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EXISTENCE OF NON-COLLISION PERIODIC SOLUTIONS
FOR SECOND ORDER SINGULAR DYNAMICAL SYSTEMS

Shuqing Liang

Abstract. In this paper, we study the existence of non-collision periodic

solutions for the second order singular dynamical systems. We consider the

systems where the potential have a repulsive or attractive type behavior
near the singularity. The proof is based on Schauder’s fixed point theorem

involving a new type of cone. The so-called strong force condition is not

needed and the nonlinearity could have sign changing behavior. We allow
that the Green function is non-negative, so the critical case for the repul-

sive case is covered. Recent results in the literature are generalized and

improved.

1. Introduction

In this paper, we are concerned with the existence of non-collision T -periodic
solution of the second order non-autonomous singular dynamical system

(1.1) ẍ + a(t)x = f(t, x) + e(t), (a repulsive singularity)

or

(1.2) −ẍ + a(t)x = f(t, x) + e(t), (an attractive singularity)

where we assume a(t) ∈ C(R/TZ, R) is a continuous T -periodic function. The
nonlinearity f(t, x) ∈ C((R/TZ) × RN \ {0}, RN ) and e(t) ∈ C(R/TZ, RN ) are
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vector-valued functions. As usual, by a non-collision T -periodic solution, we
mean a function x(t) ∈ C2(R/TZ, RN ) such that x(t) 6= 0 for all t and satisfies
(1.1) and the periodic boundary condition

(1.3) x(0) = x(T ), x′(0) = x′(T ).

We are mainly interested in the systems with a singularity at x = 0, which
means, there exists a vector v ∈ RN , ‖v‖2 = 1 such that

(1.4) lim
x→0, x∈C

〈v, f(t, x)〉 = ∞.

Given x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ RN , we use the usual scalar product
and Euclidean norm

〈x, y〉 =
N∑

i=1

xiyi, ‖x‖2 =
√
〈x, x〉.

Here, we denote by C = Cρ,v = {x ∈ RN : 〈v, x〉 ≥ ρ‖x‖N } cone in RN ,
where ρ ∈ (0, 1] is some fixed number and ‖ · ‖N is a norm in RN . In fact,
C is just the cone RN

+ if we take v = (1/
√

N, 1/
√

N, . . . , 1/
√

N), ρ = 1/
√

N ,
‖x‖N = ‖x‖1 =

∑N
i=1 |xi|.

Starting with the pioneering paper of Lazer and Solimini [15], the question of
existence of non-collision periodic solution for singular scalar equations and dy-
namical systems has attracted so much attention [1], [2], [9], [14], [15], [17]–[19].
In the literature, the proof mainly based on variational approaches and topologi-
cal methods. In particular, the method of upper and lower methods [3], nonlinear
alternative principle of Leray–Schauder type [6], some fixed point theorems in
cones for completely continuous operators [20] and degree theory [21] are the
most relevant tools.

In order to avoid collisions of the solution with the singularity, strong force
condition is a common hypotheses. Consider the following system

(1.5) ẍ + a(t)x =
( n∑

i=1

xi

)−α

+
( n∑

i=1

xi

)β

+ e(t),

the strong force condition corresponds to the case that α ≥ 1, β = 0. Such
a condition was first introduced with this name by W. B. Gordon in [13]. Since
then, the strong force condition becomes standard in the related works [3], [7], [8],
[10], [22]. In the recent year, there are also some works concerning the existence
of periodic solutions under the presence of weak singularity, we refer [6], [11], [12].

Let us recall some recent works for systems (1.1), which motivate our study.
In [12], D. Franco and J. R. L. Webb prove that (1.1) has at least one non-collision
periodic solution assuming that f(t, x) + e(t) satisfies suitable properties in one
direction, which implies that f(t, x) + e(t) neither needs to be positive nor to
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have constant sign behavior. In [6], J. Chu, P. J. Torres and M. Zhang get the
existence result of positive solution of (1.1) when each component of f(t, x) is
superlinear at x = +∞ and e(t) ∈ {e ∈ C(R \ TZ) : e ≥ 0}. In [6], [12], we can
find that the positivity of the Green function plays an important role, hence the
critical case cannot be covered, such as a(t) = k2. However, the case of scalar
equation has been investigated in [5], [16].

In this paper, we will establish some existence results for the systems (1.1)
and (1.2). The proof is based on Schauder fixed point theorem, combined with
a new cone introduced by D. Franco and J. R. L. Webb in [12]. The strong
force condition is not necessary and the components of the nonlinearity could
have sign-changing behavior. Moreover, we only need that the Green function
is non-negative, so the results are applicable to the critical case for the repulsive
singularity. We also allow that some components of nonlinearity are nonsingular.
Therefore some recent results have been generalized and improved.

The remaining part of the paper is organized as follows. In Section 2, some
preliminary results will be given. In Section 3, the main results will be stated
and proved. As an application, the study of (1.5) and other illustrating examples
will be shown.

2. Preliminaries

Throughout this paper, we assume that Hill’s equation

x′′ + a(t)x = 0

associated with periodic boundary conditions (1.3) satisfies the following hy-
potheses:

(A) The associated Green function G(t, s) is nonnegative for all (t, s) ∈
[0, T ]× [0, T ].

Under this assumption, we can define the function

x(t) =
∫ T

0

G(t, s)e(s) ds, i = 1, . . . , N,

which is the unique T -periodic solution of the linear equation

x′′ + a(t)x = e(t).

Now we give some remarks concerning condition (A). When a(t) ≡ k2, con-
dition (A) is equivalent to 0 < k2 ≤ µ1 = (π/T )2. Note that µ1 is the first
eigenvalue of the linear problem with Dirichlet conditions x(0) = x(T ) = 0.
When a(t) is a non-constant function, there is a Lp-criterion in [19]. Let K(q)
denote the best Sobolev constant in the following inequality:

C‖u‖2
q ≤ ‖u′‖2

2, for all u ∈ H1
0 (0, T ).
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The explicit formula for K(q) is

K(q) =


2π

q

(
2

2 + q

)1−2/q( Γ(1/q)
Γ(1/2 + 1/q)

)2

if 1 ≤ q < ∞,

4 if q = ∞,

where Γ is the Gamma function.
From now on, we write a � 0 if a ≥ 0 for almost every t ∈ [0, T ] and it

is positive in a set of positive measure for a given function a ∈ L1[0, T ]. If
the essential supremum and infimum of a exist, we denote them by a∗ and a∗
respectively. For an exponent p ∈ [1,∞], we denote the conjugate exponent of p

by p̃ = p/(p− 1) ∈ [1,∞].

Lemma 2.1 ([19]). Assume that a(t) � 0 and a ∈ Lp[0, T ] for some p ∈
[1,∞]. If ‖a‖p < K(2p̃), then the standing hypothesis (A) holds.

3. Main results

In this section, we will establish the existence of non-collision T -periodic
solution for systems (1.1). The following is the main result in this section.

Theorem 3.1. Assume that a(t) satisfies (A), and there exists a vector v ∈
RN , |v|2 = 1 such that (1.4) holds. Furthermore, assume that

(H1) f(t, x) + e(t) ∈ C for each t ∈ R and x ∈ C.
(H2) for each L > 0, there exists a continuous function φL � 0 such that

〈v, f(t, x)〉 > φL(t) for all (t, x) ∈ [0, T ]× [0, L].

(H3) there exist continuous, non-negative functions g(t), h(t) and k(t), such
that

0 ≤ 〈v, f(t, x)〉 ≤ k(t){g(‖x‖N ) + h(‖x‖N )} for all (t, x) ∈ [0, T ]× RN \ {0},

and g(t) > 0 is non-increasing and h(t)/g(t) is non-decreasing for t ∈
(0,∞).

(H4) there exists a positive constant R > 0 such that

R ≥ ΦR∗ + γ∗ > 0 and g(σ1(ΦR∗ + γ∗))
(

1 +
h(R/ρ)
g(R/ρ)

)
K∗ + γ∗ ≤ R.

Here, the constant σ1 is from (3.1) and

ΦR(t) =
∫ T

0

G(t, s)φR(s) ds, K(t) =
∫ T

0

G(t, s)k(s) ds,

γ(t) =
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
, γi(t) =

∫ T

0

G(t, s)ei(s) ds.
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Then the system (1.1) has at least one non-collision T -periodic solution.

Proof. Finding a periodic solution of system (1.1) is equivalent to finding
a fixed point of the completely continuous operator

A:CT × . . .× CT︸ ︷︷ ︸
N

→ CT × . . .× CT︸ ︷︷ ︸
N

defined by

(Ax)(t) =
∫ T

0

G(t, s)[f(s, x(s)) + e(s)] ds,

where CT denote the set of continuous T -periodic functions.
Let R be the positive constant satisfying (H4) and r = ΦR∗ + γ∗. Then

R > r > 0. We define the set

Ω = {x ∈ C : r ≤ 〈v, x(t)〉 ≤ R for all t ∈ [0, T ]}.

Since ‖ · ‖2 and ‖ · ‖N are two norms of RN , there exist two positive constants
σ1, σ2 such that

(3.1) σ1‖ · ‖2 ≤ ‖ · ‖N ≤ σ2‖ · ‖2.

For each x ∈ Ω, we know that σ1r ≤ ‖x‖N ≤ R/ρ and 0 /∈ Ω. Hence we have
successfully avoided the singularity for A. On the other hand, it is easy to verify
that Ω is convex and closed. Therefore, Ω is a bounded, closed and convex set.

Next we shall prove A(Ω) ⊂ Ω. Thus, as a consequence of the Schauder’s
fixed point theorem, it guarantees the existence of non-collision T -periodic solu-
tion.

Notice that G(t, s) ≥ 0 for all (t, s) ∈ [0, T ]× [0, T ] and (H1), it follows that

a〈v,Ax(t)〉 =
∫ T

0

G(t, s)〈v, f(s, x(s)) + e(s)〉 ds

≥ ρ

∫ T

0

G(t, s)‖f(s, x(s)) + e(s)‖N ds

≥ ρ‖
∫ T

0

G(t, s)(f(s, x(s)) + e(s))ds‖N ≥ ρ‖Ax(t)‖N .

Hence Ax(t) ∈ C for all t and A is well defined.
By (H2), we have

〈v,Ax(t)〉 =
∫ T

0

G(t, s)〈v, f(s, x(s)) + e(s)〉 ds

=
∫ T

0

G(t, s)〈v, f(s, x(s))〉 ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≥

∫ T

0

G(t, s)φR(s) ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≥ ΦR∗ + γ∗ = r.
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On the other hand, it follows from (H3) and (H4) that

〈v,Ax(t)〉 =
∫ T

0

G(t, s)〈v, f(s, x(s)) + e(s)〉 ds

=
∫ T

0

G(t, s)〈v, f(s, x(s))〉 ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≤

∫ T

0

G(t, s)k(t){g(‖x‖N ) + h(‖x‖N )} ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≤ g(σ1r)

(
1 +

h(R/ρ)
g(R/ρ)

)
K∗ + γ∗ ≤ R.

Hence A(Ω) → Ω. By a direct application of Schauder fixed point theorem. �

Remark 3.2. In [6], [12], [19], the positivity of the Green’s function plays an
important role in the application of fixed point theorems for completely continu-
ous operators. The assumption (A) implies the Green’s function is non-negative,
therefore the result covers the critical case for systems with a repulsive singular-
ity. We can compare the results we obtained with those in the above papers.

Remark 3.3. The components of nonlinearity could have sign changing be-
havior, assuming that the condition (H2) is satisfied. Hence the recent results in
[12] have been generalized.

Let us consider the case γ∗ = 0, we have the following corollary.

Corollary 3.4. Suppose f(t, x) satisfies conditions (H1)–(H3). Further-
more, assume that

(H′
4) there exists a positive constant R > 0 such that

R ≥ ΦR∗ > 0 and g(σ1ΦR∗)
(

1 +
h(R/ρ)
g(R/ρ)

)
K∗ + γ∗ ≤ R.

If γ∗ = 0, then the system (1.1) has at least one non-collision T -periodic solution.

As an application of Theorem 3.1 and Corollary 3.4, we get the following exi-
stence results for systems (1.5) assuming that there is no strong force condition.

Example 3.5. Assume that a(t) satisfies (A). The components of nonlin-
earity are given by

fi(t, x) + ei(t) = b(t)
( n∑

i=1

xi

)−λ

+ ei(t) ≥ 0, i = 1, . . . , N,

where b(t) > 0 is a continuous function, 0 < λ < 1.
If γ∗ = 0, then (1.1) has at least one non-collision T -periodic solution.
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Proof. We will apply Corollary 3.4. To this end, we take

φL(t) =
b(t)
Lλ

, g(t) = t−λ, h(t) = 0, k(t) = b(t),

v = (1/
√

N, . . . , 1/
√

N), ρ = 1/
√

N, ‖x‖N = ‖x‖1.

Then (H1)–(H3) are satisfied. Let β(t) =
∫ T

0
G(t, s)b(s) ds, the existence condi-

tion (H′
4) becomes

(3.2)
(

σ1R
λ

β∗

)λ

β∗ + γ∗ ≤ R, R >
β∗
Rλ

for some R with R > 0. Notice that β∗ > 0 as a consequence of (A). Since
0 < λ < 1, we can choose R > 0 large enough such that (3.2) is satisfied and the
proof is completed. �

The following example generalize the previous one when b(t) = 1.

Example 3.6. Assume that a(t) satisfies the condition (A). The components
of nonlinearity are given by

fi(t, x) + ei(t) =
( n∑

i=1

xi

)−α

+ µ

( n∑
i=1

xi

)β

+ ei(t) ≥ 0, i = 1, . . . , N,

where 0 < α < 1, β ≥ 0, and µ is a non-negative parameter and for e(t) with
γ∗ = 0.

(i) If α + β < 1 − α2, then (1.1) has at least one non-collision T -periodic
solution for each µ > 0.

(ii) If α + β ≥ 1 − α2, then (1.1) has at least one non-collision T -periodic
solution for each 0 ≤ µ ≤ µ1, where µ1 is some positive constant.

Proof. We will also apply Corollary 3.4. To this end, we take

φL(t) = L−α, g(t) = t−α, h(t) = tβ , k(t) = 1,

v = (1/
√

N, . . . , 1/
√

N), ρ = 1/
√

N, ‖x‖N = ‖x‖1.

We know the conditions (H1)–(H3) are satisfied. Let ω(t) =
∫ T

0
G(t, s) ds, the

existence condition (H4) becomes

µ ≤ (σ1ω∗)αR1−α2 − (σ1ω∗)αγ∗R−α2 − 1
ω∗Rα+β

ρα+β

for some R with R1+α > ω∗. So the system (1.1) has at least one non-collision
T -periodic solution for

0 < µ < µ1 = sup
R1+α>ω∗

(σ1ω∗)αR1−α2 − (σ1ω∗)αγ∗R−α2 − 1
ω∗Rα+β

ρα+β .
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Note that µ1 = ∞ if α + β < 1 − α2 and µ1 < ∞ if α + β ≥ 1 − α2. Thus we
have the desired results. �

In the following, let us consider the case when γ∗ > 0.

Theorem 3.7. Suppose that a(t) satisfies (A) and the nonlinearity f(t, x)+
e(t) satisfies conditions (H1)–(H3). Furthermore, assume that

(H′′
4) there exists a positive constant R > 0 such that

g(σ1γ∗)
(

1 +
h(R/ρ)
g(R/ρ)

)
K∗ + γ∗ ≤ R.

If γ∗ > 0, then the system (1.1) has at least one non-collision T -periodic solution.

Proof. Let R be the positive constant satisfying (H′′
4) and r = γ∗, then

R > r > 0 since R > γ∗. Following the same strategy and notation in the proof
of Theorem 3.1. We only need to prove A(Ω) ⊂ Ω.

For each x ∈ Ω and for all t ∈ [0, T ], by the non-negative sign of G(t, s) and
f(t, x), we have

〈v,Ax(t)〉 =
∫ T

0

G(t, s)〈v, f(s, x(s)) + e(s)〉 ds

=
∫ T

0

G(t, s)〈v, f(s, x(s))〉 ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≥

∫ T

0

G(t, s)φR(s) ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≥ ΦR∗ + γ∗ ≥ γ∗ = r.

On the other hand, by (H3) and (H4), we have

〈v,Ax(t)〉 =
∫ T

0

G(t, s)〈v, f(s, x(s)) + e(s)〉 ds

=
∫ T

0

G(t, s)〈v, f(s, x(s))〉 ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≤

∫ T

0

G(t, s)k(t){g(‖x‖N ) + h(‖x‖N )} ds +
〈

v,

∫ T

0

G(t, s)e(s) ds

〉
≤ g(σ1γ∗)

(
1 +

h(R/ρ)
g(R/ρ)

)
K∗ + γ∗ ≤ R.

We know A(Ω) ⊂ Ω. Therefore we have the desired results by applying
Schauder’s fixed point theorem. �

Example 3.8. Assume that a(t) satisfies the condition (A). The components
of nonlinearity are given by

fi(t, x) + ei(t) =
( n∑

i=1

xi

)−α

+ µ

( n∑
i=1

xi

)β

+ ei(t) ≥ 0, i = 1, . . . , N,



Non-Collision Periodic Solutions 135

where 0 < α < 1, β ≥ 0, and µ is a non-negative parameter and for e(t) with
γ∗ > 0.

(i) If α + β < 1, then (1.1) has at least one non-collision T -periodic solution
for each µ > 0.

(ii) If α + β ≥ 1, then (1.1) has at least one non-collision T -periodic solution
for each 0 ≤ µ ≤ µ1, where µ1 is some positive constant.

Proof. We will apply Theorem 3.7. So we take φL(t), g(t), h(t), k(t) and
ω(t) as in the proof of Example 3.6, then conditions (H1)–(H3) are satisfied. The
existence condition (H′′

4) becomes

µ ≤ (σ1γ∗)αR− (σ1γ∗)αγ∗ − ω∗

ω∗Rα+β
ρα+β

for some R > 0. Hence the system (1.1) has at least one positive periodic solution
for

0 < µ < µ2 = sup
R>0

(σ1γ∗)αR− (σ1γ∗)αγ∗ − ω∗

ω∗Rα+β
ρα+β .

Note that µ2 = ∞ if α + β < 1 and µ2 < ∞ if α + β ≥ 1. We get the desired
results. �

Remark 3.9. In Corollary 3.4 and Theorem 3.7, we only need that γ∗ > 0
or γ∗ = 0, which means that the components γi of γ could have sign changing
behavior. It is interesting to comparing the results that we obtained with those
in [5].

In the previous part, we have studied the existence of non-collision T -periodic
solution for the system (1.1), on condition that the strong force condition is not
satisfied. Moreover, the results are applicable to the case that the components of
the nonlinearity have sign changing behavior. The following example show that
we still get the existence of non-collision T -periodic for system (1.1), when some
components of the nonlinearity are singular and others are nonsingular. Let us
consider the following system

(3.3)

{
ẍ1 + a(t)x1 = (x1 + x2)−α + e1(t),

ẍ2 + a(t)x2 = µ(x1 + x2)β + e2(t),

where 0 < α < 1, β ≥ 0, and µ is a non-negative parameter.

Example 3.10. Assume that a(t) satisfies the condition (A). For continuous
functions e1(t), e2(t) ∈ C(R/TZ, R) with γ∗ = 0, we have:

(i) If α + β < 1 − α2, then (3.3) has at least one non-collision T -periodic
solution for each µ > 0.

(ii) If α + β ≥ 1 − α2, then (3.3) has at least one non-collision T -periodic
solution for each 0 ≤ µ ≤ µ1, where µ1 is some positive constant.
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Proof. We still apply Corollary 3.4. We still take φL(t), g(t), h(t), k(t)
and ω(t) as in the proof of Example 3.6, then conditions (H1)–(H3) are satisfied.
The rest of proof is similar to Example 3.6. We omit the details. �

Remark 3.11. We remark that the methods of Section 3 can be applied to
the dynamical systems with an attractive singularity (1.2)

−ẍ + a(t)x = f(t, x) + e(t),

when the Green function is non-negative. For example, when a(t) ≡ k2, k > 0,
the Green function of (1.2) is

G(t, s) =


e−k(s−t) + ek(T+s−t)

2k(ek − 1)
, 0 ≤ s ≤ t ≤ T,

e−k(t−s) + ek(T+t−s)

2k(ek − 1)
, 0 ≤ t ≤ s ≤ T.

It is easy to see that the Green function is positive and

ekT/2

kekT − 1
≤ G(t, s) ≤ ekT

2kekT − 1
.
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