.
Then we have the following result.

Theorem 1.1. Assume conditions (j1)–(j5) and (g1)–(g3) hold, then there
exists a nontrivial critical point u ∈ W 1,p

0 (Ω) of problem (1.1).

Next we study the symmetric case. In this case, we assume that for almost
every x ∈ Ω, j(x,−s,−ξ) = j(x, s, ξ), g(x,−s) = −g(x, s) and

(g4) lim
|s|→∞

g(x, s)
|s|p−2s

= ∞.

Then we have the following result.

Theorem 1.2. Assume conditions (j1)–(j5) and (g1)–(g2), (g4) hold, then
there exist a sequence {un} of nontrivial critical points of problem (1.1) in
W 1,p

0 (Ω) such that I(un) →∞ as n →∞.

To get the nonexistence result, we assume, besides (j1)–(j2), the following
(g1)′ and (g2)′ for simplicity.
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We assume that g(x, s) ≡ g(s) and there exist p < q, σ < p∗ and b > 0 such
that

(g1)′ |g(s)| ≤ b|s|q−1,

and

(g2)′ 0 < σG(x, s) ≤ sg(x, s).

For example, g(x, s) = |s|q−2s with p < q < p∗ and σ = q.
Then we have the following result.

Theorem 1.3. Let Ω ⊂ RN (N ≥ 3) be bounded and star-shaped, assume
that j does not depend on x and that (j1)–(j2) and (g1)′–(g2)′ hold. Moreover,
assume that for every (s, ξ) ∈ R× RN

(j6) sjs(s, ξ) < −µjξ(s, ξ)ξ,

where µ = (1− σ/p∗), then (1.2) has no nontrivial solution in C2(Ω) ∩ C1(Ω).

The paper is arranged as follows. In Section 2, we set the abstract frame-
work and specify its connections with our problem. In Section 3, we study the
compactness of the Palais–Smale sequence. In Section 4, we prove the existence
and nonexistence of nontrivial critical points.

Throughout this paper we denote by ‖ · ‖, ‖ · ‖q and ‖ · ‖−1,p′ the standard
norms of W 1,p

0 (Ω), Lq(Ω) and W−1,p′(Ω), respectively. “→” (“⇀”) indicates the
strong (weak) convergence in the corresponding function space.

2. Mathematical background

In this section we give some definitions and abstract critical point theories
(for the proof, see [7], [8]) will be used in this paper. These definitions and
theories also have been used in [6], [11], [15], [16].

Definition 2.1. Let X be a complete metric space endowed with the metric
d, f :X → R be a continuous function, and u ∈ X. We denote by |df |(u) the
supremum of the real numbers σ in [0,∞) such that there exist δ > 0 and
a continuous map

H:B(u; δ)× [0, δ] → X,

such that for every v in B(u; δ) and for every t in [0, δ] it results

d(H(v, t), v) ≤ t,(2.1)

f(H(v, t)) ≤ f(v)− σt.(2.2)

where B(u; δ) is the open ball of center u ∈ X and of radius δ. The extended
real number |df |(u) is called the weak slope of f at u.

If X is a Finsler manifold of class C1, it turns out that |df |(u) = ‖f ′(u)‖.
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Definition 2.2. Let X be a complete metric space, f :X → R be a con-
tinuous function. A point u ∈ X is a critical point of f if |df |(u) = 0. We say
that c ∈ R is a critical value of f if there exists a critical point u ∈ X of f with
f(u) = c.

Definition 2.3. Let X be a complete metric space, f :X → R be a contin-
uous function and c ∈ R. We say that f satisfies the Palais–Smale condition at
level c ((PS)c in short), if every sequence {un} in X such that |df |(un) → 0 and
f(un) → c admits a subsequence {unk

} converging in X.

Theorem 2.4. Let X be a Banach space endowed with the norm ‖ · ‖ and
f :X → R a continuous function. First, suppose that there exist w ∈ X, η > f(0)
and r > 0 such that

f(u) > η, for all u ∈ X, ‖u‖ = r,(2.3)

f(w) < η, ‖w‖ > r.(2.4)

We set Γ = {γ: [0, 1] → X, is continuous and γ(0) = 0, γ(1) = w}. Finally,
suppose that f satisfies (PS)c condition at the level

c = inf
γ∈Γ

sup
t∈[0,1]

f(γ(t)) < ∞,

Then, there exists a nontrivial critical point u of f such that f(u) = c.

Theorem 2.5. Let X be a Banach space, f :X → R a continuous even
functional. Assume that there exists a strictly increasing sequence {Wk} of finite
dimensional subspaces of X with the following properties:

(a) there exist ρ > 0, η > f(0) and a subspace V ⊂ X of finite codimension
such that

f(u) ≥ η, for all u ∈ V, ‖u‖ = ρ;

(b) there exists a sequence {Rk} in (ρ,∞) such that

f(u) ≤ f(0), for all u ∈ Wk, ‖u‖ ≥ Rk;

(c) f satisfies (PS)c condition for any c ≥ η.

Then there exists a sequence {uk} of critical points of f with

lim
k→∞

f(uk) = ∞.

Definition 2.6. A sequence {un} ⊂ W 1,p
0 (Ω) is a Concrete–Palais–Smale

sequence at level c ((CPS)c in short) if there exists yn ∈ W−1,p′(Ω) with yn → 0
such that

(2.5) I(un) → c,



An Application of Nonsmooth Critical Point Theory 209

(2.6) 〈I ′(un), ϕ〉 =
∫

Ω

[jξ(x, un,∇un)∇ϕ + js(x, un,∇un)ϕ]−
∫

Ω

g(x, un)ϕ

= 〈yn, ϕ〉,

for all ϕ ∈ C∞
0 (Ω). Moreover, we say that I satisfies the (CPS)c condition if

every (CPS)c sequence is strongly compact in W 1,p
0 (Ω).

The next result connects the previous notions with abstract critical point
theory.

Theorem 2.7. The functional I:W 1,p
0 (Ω) → R is continuous and

|dI|(u) ≥ sup
ϕ∈C∞0 (Ω), ‖ϕ‖=1

{ ∫
Ω

[jξ(x, u,∇u)∇ϕ + js(x, u,∇u)ϕ− g(x, u)ϕ]
}

,

for every u ∈ W 1,p
0 (Ω). In particular, if |dI|(u) < ∞, then we have

|dI|(u) ≥ ‖ − div(jξ(x, u,∇u)) + js(x, u,∇u)− g(x, u)‖−1,p′ .

Proof. See [5, Theorem 2.1.3]. �

3. Compactness results

In this section, we prove that the functional I satisfies the (CPS)c condition
in W 1,p

0 (Ω), so does the (PS)c condition. Indeed, if {un} ⊂ W 1,p
0 (Ω) is a (PS)c

sequence of I, then by Theorem 2.7, it is also a (CPS)c sequence. Then, if I

satisfies the (CPS)c condition, we can deduce that {un} admits a convergent
subsequence.

Proposition 3.1. Assume (j1)–(j5) hold, let u ∈ W 1,p
0 (Ω) and assume that

there exists a w ∈ W−1,p′(Ω) such that for every v ∈ W 1,p
0 ∩ L∞(Ω)

(3.1)
∫

Ω

jξ(x, u,∇u)∇v +
∫

Ω

js(x, u,∇u)v = 〈w, v〉.

Then jξ(x, u,∇u)∇u, js(x, u,∇u)u ∈ L1(Ω) and

(3.2)
∫

Ω

jξ(x, u,∇u)∇u +
∫

Ω

js(x, u,∇u)u = 〈w, u〉.

Proof. Let k ∈ R+ be fixed, we define the following cutoff functions:

(3.3) Tk(u) =

{
u if |u| ≤ k,

sgnu · k if |u| > k,
Gk(u) = u− Tk(u).

Then for every v ∈ W 1,p
0 (Ω), we have Tk(v) ∈ W 1,p

0 ∩L∞(Ω). Thus, we can take
Tk(u) as a test function in (3.1) and get

(3.4)
∫

Ω

jξ(x, u,∇u)∇Tk(u) +
∫

Ω

js(x, u,∇u)Tk(u) = 〈w, Tk(u)〉.
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Since from (j1), we can deduce that

j(x, s, ξ) =
∫ 1

0

jξ(x, s, tξ)ξ dt ≥
∫ 1

0

α|tξ|pt−1 dt =
α

p
|ξ|p,

j(x, s, ξ) =
∫ 1

0

jξ(x, s, tξ)ξ dt ≤
∫ 1

0

β|tξ|pt−1 dt =
β

p
|ξ|p.

This means that

(3.5)
α

p
|ξ|p ≤ j(x, s, ξ) ≤ β

p
|ξ|p

for almost every x ∈ Ω and every (s, ξ) ∈ R × RN . Let R be given by (j3), we
denote

(3.6) AR := {x ∈ Ω : |u| > R}, BR := Ω \AR.

Then by (j2), we have

(3.7) |js(x, u,∇u)u| ≤ Rγ|∇u|p onBR.

Denote

Ω+ := {x ∈ Ω : 0 ≤ js(x, u,∇u)u},(3.8)

Ω− := {x ∈ Ω : −µjξ(x, u,∇u)∇u ≤ js(x, u,∇u)u ≤ 0}.(3.9)

Then, by (j5) and (3.5), we have

(3.10) |js(x, u,∇u)u| ≤ σj(x, u,∇u) ≤ σβ

p
|∇u|p on AR ∩ Ω+,

by (j3) and (j1), we have

(3.11) |js(x, u,∇u)u| ≤ µjξ(x, u,∇u)∇u ≤ µβ|∇u|p on AR ∩ Ω−.

Combining (3.7), (3.10) and (3.11), we have

|js(x, u,∇u)u| ≤
[
Rγ +

(
σ

p
+ µ

)
β

]
|∇u|p.

This means that js(x, u,∇u)u ∈ L1(Ω). Thus, we can use Lebesgue Dominated
Convergence Theorem to pass the limit in (3.4) and get (3.2). �

Proposition 3.2. Assume (j1)–(j5) and (g1)–(g2) hold, then every Concre-
te–Palais–Smale sequence {un} is bounded in W 1,p

0 (Ω).

Proof. Assume that {un} ⊂ W 1,p
0 (Ω) such that (2.5) and (2.6) hold. Let

us fix ε > 0 and consider the function ϑε: R → R defined by

ϑε(s) =


0 for 0 ≤ s ≤ R,

(1 + ε)(s−R) for R ≤ s ≤ Rε,

s for Rε ≤ s,

−ϑε(−s) for s ≤ 0,
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where R is given in (j3) and Rε = (1 + ε)R/ε. Then, for every u ∈ W 1,p
0 (Ω), it

results

(3.12) |∇ϑε(u)| ≤ (1 + ε)|∇u|.

Moreover, ϑε(u) has the same sign of u. By Proposition 3.1, we can take un as
test functions in (2.6) and get

(3.13)
∫

AR,n

[jξ(x, un,∇un)∇ϑε(un) + js(x, un,∇un)ϑε(un)]

=
∫

AR,n

g(x, un)un +
∫

AR,n

g(x, un)(ϑε(un)− un) + 〈yn, ϑε(un)〉.

where AR,n is defined as in (3.6). Since ϑε(un) has the same sign of un, by (j5)
and (3.12), we can deduce that∫

AR,n∩Ω+
n

[σj(x, un,∇un)− jξ(x, un,∇un)∇ϑε(un)− js(x, un,∇un)ϑε(un)]

≥
∫

AR,n∩Ω+
n

[σj(x, un,∇un)− (1 + ε)jξ(x, un,∇un)∇un − js(x, un,∇un)un]

≥ ν

∫
AR,n∩Ω+

n

|∇un|p − εβ

∫
Ω

|∇un|p,

and by (j4), (3.5),∫
AR,n∩Ω−n

[σj(x, un,∇un)− jξ(x, un,∇un)∇ϑε(un)− js(x, un,∇un)ϑε(un)]

≥
∫

AR,n∩Ω−n

[σj(x, un,∇un)− (1 + ε)jξ(x, un,∇un)∇un]

≥
(

σ − p

p

)
α

∫
AR,n∩Ω−n

|∇un|p − εβ

∫
Ω

|∇un|p,

where Ω+
n and Ω−

n are defined as in (3.8) and (3.9). Thus we get

(3.14) min
{

ν,
σ − p

p
α

} ∫
AR,n

|∇un|p − 2εβ

∫
Ω

|∇un|p

≤
∫

AR,n

[σj(x, un,∇un)− jξ(x, un,∇un)∇ϑε(un)− js(x, un,∇un)ϑε(un)].

On the other hand, by (3.5), we have

(3.15)
α

p

∫
BR,n

|∇un|p ≤
∫

BR,n

j(x, un,∇un),

where BR,n is defined as in (3.6). Now let

ν0 := min
{

ν,
σ − p

p
α,

σ

p
α

}
> 0
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and compute σI(un)− 〈yn, ϑε(un)〉. By (3.13)–(3.15), we can deduce that

ν0

∫
Ω

|∇un|p − 2εβ

∫
Ω

|∇un|p ≤ σ

∫
Ω

j(x, un,∇un)(3.16)

−
∫

AR,n

[jξ(x, un,∇un)ϑε(un) + js(x, un,∇un)ϑε(un)]

=σI(un) +
∫

Ω

G(x, un)− 〈yn, ϑε(un)〉 −
∫

Ω

g(x, un)ϑε(un)

≤σI(un) +
∣∣∣∣ ∫

BR,n

G(x, un)
∣∣∣∣ +

∫
AR,n

[σG(x, un)− g(x, un)un]

+
∣∣〈yn, ϑε(un)〉|+

∣∣∣∣ ∫
AR,n

g(x, un)(ϑε(un)− un)
∣∣∣∣.

Note that

(3.17)
∣∣∣∣ ∫

AR,n

g(x, un)(ϑε(un)− un)
∣∣∣∣

=
∣∣∣∣ ∫

{x∈Ω:R<|un|<Rε}
g(x, un)(ϑε(un)− un)

∣∣∣∣ ≤ C(R, ε),

and by (g1), we have

(3.18)
∣∣∣∣ ∫

BR,n

G(x, un)
∣∣∣∣ ≤ ∫

BR,n

(|a(x)||un|+ b|un|q) ≤ C(R).

Now choose ε = ν0/4β, combine (3.16)–(3.18), by (g2) and Sobolev inequality,
we get

(3.19)
ν0

2
‖un‖p ≤ C +

(
1 +

ν0

4β

)
‖yn‖−1,p′‖un‖+ ‖b0‖m‖un‖r,

where C = C(R, ε, c), c is given by (2.5). Note that 1 < r < p and ‖yn‖−1,p′ → 0,
(3.19) yields the conclusion. �

Proposition 3.3. Assume (j1)–(j5) and (g1)–(g2) hold, then every bounded
Concrete–Palais–Smale sequence {un} converges strongly to u ∈ W 1,p

0 (Ω).

Proof. By assumptions, there exists a u in W 1,p
0 (Ω) such that up to a sub-

sequence, un converges weakly to u in W 1,p
0 (Ω), un converges strongly to u in

Lq(Ω), 1 < q < p∗ and un converges to u almost everywhere in Ω.
For k ∈ R+ be fixed, without lost of generality, we assume that k > R, where

R is given by (j3), we denote

Ak,n = {x ∈ Ω : |un| > k}, Bk,n = Ω \Ak,n,

A+
k,n = {x ∈ Ω : un > k}, A−

k,n = {x ∈ Ω : un < −k}.

Let Tk and Gk as defined in (3.3). Without lost of generality, we assume that
|∇Gk(un)| 6= 0 and |∇Tk(un)| 6= 0 for every n. We divide the proof in two steps.
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Step 1. We prove that for any ε > 0, there exists k > 0 large enough such
that limn→∞ ‖Gk(un)‖ ≤ ε. Because ∇Gk(un) = ∇un in Ak,n and ∇Gk(un) = 0
in Bk,n, Proposition 3.1 implies that we can take ϕ = Gk(un) as test functions
in (2.6) and get

(3.20)
∫

Ak,n

jξ(x, un,∇un)∇Gk(un) +
∫

Ak,n

js(x, un,∇un)Gk(un)

=
∫

Ak,n

g(x, un)Gk(un) + 〈yn, Gk(un)〉.

By (j3), (j1) and note that Gk(un) has the same sign of un, we have

(3.21)
∫

A+
k,n

js(x, un,∇un)Gk(un) =
∫

A+
k,n

js(x, un,∇un)(un − k)

=
∫

A+
k,n∩Ω+

n

(
1− k

un

)
js(x, un,∇un)un

+
∫

A+
k,n∩Ω−n

(
1− k

un

)
js(x, un,∇un)un

≥
∫

A+
k,n∩Ω−n

js(x, un,∇un)un

≥ − µ

∫
A+

k,n∩Ω−n

jξ(x, un,∇un)∇un ≥ −µ

∫
A+

k,n

jξ(x, un,∇un)∇un,

where Ω+
n and Ω−

n are defined as in (3.8) and (3.9). Analogously,

(3.22)
∫

A−k,n

js(x, un,∇un)Gk(un) ≥ −µ

∫
A−k,n

jξ(x, un,∇un)∇un,

Therefore, combining (3.21) and (3.22), we get

(3.23)
∫

Ak,n

js(x, un,∇un)Gk(un) ≥ −µ

∫
Ak,n

jξ(x, un,∇un)∇un.

Note that ∇un = ∇Gk(un) in Ak,n, from (3.20), (3.23) and according to (j1),
we get

α(1− µ)‖Gk(un)‖2 ≤
∫

Ak,n

|g(x, un)||Gk(un)| dx + ‖yn‖−1‖Gk(un)‖.

Since g(x, un) → g(x, u) and yn → 0 in W−1,p′(Ω), respectively, we get the
conclusion.

Step 2. We prove that for a fixed k large enough, ‖Tk(un) − Tk(u)‖ → 0 as
n tends to infinity. Let vn = Tk(un) − Tk(u) and ϕ(t) = teηt2 . Since ϕ(vn) ∈
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W 1,p
0 (Ω) ∩ L∞(Ω), we can take ϕ = ϕ(vn) as test functions in (2.6) and get

(3.24)
∫

Ω

g(x, un)ϕ(vn) dx + 〈yn, ϕ(vn)〉

=
∫

Ω

ϕ′(vn)jξ(x, un,∇un)∇vn +
∫

Ω

ϕ(vn)js(x, un,∇un) := I + II.

Firstly, by the definitions of Tk and Gk,

(3.25) I =
∫

Ak,n

ϕ′(vn)jξ(x, un,∇Gk(un))∇vn

+
∫

Bk,n

ϕ′(vn)jξ(x, un,∇Tk(un))∇vn := III + IV.

According to (j1) and by Hölder inequality, we get

|III| =
∣∣∣∣ ∫

Ak,n

ϕ′(vn)jξ(x, un,∇Gk(un))∇Gk(un)∇Gk(un)∇vn|∇Gk(un)|−2

∣∣∣∣
(3.26)

≤βϕ′(2k)
∫

Ak,n

|∇Gk(un)|p−1|∇vn|

≤βϕ′(2k)‖Gk(un)‖p−1‖∇vn‖Lp(Ak,n) ≤ εn.

Here and in the following, we use εn to denote a quantity which tends to zero as
n tends to infinity. Since un ⇀ u in W 1,p

0 (Ω), thus vn ⇀ 0 in W 1,p
0 (Ω), by (j1),

we get

(3.27) IV ≥ α

∫
Bk,n

ϕ′(vn)|∇Tk(un)|p−2∇Tk(un)∇vn.

Recall that for p ≥ 2 and all x, y ∈ RN [10, Lemma 4.1, p. 5709],

(3.28) (|x|p−2x− |y|p−2y, x− y) ≥ Cp|x− y|p,

where Cp > 0 is a constant. Note that∫
Bk,n

ϕ′(vn)|∇Tk(u)|p−2(∇Tk(u))∇vn → 0.

Let x = ∇Tk(un), y = ∇Tk(u) in (3.28), by direct computation, we get

(3.29) IV ≥ C1

∫
Bk,n

ϕ′(vn)|∇vn|p − εn,

where C1 > 0 is a constant. Combining (3.26) and (3.29), we get

(3.30) I ≥ C1

∫
Bk,n

ϕ′(vn)|∇vn|p − εn.
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Secondly, we consider II in (3.24). By (j2), we have

(3.31) II ≤ γ

( ∫
Ak,n

|ϕ(vn)||∇Gk(un)|p +
∫

Bk,n

|ϕ(vn)||∇Tk(un)|p
)

≤ γ

( ∫
Ak,n

|ϕ(vn)||∇Gk(un)|p
)

+ 2p−1γ

( ∫
Bk,n

|ϕ(vn)||∇Tk(u)|p
)

+ 2p−1γ

( ∫
Bk,n

|ϕ(vn)||∇vn|p
)

:= V + VI + VII.

Since un ⇀ u in W 1,p
0 (Ω), thus vn ⇀ 0 in W 1,p

0 (Ω), we have

(3.32) VI = 2p−1γ

∫
Bk,n

|ϕ(vn)||∇Tk(u)|p → 0.

Moreover, by Step 1 and note that |ϕ(vn)| ≤ ϕ(2k), we have

(3.33) V = γ

∫
Ak,n

|ϕ(vn)||∇Gk(un)|p ≤ εn.

Combining (3.31)–(3.33), we get

(3.34) II ≤ C2

∫
Bk,n

|ϕ(vn)||∇vn|p + εn,

where C2 > 0 is a constant. According to Lemma 1.2 in [5], for a, b > 0, we have
aϕ′(t) − b|ϕ(t)| ≥ a/ for every t ∈ R with η > (b/2a)2. Taking a = C1, b = C2

in ϕ, and combining (3.24), (3.30) and (3.34), we get

(3.35)
C1

2

∫
Bk,n

|∇vn|p ≤
∫

Ω

g(x, un)ϕ(vn) dx + εn → 0.

On the other hand, since vn = Tk(un)− Tk(u) = signun · k − Tk(u) in Ak,n, we
have

(3.36)
∫

Ak,n

|∇vn|p =
∫

Ak,n

|∇Tk(u)|p → 0.

Thus (3.35) and (3.36) imply that ‖Tk(un)− Tk(u)‖ → 0.
Finally, since for any fixed k ∈ R+,

‖un − u‖ ≤ ‖Tk(un)− Tk(u)‖+ ‖Gk(un)‖+ ‖Gk(u)‖.

We get un converges strongly to u. This completes the proof. �

Now let us recall the modified compactness condition introduced by Cerami
which allows rather general minimax results.
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Definition 3.4. Let X be a Banach space, a functional J ∈ C(X, R) is said
to satisfy the Cerami condition if for all c ∈ R

(a) every bounded sequence {uj} ⊂ X such that {J(uj)} is bounded and
|dJ |(uj) → 0 possesses a convergent subsequence, and

(b) there exit δ,R, β > 0 such that for all u ∈ J−1[c−δ, c+δ] with ‖u‖ ≥ R,
|dJ |(u) · ‖u‖ ≥ β.

Proposition 3.5. Assume conditions (j1)–(j5) and (g1)–(g2) hold, then I

satisfies the Cerami condition.

Proof. Firstly, according to Theorem 2.7 and Propositions 3.2 and 3.3, (a)
is obvious.

Secondly, we prove that I satisfies (b). Suppose by contradiction. Let c ∈ R
and assume that, up to a subsequence, {un} ⊂ W 1,p

0 (Ω) such that I(un) → c

and |dI|(un) · ‖un‖ → 0 with ‖un‖ → ∞. By Theorem 2.7, we have

(3.37) ‖I ′(un)‖−1,p′ ≤ |df |(un).

On the other hand, by Proposition 3.1, we can take ϕ = un as test functions in
(2.6). By (3.37), we get 〈I ′(un), un〉 → 0. Thus, we can argue as for (3.19) and
get a contradiction. This completes the proof. �

4. Proof of main theorems

In this section, we will use the compactness results in the previous section
to prove our main results. Since we have proved that the functional I satisfies
the (PS)c condition, it is trivial to prove Theorems 1.1 and 1.2. For the sake of
completeness, we give the proof here.

Proof of Theorem 1.1. Firstly, Proposition 3.5 show that I satisfies (PS)c

condition. Secondly, we prove that I satisfies the geometrical conditions of The-
orem 2.4.

In fact, (j1) implies that for every u ∈ W 1,p
0 (Ω),

1
p
α‖u‖p −

∫
Ω

G(x, u) ≤ I(u) ≤ β‖u‖p −
∫

Ω

G(x, u).

By (g3) and the definition of λ1, when u ∈ W 1,p
0 (Ω) small enough, we have∫

Ω

G(x, u) <
1
p
α‖u‖p.

Note that I(0) = 0, thus (2.1) of Theorem 2.4 is satisfied. Now for ϕ1 ∈ W 1,p
0 (Ω),

the first eigenfunction of −∆p operator, ϕ1 > 0, ‖ϕ1‖ = 1 and t ∈ R+, by (g3)
and the definition of λ1, we have

I(tϕ1) ≤ βtp
∫

Ω

|∇ϕ1|p −
∫

Ω

G(x, tϕ1) → −∞.
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Thus, we have I(tϕ1) < 0 when t > 0 large enough and the condition (2.2) of
Theorem 2.4 is satisfied. Therefore, Theorem 2.4 yields the conclusion. �

Proof of Theorem 1.2. Note that the Sobolev space is a separable Banach
space with infinite dimension, by [14, Theorem 7.7], there exist two sequences
{vn} ⊂ W 1,p

0 (Ω) and {ϕn} ⊂ W−1,p′(Ω) such that

(i) < ϕn, vm >= δm
n , where δm

n = 1 when m = n and δm
n = 0, else

(ii) W 1,p
0 (Ω) = span{vm : m ∈ N} and W−1,p′(Ω) = span{ϕn : n ∈ N}.

Without lost of generality, we assume that vm is a normalized sequence, that
is ‖vm‖ = 1, m = 1, 2, . . . and vk⊥vl, k 6= l. Denote Vm = span{vl : l ≥ m}
and V ⊥

m the topological complementary subspace of Vm in W 1,p
0 (Ω) and hence

W 1,p
0 (Ω) = Vm ⊕ V ⊥

m . It is obviously that V1 = W 1,p
0 (Ω), V ⊥

1 = φ. Denote

λq,m = inf
u∈Vm

‖u‖
‖u‖q

,

where 1 < q < p∗. We have λq,m → +∞ as m →∞.
Firstly, note that C∞

c (Ω) is dense in Lp∗′(Ω), then for every ε > 0, there
exist ac(x) ∈ C∞

c (Ω) and aε(x) ∈ Lp∗′(Ω) with ‖aε‖p∗′ ≤ ε such that a(x) =
ac(x) + aε(x) and condition (g1) implies that

|g(x, u)| ≤ ac(x) + aε(x) + b|u|q−1.

Now choose u ∈ Vm with ‖u‖ = 1, from condition (j1), we have

I(u) ≥ 1
p
α‖u‖2−(‖ac‖2‖u‖2+‖aε‖p∗′‖u‖p∗+b‖u‖q

q) ≥
1
p
α−

(
c1

λ2,m
+c2ε+

b

λq
q,m

)
.

We can choose ε small enough and m large enough to such that

c1

λ2,m
+ c2ε +

b

λq
q,m

<
α

p
,

this implies the geometrical condition (a) of Theorem 2.5 is satisfied.
Secondly, because V ⊥

m is a finite dimensional subspace, since all norms in
a finite dimensional space are all equivalent, we know that there exists a C2 > 0
such that for every u ∈ V ⊥

m , ‖u‖ ≤ C2‖u‖p. From conditions (j1) and (g4), we
have

I(u) ≤ β

∫
Ω

|∇u|p −
∫

Ω

G(x, u) → −∞,

when ‖u‖ → ∞, this implies the geometrical condition (b) of Theorem 2.5 is
satisfied. Therefore, there exist a sequence {un} of critical points of I such that
I(un) →∞. This completes the proof. �

Before we prove Theorem 1.3, we give the Pohozaev identity in [12]. Let
F (x, u, r): Ω × R × RN be a functional of class C1, we consider the following
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equation

(F) div{Fr(x, u, Du)} = Fu(x, u, Du).

Here we write Du = (∂u/∂x1, . . . , ∂u/∂xN ), Fn = ∂F/∂u, Fxi
= ∂F/∂xi and

Fri
= ∂F/∂ri, r = (r1, . . . , rN ). Assume that F (x, 0, 0) = 0. Let a(x) and h(x)

be two functions of class C1(Ω) ∩ C(Ω) and u ∈ C1(Ω) ∩ C(Ω) be a solution of
problem (F), then we have the following Pohozaev identity.∫

∂Ω

(F (x, 0, Du)−DiuFri
(x, 0, Du))(h · ν) ds =

∫
Ω

F (x, u, Du)div h

+
∫

Ω

hiFxi
(x, u, Du)−

∫
Ω

(DjuDihj + uDia(x))Fri
(x, u, Du)

−
∫

Ω

a(x)(DiuFri
(x, u, Du) + uFu(x, u, Du)).

We refer also to [9], where the above variational relation is proved for C1 solu-
tions.

Proof of Theorem 1.3. Assume on the contrary, u ∈ C1(Ω) ∩ C(Ω) is
a weak solution of equation (1.2), let

F (x, u, Du) = j(u,∇u)−G(u)

and let a be independent on x, h = x. We get

−
∫

∂Ω

j(0,∇u)(x · ν) ds =
(

n− p

p
+ a

) ∫
Ω

jξ(u,∇u)∇u

+
∫

Ω

js(u,∇u)u−
∫

Ω

(nG(u)− aug(u)).

We take a = −N/σ, note that Ω is a star shape region, by (g2)
′
, we get

(4.1)
(

1− σ

p∗

) ∫
Ω

jξ(u,∇u)∇u +
∫

Ω

js(u,∇u)u ≥ 0.

Therefore if u satisfies (j6), then (4.1) implies that u ≡ 0. This completes the
proof. �

Example 4.1. Let Ω ⊂ RN (N ≥ 3) be a open bounded domain, and a ≥ 0,
λ > 0, 2 ≤ p < N , p < q < p∗ = Np/(N − p). Let

J(u) =
1
p

∫
Ω

(
1 +

1
1 + |u|a

)
|∇u|p − λ

q

∫
Ω

|u|q.

Then by Theorem 1.2, there exist a sequence {un} ⊂ W 1,p
0 (Ω) of nontrivial

critical points of J such that J(un) →∞ as n →∞.
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