MULTIPLE SOLUTIONS FOR THE MEAN CURVATURE EQUATION

Sebastián Lorca - Marcelo Montenegro

Abstract

We perturb the mean curvature operator and find multiple critical points of functionals that are not even. As a consequence we find infinitely many solutions for a quasilinear elliptic equation. The generality of our results are also reflected in the relaxed hypotheses related to the behavior of the functions around zero and at infinity.

1. Introduction

In this paper we show that the number of solutions of the mean curvature equation

$$
\begin{cases}-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\lambda f(x, u) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { in } \partial \Omega .\end{cases}
$$

increases as the parameter $\lambda>0$ increases. We assume that $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there is a constant
(1.2) $c>0$ and $g \in L^{\infty}(\Omega), g>c$ such that

$$
\lim _{u \rightarrow 0} \frac{f(x, u)}{|u|^{p-1} u}=g(x) \text { uniformly in } x, 1<p<\frac{N+2}{N-2} .
$$

2000 Mathematics Subject Classification. 35J60, 35J25, 35J70.
Key words and phrases. Mean curvature, perturbation from symmetry, nonsymmetric functionals, multiple critical points, minimax theorem.

The first named author have been partially supported by FONDECYT N ${ }^{o} 1080500$.
The second named author was partially supported by CNPq.

Our main result reads as follows.
Theorem 1.1. For every $m \in \mathbb{N}$ there is a λ_{0} such that problem (1.1) has at least m solutions if $\lambda>\lambda_{0}$. Moreover, the solutions tend to 0 in $W^{1, \infty}(\Omega)$ as $\lambda \rightarrow \infty$.

In [6] the authors proved the existence of only one positive solution of mountain pass type for λ large under the assumption that $f(s) / s$ is increasing in s. There is no need to assume such an assumption here and our f may depend on x. An interesting fact is that we use the technic that resemblances the perturbation from symmetry of [8] and [12] to prove the existence of multiple solutions for large λ, but f do not need to be odd, we just need f to be asymptotically odd. And to fall into an appropriate functional setting, we perturb the mean curvature operator.

There are many surfaces of constant mean curvature, which are unbounded. The surfaces need not to be C^{2} up to the boundary, see [9] for a study on convex domains. A classical assumption to yielding to $C^{2, \alpha}(\bar{\Omega})$ solutions is $(N /(N-1))|H| \leq K$, where K is the mean curvature of the boundary $\partial \Omega$ and $f \equiv H$, see [10]. Non-convex domains are treated in [13].

Our result should be compared with those in BV functional setting, where critical points of the energy functional are found, but they need not to correspond to weak solutions of the mean curvature equation, see [5], [7].

Here we adopt a truncation of the mean curvature operator, like in [6]. We also use some ideas from [2], that allows us to find sequences of critical values of even functionals bounding the energy functional corresponding to (1.1). These critical values lead to weak solutions of (1.1).

The proof of our main result is splitted in a series of lemmas in the next section.

2. Proof of Theorem 1.1

It will be convenient for our purposes to define $\alpha(t)=1 /(\sqrt{1+t})$ and the truncation

$$
\phi(t)= \begin{cases}\alpha(t) & \text { for } t \leq M \\ \alpha(M) & \text { for } t \geq M\end{cases}
$$

for some constant $M>0$. We will study the truncated problem

$$
\begin{cases}-\operatorname{div}\left(\phi\left(|\nabla u|^{2}\right) \nabla u\right)=\lambda f(x, u) & \text { in } \Omega \tag{2.1}\\ u=0 & \text { in } \partial \Omega\end{cases}
$$

Let $h(x, u)=f(x, u)-g(x)|u|^{p-1} u$. By condition (1.2) we have

$$
\lim _{u \rightarrow 0} h(x, u) /|u|^{p}=0 \quad \text { uniformly in } x .
$$

We now start by constructing the perturbative scheme to treat problem (2.1). If $a>0$ is sufficiently small then there is a constant $C_{a}>0$ such that $|h(x, u)| \leq$ $C_{a}|u|^{p}$ for $|u| \leq 2 a$ and $C_{a} \rightarrow 0$ as $a \rightarrow 0$.

Let β_{a} be a C^{∞} function such that $\beta_{a}(u)=1$ for $|u| \leq a, \beta_{a}(u)=0$ for $|u| \geq 2 a$, and $0 \leq \beta_{a} \leq 1$. Define $h_{a}(x, u)=\beta_{a}(u) h(x, u)$ for every $(x, u) \in \Omega \times \mathbb{R}$ and consider the problem

$$
\begin{cases}-\operatorname{div}\left(\phi\left(\lambda^{2 /(p-1)}|\nabla u|^{2}\right) \nabla u\right) & \tag{2.2}\\ \quad=g(x)|u|^{p-1} u+\lambda^{p /(p-1)} h_{a}\left(x, \lambda^{-1 /(p-1)} u\right) & \text { in } \Omega, \\ u=0 & \text { in } \partial \Omega .\end{cases}
$$

LEmma 2.1. If u is a solution of (2.2) and $\|\nabla u\|_{L^{\infty}} \leq a \lambda^{1 /(p-1)}$, then $v(x)=$ $\lambda^{-1 /(p-1)} u(x)$ is a solution of (2.1) and then of (1.1).

We define now our functional framework. Let

$$
h_{a, \lambda}(x, u)=\lambda^{p /(p-1)} h_{a}\left(x, \lambda^{-1 /(p-1)} u\right)
$$

and

$$
H_{a, \lambda}(u)=\int_{0}^{u} h_{a, \lambda}(x, s) d s .
$$

Observe that

$$
\left|h_{a, \lambda}(x, u)\right| \leq C_{a}|u|^{p}, \quad\left|H_{a, \lambda}(x, u)\right| \leq \frac{C_{a}}{p+1}|u|^{p+1}
$$

and

$$
\left|H_{a, \lambda}(x, u)\right| \leq \frac{2^{p+1}}{p+1} a^{p+1} C_{a} \lambda^{(p+1) /(p-1)} .
$$

Define

$$
\begin{equation*}
c(a, \lambda):=\frac{C_{a}}{p+1} 2^{p+1} a^{p+1} \lambda^{(p+1) /(p-1)}|\Omega| . \tag{2.3}
\end{equation*}
$$

Let $\Phi(s)=\int_{0}^{s} \phi(t) d t$. The following expressions define functionals over $H_{0}^{1}(\Omega)$:

$$
\begin{aligned}
& I_{1}(u)=\frac{\alpha(M)}{2} \int_{\Omega} \Phi\left(|\nabla u|^{2}\right)-\frac{g(x)}{p+1}|u|^{p+1}, \\
& I_{2}(u)=\frac{1}{2} \int_{\Omega} \Phi\left(|\nabla u|^{2}\right)-\frac{g(x)}{p+1}|u|^{p+1}
\end{aligned}
$$

and

$$
J_{\lambda}(u)=\frac{1}{2 \lambda^{2 / p-1}} \int_{\Omega} \Phi\left(\lambda^{2 / p-1}|\nabla u|^{2}\right)-\int_{\Omega} \frac{g(x)}{p+1}|u|^{p+1}-\int_{\Omega} H_{a, \lambda}(x, u) .
$$

Then

$$
I_{1}(u)-c(a, \lambda) \leq J_{\lambda}(u) \leq I_{2}(u)+c(a, \lambda) .
$$

Notice that if $v=\alpha(M)^{1 / p-1} u$, then $I_{1}(v)=\alpha(M)^{(p+1) /(p-1)} I_{2}(u)$.

Notice that I_{1} and I_{2} are even functionals. We use the minimax variational methods to find multiple critical points of J_{λ}.

We define the sets

$$
V_{k}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{k}\right\} \quad \text { and } \quad Z_{k}=\operatorname{span}\left\{\varphi_{k}, \varphi_{k+1}, \ldots\right\}
$$

by splitting $X:=H_{0}^{1}(\Omega)$ into $\left(\varphi_{k}\right)_{k=1,2, \ldots}$, which are the eigenfunctions of the Laplacian with $\|u\|_{L^{2}}=1$. Throughout the paper, $\|\cdot\|$ represent the H_{0}^{1} norm.

Lemma 2.2. There are sequences $r_{k}>0$ and $\rho_{k}>0$ satisfying $\rho_{k}>r_{k}$, $\rho_{k+1}>\rho_{k}, r_{k+1}>r_{k}$ and $r_{k} \rightarrow \infty$ as $k \rightarrow \infty$,

$$
\max _{u \in V_{k},\|u\| \geq \rho_{k}} I_{2}(u)<0 \quad \text { and } \quad \inf _{u \in Z_{k},\|u\|=r_{k}} I_{2}(u) \rightarrow \infty .
$$

Proof. Let $\beta_{k}=\sup _{u \in Z_{k},\|u\|=1}\left(|\nabla u|^{p+1}\right)^{1 /(p+1)}$ then

$$
\left(\int_{\Omega}|u|^{p+1}\right)^{1 /(p+1)} \leq \beta_{k}\left(\int_{\Omega}|\nabla u|^{2}\right)^{1 / 2}
$$

Choose $r_{k}=\left(c \beta_{k}^{p+1}\right)^{-1 /(p-1)}$ if $u \in Z_{k}$ and $\|u\|=r_{k}$, where c was defined in (2.3), then

$$
I_{2}(u) \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{c}{p+1} \beta_{k}^{p+1}\left(\int_{\Omega}|\nabla u|^{2}\right)^{(p+1) / 2}
$$

and

$$
I_{2}(u) \geq\left(\frac{1}{2}-\frac{1}{p+1}\right)\left(c \beta_{k}^{p+1}\right)^{-2 /(p-1)}
$$

By Lemma 3.8 of [14], one has $\beta_{k} \rightarrow 0$. Moreover, since V_{k} is finite dimensional

$$
\left(\int_{\Omega}|u|^{p+1}\right)^{1 / p+1} \geq c_{k}\left(\int_{\Omega}|\nabla u|^{2}\right)^{1 / 2}
$$

for all $u \in V_{k}$ with $c_{k} \rightarrow 0$, we get

$$
I_{2}(u) \leq \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-c c_{k}^{p+1}\left(\int_{\Omega}|\nabla u|^{2}\right)^{(p+1) / 2} d x
$$

then we have $I_{2}(u)<0$ if

$$
\left(\int_{\Omega}|\nabla u|^{2}\right)^{1 / 2}>\left(\frac{1}{2 c c_{k}^{p+1}}\right)^{1 / p-1} .
$$

Without loss of generality we choose ρ_{k} such that $\rho_{k}>r_{k}$ and $\rho_{k+1}>\rho_{k}$.
Observe that

$$
\max _{u \in V_{k},\|u\| \geq \rho_{k}\left(\alpha(M)^{1 / p-1}\right)} I_{1}(u)<0, \quad \text { and } \quad \inf _{u \in Z_{k},\|u\|=r_{k}\left(\alpha(M)^{1 / p-1}\right)} I_{1}(u) \rightarrow \infty
$$

Define

$$
\begin{array}{ll}
B_{k}^{1}=\left\{u \in V_{k}:\|u\| \leq \rho_{k} \alpha(M)^{1 / p-1}\right\}, & N_{k}^{1}=\left\{u \in Z_{k}:\|u\|=r_{k} \alpha(M)^{1 / p-1}\right\}, \\
B_{k}^{2}=\left\{u \in V_{k}:\|u\| \leq \rho_{k}\right\}, & N_{k}^{2}=\left\{u \in Z_{k}:\|u\|=r_{k}\right\},
\end{array}
$$

and
$\Lambda_{1}^{i}=\left\{\psi \in C\left(B_{1}^{i}, X\right): \psi\right.$ is odd and $\left.\left.\psi\right|_{\partial B_{1}^{i}}=\mathrm{id}\right\}$,
$\Lambda_{k}^{i}=\left\{\psi \in C\left(B_{k}^{i}, X\right): \psi\right.$ is odd, $\left.\psi\right|_{\partial B_{k-1}^{i}} \in \Lambda_{k-1}^{i}$ and $\left.\left.\psi\right|_{\partial B_{k}^{i}}=\mathrm{id}\right\}, \quad i=1,2$.
The following lemma appears in [12] and [14].
Lemma 2.3. If $\psi \in C\left(B_{k}^{i}, X\right), \psi$ is odd and $\left.\psi\right|_{\partial B_{k}^{i}}=\mathrm{id}$, then $\psi\left(B_{k}^{i}\right) \cap N_{k}^{i} \neq \emptyset$ for $i=1,2$.

Define $c_{k}^{i}=\inf _{\psi \in \Lambda_{k}^{i}} \max _{u \in B_{k}^{i}} I_{i}(u)$. Take $\psi \in \Lambda_{k}^{i}$, by above lemma there exists $u^{i} \in B_{k}^{i}$ such that $\psi\left(u^{i}\right) \in N_{k}^{i}$. Then, for every $\psi \in \Lambda_{k}^{i}$,

$$
c_{k}^{i} \geq \max _{u \in B_{k}^{i}} I_{i}(\psi(u)) \geq I_{i}(\psi(u)) \geq \inf _{v \in N_{k}^{i}} I_{i}(v) \rightarrow \infty .
$$

implying

$$
c_{k}^{i} \geq \inf _{v \in N_{k}^{i}} I_{i}(v) \rightarrow \infty
$$

For $\psi \in \Lambda_{k}^{2}$, define $\varphi(u)=\alpha(M)^{1 / p-1} \psi\left(\alpha(M)^{-1 / p-1} u\right)$ belongs to Λ_{k}^{1} and then

$$
I_{1}(\widetilde{\varphi}(u))=\alpha(M)^{(p+1) /(p-1)} I_{2}(\psi(v))
$$

where $v=\alpha(M)^{-1 / p-1} u$. A calculation shows $c_{k}^{1}=\alpha(M)^{(p+1) /(p-1)} c_{k}^{2}$.
Define

$$
B_{k+1}^{+}=\left\{u=v+t \varphi_{k+1}: v \in V_{k}, t \geq 0,\|u\| \leq \rho_{k+1}\right\}
$$

$$
\Pi_{k}=\left\{\phi \in C\left(B_{k+1}^{+}, H_{0}^{1}\right):\left.\phi\right|_{B_{k+1}^{+} \cap V_{k}} \text { is odd, }\left.\phi\right|_{B_{k}^{+}} \in \Lambda_{k}^{2},\right.
$$

$$
\left.\left.\phi\right|_{\partial B_{k+1}^{+}-B_{k}^{2}}=\mathrm{id}, \max _{u \in \partial B_{k+1}^{+}} I_{2}(\phi(u))<c_{k}^{2}+1 / 2\right\} .
$$

Lemma 2.4. $\Pi_{k} \neq \emptyset$.
Proof. Let $\psi \in \Lambda_{k}^{2}$ such that $\max _{u \in B_{k}^{2}} I_{2}(\psi(u))<c_{k}^{2}+1 / 2$. Extend ψ to a function $\widetilde{\psi}$ such that $\left.\widetilde{\psi}\right|_{B_{k+1}^{2} \cap V_{k}}$ is odd. This is possible since $\left.\phi\right|_{\partial B_{k+1}^{+}-B_{k}^{2}}=\mathrm{id}$. Therefore $\max _{u \in \partial B_{k+1}^{+}} I_{2}(\phi(u))<c_{k}^{2}+1 / 2$. Thus, $\widetilde{\psi} \in \Pi_{k}$.

Lemma 2.5. For a given $K>0$ and $N \in \mathbb{N}$ there is $m \geq N$ such that $c_{m+1}>c_{m}+K$.

Proof. By contradiction, if there is $N \in \mathbb{N}$ such that $c_{m+1} \leq c_{m}+K$ for every $m \geq N$. This implies $c_{N+q} \leq c_{N}+q K$ for every $q \geq 1$. This is a contradiction to the fact that $c_{N+q} \geq c(N+q)^{\gamma}$ for some $\gamma>1$ and every sufficiently large q, see [1] or [12, p. 124].

Lemma 2.6. There is a sequence of indexes $k_{1}<k_{2} \ldots$ such that $c_{k_{1}+1}^{1}-1>1$, $c_{k_{n}+1}^{2}>c_{k_{n}}^{2}+3$ for $n \geq 1$ and $c_{k_{n}+1}^{1}-1>d_{k_{n-1}}+1$ for $n \geq 2$ where

$$
d_{k_{n}}=\inf _{\phi \in \Pi_{k_{n}}} \max _{u \in B_{k_{n}+1}^{+}} I_{2}(\phi(u))
$$

Proof. The proof follows by induction and applying the previous lemma.
Define $\widetilde{c}_{k_{n}}=\inf _{\phi \in \Pi_{k_{n}}} \max _{u \in B_{k_{n}+1}^{+}} J_{\lambda}(\phi(u))$. By our construction, $\widetilde{c}_{k_{n}}<$ $d_{k_{n}}+1$ and $\widetilde{c}_{k_{n}}>c_{k_{n}+1}^{1}-1>d_{k_{n-1}}+1>\widetilde{c}_{k_{n-1}}$ we get $\widetilde{c}_{k_{n}}>\widetilde{c}_{k_{n-1}}$. We remark that $\widetilde{c}_{k_{i}}$, depend on λ and a, but $c_{k_{n}}^{i}$ and $d_{k_{n}}$ do not.

Lemma 2.7. If a is small enough and λ is such that $c(a, \lambda)=1$, then $\widetilde{c}_{k_{i}}(\lambda)$ is a critical value.

Proof. Suppose on the contrary, then by the Deformation Lemma for every sufficiently small $\varepsilon>0$ there exists $\eta:=\eta_{\varepsilon}$ such that $\eta\left(J_{\lambda}^{\widetilde{c}_{k_{i}}+\varepsilon}\right) \subset J_{\lambda}^{\widetilde{c}_{k_{i}}-\varepsilon}$, we have used the notation $J_{\lambda}^{d}=\left\{u: J_{\lambda}(u) \leq d\right\}$ and $\eta=\mathrm{id}$ in $H_{0}^{1}-\left\{\widetilde{c}_{k_{i}}-2 \varepsilon \leq\right.$ $\left.J_{\lambda}(u) \leq \widetilde{c}_{k_{i}}+2 \varepsilon\right\}$. For $\phi \in \Pi_{k_{i}}$

$$
\max _{u \in B_{k_{i}+1}^{+}} J_{\lambda}(\phi(u)) \leq \widetilde{c}_{k_{i}}+\varepsilon
$$

Take $u \in \partial B_{k_{i}+1}^{+}$, then $I_{2}(\phi(u))<c_{k_{i}}+1 / 2$ and

$$
\begin{aligned}
J_{\lambda}(\phi(u)) & \leq I_{2}(\phi(u))+1 \leq c_{k_{i}}^{2}+3 / 2 \\
& \leq c_{k_{i}+1}^{2}+3 / 2-3 \leq \alpha^{-(p+1) /(p-1)} c_{k_{i}+1}^{1}-3 / 2 \\
& \leq \alpha^{-(p+1) /(p-1)}\left(\widetilde{c}_{k_{i}+1}-1\right)-3 / 2 \leq \widetilde{c}_{k_{i}}-2 \varepsilon
\end{aligned}
$$

if

$$
\widetilde{c}_{k_{i}}\left(\frac{1}{\alpha^{(p+1) /(p-1)}}-1\right)<\frac{3}{2}-\frac{1}{\alpha^{(p+1) /(p-1)}}-2 \varepsilon .
$$

But $\widetilde{c}_{k_{i}}<d_{k_{m}}+1$, then the right hand side of the expression above converges to zero as $M \rightarrow 0$, then there is $M_{0}>0$ such that

$$
J_{\lambda}(\phi(u))<\widetilde{c}_{k_{i}}-2 \varepsilon
$$

for $M \leq M_{0}$ and every $i=1, \ldots, m$. Thus, $\eta \circ \phi(u)=\phi(u)$ and $\eta \circ \phi \in \Pi_{k_{i}+1}$, a contradiction.

The following boundedness is standard, see e.g. [12].

Lemma 2.8. Assume $N \geq 3$. Let $q \in C(\mathbb{R})$ and $|q(u)| \leq k|u|^{p-1}$ for every $u \in \mathbb{R}$ and some constant $k>0$. If $u \in H_{0}^{1}(\Omega)$ is a solution of the equation $-\operatorname{div}\left(\Phi\left(|\nabla u|^{2}\right) \nabla u\right)=q(u)$ in Ω, then there are constants $0<M<M_{0}$ and $C=C\left(p, k, N, M_{0}\right)>0$ such that

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\|u\|_{L^{p}(\Omega)}^{2(p+1) /((N-2)(1-p)+4)} .
$$

If $N=2$, there are constants $0<M<M_{0}$ and $C=C\left(\Omega, p, M_{0}\right)>0$ and $\alpha=\alpha(p)>0$ such that $\|u\|_{L^{\infty}(\Omega)} \leq C\|u\|_{L^{p}(\Omega)}^{\alpha}$.

Proof of Theorem 1.1. Let $u:=u_{k_{i}}$ a solution in level $\widetilde{c}_{k_{i}}$, then

$$
\begin{gathered}
\int_{\Omega} \Phi\left(|\nabla u|^{2} \lambda^{2 / p-1}\right)|\nabla u|^{2}=\int_{\Omega}|u|^{p+1} g(x)+\int_{\Omega} h_{a, \lambda}(x, u) u, \\
\int_{\Omega}|\nabla u|^{2} \geq \int_{\Omega}|u|^{p+1} g(x)-C_{a} \int_{\Omega}|u|^{p+1}, \\
\widetilde{c}_{k_{i}}=\frac{1}{2} \int_{\Omega} \Phi\left(|\nabla u|^{2} \lambda^{2 / p-1}\right)-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} g(x)-\int_{\Omega} H_{a, \lambda}(x, u) \\
\geq \frac{\alpha(M)}{2} \int_{\Omega}|\nabla u|^{2}-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} g(x)-\frac{C_{a}}{p+1} \int_{\Omega}|u|^{p+1} .
\end{gathered}
$$

Then

$$
\begin{aligned}
& \frac{\alpha(M)}{2} \int_{\Omega}|u|^{p+1} g(x)-C_{a} \alpha(M) \int_{\Omega}|u|^{p+1} \\
& \\
& \quad-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} g(x)-\frac{C_{a}}{p+1} \int_{\Omega}|u|^{p+1} \leq \widetilde{c}_{k_{i}}
\end{aligned} \quad \begin{aligned}
& \left(\frac{\alpha(M)}{2}-\frac{1}{p+1}\right) \int_{\Omega}|u|^{p+1} g(x)-C_{a}\left(\alpha(M)+\frac{1}{p+1}\right) \int_{\Omega}|u|^{p+1} \leq \widetilde{c}_{k_{i}} \leq d_{k_{m}}
\end{aligned}
$$

For $M \leq M_{0}, \int_{\Omega}|u|^{p+1} \leq c\left(m, M_{0}, g\right)$.
By Lemma 2.8, $\|u\|_{L^{\infty}(\Omega)} \leq c_{1}\left(m, M_{0}\right)$, and then $\|\nabla u\|_{L^{\infty}(\Omega)} \leq c_{2}\left(m, M_{0}\right)$.
Since $c(a, \lambda)=1$, then $\lambda a^{1 / p-1}=\left(2^{p+1} /(p+1) C_{a}\right)^{-1 / p+1}$. Choose a sufficiently small (and this implies that λ is large) such that $\lambda a^{1 / p-1} \geq c_{2}\left(m, M_{0}\right)$

References

[1] A. Bahri and P.-L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), 1027-1037.
[2] S. Chen and S. Li, On a nonlinear elliptic eigenvalue problem, J. Math. Anal. Appl. 307 (2005), 691-698.
[3] P. Clemént, R. Manasevich and E. Mitidieri, On a modified capillary equation, J. Differential Equations 124 (1996), 343-358.
[4] C. V. Coffman and W. K. Ziemmer, A prescribed mean curvature on domains without radial symmetry, SIAM J. Math. Anual. 22 (1991), 982-990.
[5] V. K. Le, A Lusternik-Schnirelmann type theorem for eigenvalues of a prescribed mean curvature problem, Nonlinear Anal. 64 (2006), 1503-1527.
[6] S. Lorca and P. Ubilla, Partial differential equations involving subcritical, critical and supercritical nonlinearities, Nonlinear Anal. 56 (2004), 119-131.
[7] M. Marzocchi, Multiple solutions of quasilinear equations involving an area-type term, J. Math. Anal. Appl. 196 (1995), 1093-1104.
[8] P. H. Rabinowitz, Minimax methods in critical point theory with applications to di erential partial equations, C.B.M.S. Regional Conference Series in Mathematics, vol. 65, Amer. Math. Soc., Providence, RI, 1986.
[9] J. Ripoll, Some existence results and gradient estimates of solutions of the Dirichlet problem for the constant mean curvature equation in convex domains, J. Differential Equations 181 (2002), 230-241.
[10] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413496.
[11] , Positive solutions of a prescribed mean curvature problem, Calculus of Variations and Differential Equations, Lecture Notes in Math., vol. 1340, Springer, New York, 1988.
[12] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian System, Springer, Berlin, Heidelberg, 1990.
[13] A. S. Tersenov, On quasilinear non-uniformly elliptic equations in some non-convex domains, Comm. Partial Differential Equations 23 (1998), 2165-2185.
[14] M. Willem, Minimax Theorems, Birkhäuser, Basel, 1996.

Sebastián Lorca

Universidad de Tarapacá
Departamento de Matemática
Instituto de Alta Investigacion
Casilla 7D, Arica, CHILE
E-mail address: slorca@uta.cl

Marcelo Montenegro

Universidade Estadual de Campinas
IMECC, Departamento de Matemática
Caixa Postal 6065
CEP 13083-970, Campinas, SP, BRASIL
E-mail address: msm@ime.unicamp.br

