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BOUNDED SOLUTIONS
TO NONLINEAR DELAY DIFFERENTIAL EQUATIONS

OF THIRD ORDER

Cemil Tunç

Abstract. This paper gives some sufficient conditions for every solution

of delay differential equation

...
x (t) + f(t, x(t), x(t− r), ẋ(t), ẋ(t− r), ẍ(t), ẍ(t− r))

+ b(t)g(x(t− r), ẋ(t− r)) + c(t)h(x(t))

= p(t, x(t), x(t− r), ẋ(t), ẋ(t− r), ẍ(t))

to be bounded.

1. Introduction

In 1999, Mehri and Shadman [2] considered third order nonlinear differential
equation without delay:

(1.1)
...
x (t) + a(t)f(ẍ) + b(t)g(ẋ) + c(t)h(x) = e(t),

and via an energy function they discussed boundedness of solutions of equation
(1.1). Later, in 2008, Tunç [3] investigated the same problem for nonlinear delay
differential equation of third order:

...
x (t) + f(t, x(t), ẋ(t), ẍ(t), ẍ(t− r)) + b(t)g(ẋ(t− r)) + c(t)h(x(t)) = e(t).
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In this paper, we consider third order nonlinear delay differential equation of the
form:

(1.2)
...
x (t) + f(t, x(t), x(t− r), ẋ(t), ẋ(t− r), ẍ(t), ẍ(t− r))

+ b(t)g(x(t− r), ẋ(t− r)) + c(t)h(x(t))

= p(t, x(t), x(t− r), ẋ(t), ẋ(t− r), ẍ(t))

whose equivalent system is

(1.3)

ẋ = y, ẏ = z,

ż = − f(t, x, x(t− r), y, y(t− r), z, z(t− r))− b(t)g(x, y)− c(t)h(x)

+ b(t)
∫ t

t−r

gx(x(s), y(s))y(s)ds + b(t)
∫ t

t−r

gy(x(s), y(s))z(s) ds

+ p(t, x, x(t− r), y, y(t− r), z),

in which r is a constant delay, r > 0; the functions b, c, f , g, h and p depend
only on the arguments displayed explicitly; the dots in (1.2) denote differentiation
with respect to t. It is assumed as basic that b(t) and c(t) are continuous on
R+, R+ = (0,∞), and f(t, x, x(t − r), y, y(t − r), z, z(t − r)), g(x, y), h(x) and
p(t, x, x(t − r), y, y(t − r), z) are continuous in their respective arguments on
R+×R6, R2, R and R+×R5, respectively; the derivatives b′(t), (∂/∂x)g(x, y) ≡
gx(x, y), (∂/∂y)g(x, y) ≡ gy(x, y) exist and are continuous for all t, x and y;
throughout the paper x(t), y(t), z(t) are abbreviated as x, y and z, respectively.

We establish here some sufficient conditions which guarantee to the bound-
edness of solutions of (1.2). Obviously, equations investigated by Mehri and
Shadman [2] and Tunç [3] are special case of our equation (1.2).

2. Main results

The first main result is the following theorem.

Theorem 2.1. In addition to the basic assumptions imposed on functions b,
c, f , g, h and p, it is assumed that the following conditions hold:

(a) B ≥ b(t) ≥ b0 > 0, b′(t) ≥ k1 > 0 and C ≥ c(t) > 0 for all t ∈ R+,
where B, b0, C and k1 are some positive constants;

(b) f(t, x, x(t− r), y, y(t− r), z, z(t− r))/z ≥ a1 for all t ∈ R+ and x, x(t−
r), y, y(t− r), z(6= 0), z(t− r) ∈ R, where a1 is a positive constant;

(c) 0 < g(x, y)/y ≤ b1, (y 6= 0), 0 < gy(x, y) ≤ b1, −M ≤ gx(x, y) ≤ −L

for all x, y ∈ R, where M , L and b1 are some positive constants;
(d) 0 < h(x)/x ≤ c1 for all x ∈ R (x 6= 0), where c1 is a positive constant;
(e) |p(t, x, x(t− r), y, y(t− r), z)| ≤ |e(t)| for all t ∈ R+, x, x(t − r), y,

y(t− r), z ∈ R, where e(t) is a continuous function of t;
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(f) there are arbitrary continuous functions α0, α1 and β on R+ = (0,∞)
such that α0 and α1 are positive and decreasing functions and β is a
positive and increasing function for all t ∈ R+, and

e(t)√
b(t)

,

(
α0(t)
α1(t)

)1/2

,

(
α1(t)b(t)

β(t)

)1/2

, |c(t)|
(

β(t)
α0(t)b(t)

)1/2

∈ L1(0,∞),

where L1(0,∞) is space of integrable Lebesgue functions. Then, for
every solution of equation (1.2), x/

√
β/α0, ẋ/

√
β/α1 and ẍ/

√
b, are

bounded for all t ∈ R+ provided that

r < min
{

2b0L

M
,
b0(2a1B + k1)
(2b1 + M)B2

}
.

Now, to prove the theorem, we introduce a differentiable energy functional
E = E(t, xt, yt, zt) defined by:

E :=
α0(t)
β(t)

x2 +
α1(t)
β(t)

y2 +
1

b(t)
z2

+ 2
∫ y

0

g(x, η) dη + λ

∫ 0

−r

∫ t

t+s

y2(u) du ds + µ

∫ 0

−r

∫ t

t+s

z2(u) du ds,

where λ and µ are some positive constants, which will be determined according
to the purpose here; α0, α1, β and b are positive functions, and both α0 and α1

and β and b, respectively, are decreasing and increasing functions for all t ∈ R+.
It is also clear that the expressions

∫ 0

−r

∫ t

t+s
y2(u) du ds and

∫ 0

−r

∫ t

t+s
z2(u) du ds

are non-negative.

Proof. Let (x, y, z) = (x(t), y(t), z(t)) be an arbitrary solution of system
(1.3). Differentiating the functional E = E(t, xt, yt, zt) along system (1.3) and
using the assumptions of Theorem 2.1, it can be easily verified that

(2.1)
d

dt
E(t,xt, yt, zt)

=
(

α′0(t)
β(t)

− α0(t)β′(t)
β2(t)

)
x2 +

(
α′1(t)
β(t)

− α1(t)β′(t)
β2(t)

)
y2 − b′(t)

b2(t)
z2

− 2
b(t)

(
f(t, x, x(t− r), y, y(t− r), z, z(t− r))

z

)
z2 +

2α0(t)
β(t)

xy

+
2α1(t)
β(t)

yz − 2c(t)
b(t)

zh(x) + 2y

∫ y

0

gx(x, η) dη

+
2

b(t)
zp(t, x, x(t− r), y, y(t− r), z)

+
2z

b(t)

∫ t

t−r

gx(x(s), y(s))y(s) ds +
2z

b(t)

∫ t

t−r

gy(x(s), y(s))z(s) ds

+ λry2 + µrz2 − λ

∫ t

t−r

y2(s) ds− µ

∫ t

t−r

z2(s) ds
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≤
(

α′0(t)
β(t)

− α0(t)β′(t)
β2(t)

)
x2 +

(
α′1(t)
β(t)

− α1(t)β′(t)
β2(t)

)
y2

− k1

B2
z2 − 2a1

B
z2 +

2α0(t)
β(t)

|x||y|+ 2α1(t)
β(t)

|y||z|

+
2c(t)
b(t)

h(x)
x
|x||z|+ 2y

∫ y

0

gx(x, η) dη

+
2

b(t)
|z||p(t, x, x(t− r), y, y(t− r), z)|

+
2z

b(t)

∫ t

t−r

gx(x(s), y(s))y(s) ds

+
2z

b(t)

∫ t

t−r

gy(x(s), y(s))z(s) ds

+ λry2 + µrz2 − λ

∫ t

t−r

y2(s) ds− µ

∫ t

t−r

z2(s) ds.

Now, by the assumptions of Theorem 2.1 and inequality 2|cd| ≤ c2 +d2, we have
the following:(

α′0(t)
β(t)

− α0(t)β′(t)
β2(t)

)
x2 ≤ 0,

(
α′1(t)
β(t)

− α1(t)β′(t)
β2(t)

)
y2 ≤ 0,

2y

∫ y

0

gx(x, η)dη ≤ −2Ly2,

(2.2)
2

b(t)
|z||p(t, x, x(t− r), y, y(t− r), z)| ≤ 2|e(t)|

b(t)
|z|,

2z

b(t)

∫ t

t−r

gx(x(s), y(s))y(s) ds ≤ Mr

b0
z2 +

M

b0

∫ t

t−r

y2(s) ds,

2z

b(t)

∫ t

t−r

gy(x(s), y(s))z(s) ds ≤ b1r

b0
z2 +

b1

b0

∫ t

t−r

z2(s) ds.

Further, the functional E = E(t, xt, yt, zt) implies

|x| ≤
(

β(t)
α0(t)

)1/2

E1/2, |y| ≤
(

β(t)
α1(t)

)1/2

E1/2,

|z| ≤
√

b(t)E1/2 ≤
√

b(t)
(

1
2

+
E

2

)
,

respectively. Hence

2α0(t)
β(t)

|x||y| ≤ 2
(

α0(t)
α1(t)

)1/2

E,(2.3)

2α1(t)
β(t)

|y||z| ≤ 2
(

α1(t)b(t)
β(t)

)1/2

E,(2.4)
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2
|e(t)|
b(t)

|z| ≤ |e(t)|√
b(t)

+
|e(t)|√

b(t)
E,(2.5)

2c1|c(t)|
b(t)

|z||x| ≤ 2c1|c(t)|
(

β(t)
α0(t)b(t)

)1/2

E.(2.6)

Substituting (2.2) and (2.3)–(2.6) into (2.1), we get

d

dt
E(t, xt, yt, zt) ≤ − (2L− λr)y2 −

[
2a1

B
+

k1

B2
−

(
b1

b0
+

M

b0
+ µ

)
r

]
z2

+ 2
(

α0(t)
α1(t)

)1/2

E + 2
(

α1(t)b(t)
β(t)

)1/2

E

+
|e(t)|√

b(t)
+
|e(t)|√

b(t)
E + 2c1|c(t)|

(
β(t)

α0(t)b(t)

)1/2

E

− (λ− b−1
0 M)

∫ t

t−r

y2(s) ds− (µ− b−1
0 b1)

∫ t

t−r

z2(s) ds.

Let us choose λ = M/b0 and µ = b1/b0. Hence

d

dt
E(t, xt, yt, zt) ≤ 2

(
α0(t)
α1(t)

)1/2

E + 2
(

α1(t)b(t)
β(t)

)1/2

E

(2.7)

+
|e(t)|√

b(t)
E + 2c1|c(t)|

(
β(t)

α0(t)b(t)

)1/2

E +
|e(t)|√

b(t)

provided

r < min
{

2b0L

M
,
b0(2a1B + k1)
(2b1 + M)B2

}
,

which we now assume. Now, let

(2.8) Φ(t) = 2
[(

α0(t)
α1(t)

)1/2

+
(

α1(t)b(t)
β(t)

)1/2

+
|e(t)|

2(b(t))1/2
+ c1|c(t)|

(
β(t)

α0(t)b(t)

)1/2]
.

Then, it follows from (2.7) and (2.8) that

(2.9)
d

dt
E(t, xt, yt, zt) ≤

|e(t)|√
b(t)

+ Φ(t)E(t, xt, yt, zt).

Integrating (2.9) from 0 to t, we obtain

E(t, xt, yt, zt)− E(0, x0, y0, z0) =
∫ t

0

|e(s)|√
b(s)

ds +
∫ t

0

E(s, xs, ys, zs)Φ(s) ds.
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By using assumption (f) of Theorem 2.1 and the Gronwall–Reid–Bellman in-
equality (see also Ahmad and Rama Mohana Rao [1]), we get

(2.10) E(t, xt, yt, zt) ≤ A exp
( ∫ t

0

Φ(s) ds

)
for a positive constant

A = E(0, x0, y0, z0) +
∫ ∞

0

|e(s)|√
b(s)

ds,

since |e(s)|/
√

b(s) ∈ L1(0,∞). Finally, since Φ ∈ L1(0,∞), ones can get from
(2.10) for some positive constant K that

(2.11) E(t, xt, yt, zt) ≤ K.

On the other hand, observe

(2.12) E(t, xt, yt, zt) ≥
α0(t)
β(t)

x2 +
α1(t)
β(t)

y2 +
1

b(t)
z2 + 2

∫ y

0

g(x, η)
η

η dη

≥ α0(t)
β(t)

x2 +
α1(t)
β(t)

y2 +
1

b(t)
z2.

Now, (2.11) and (2.12) together imply that α0x
2/β, α1y

2/β and z2/b are boun-
ded, and hence this result guarantees the boundedness of x/

√
β/α0, x′/

√
β/α1

and x′′/
√

b. This case completes the proof of Theorem 2.1. �

The second and last result is the following theorem.

Theorem 2.2. Let us replace conditions (a), (b) and (f) of Theorem 2.1 by
the conditions:

(a′) b(t) > 0 for all t ∈ R+;
(b′) there exist a positive constant M1 such that

f(t, x, x(t− r), y, y(t− r), z, z(t− r))
z

≥ M1

for all t ∈ R+, x, x(t − r), y, y(t − r), z(z 6= 0), z(t − r) ∈ R, where
M1 is a positive constant and b′(t) + M1b(t) > 0 for all t ∈ R+;

(f′) there are arbitrary continuous functions α0, α1 and β on R+ such that
α0 and α1 are positive and decreasing and β is positive and increasing
for all t ∈ R+, and

e2(t)
b′(t) + M1b(t)

,
e(t)√
b(t)

,

(
α0(t)
α1(t)

)1/2

,

(
α1(t)b(t)

β(t)

)1/2

, |c(t)|
(

β(t)
α0(t)b(t)

)1/2

in L1(0,∞).
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Then the conclusion of Theorem 2.1 holds provided that

r ≤ min
{

inf
t

(
b0M1

b(t)(2b1 + M)

)
,
2b0L

M

}
.

Proof. Now, under the assumptions of Theorem 2.2, we easily obtain

d

dt
E(t, xt, yt, zt) ≤

(
α′0(t)
β(t)

− α0(t)β′(t)
β2(t)

)
x2 +

(
α′1(t)
β(t)

− α1(t)β′(t)
β2(t)

)
y2

− b′(t)
b2(t)

z2 − 2M1

b(t)
z2 +

2α0(t)
β(t)

|x||y|

+
2α1(t)
β(t)

|y||z|+ 2c1
|c(t)|
b(t)

|z||x|

+ 2
|e(t)|
b(t)

|z| − 2Ly2 +
Mr

b0
z2 +

b1r

b0
z2 + λry2 + µrz2

+
M

b0

∫ t

t−r

y2(s) ds +
b1

b0

∫ t

t−r

z2(s) ds

− λ

∫ t

t−r

y2(s) ds− µ

∫ t

t−r

z2(s) ds

≤ − (2L− λr)y2 −
[

M1

b(t)
−

(
M

b0
+

b1

b0
+ µ

)
r

]
z2

− M1

b(t)
z2 − b′(t)

b2(t)
z2 +

2α0(t)
β(t)

|x||y|

+
2α1(t)
β(t)

|y||z|+ 2c1
|c(t)|
b(t)

|z||x|+ 2
|e(t)|
b(t)

|z|

− (λ− b−1
0 M)

∫ t

t−r

y2(s) ds− (µ− b−1
0 b1)

∫ t

t−r

z2(s) ds.

Let λ = M/b0 and µ = b1/b0. Then

d

dt
E(t, xt, yt, zt) ≤ −

(
2L− M

b0
r

)
y2 −

[
M1

b(t)
−

(
M + 2b1

b0

)
r

]
z2

− M1

b(t)
z2 − b′(t)

b2(t)
z2 +

2α0(t)
β(t)

|x||y|

+
2α1(t)
β(t)

|y||z|+ 2c1
|c(t)|
b(t)

|z||x|+ 2
|e(t)|
b(t)

|z|

≤ − M1

b(t)
z2 − b′(t)

b2(t)
z2 +

2α0(t)
β(t)

|x||y|

+
2α1(t)
β(t)

|y||z|+ 2c1
|c(t)|
b(t)

|z||x|+ 2
|e(t)|
b(t)

|z|

provided that

r ≤ min
{

inf
t

(
b0M1

b(t)(2b1 + M)

)
,
2b0L

M

}
,
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which we now assume. Hence

d

dt
E(t, xt, yt, zt) ≤ −(b′(t) + M1b(t))

(
|z|
b(t)

− |e(t)|
b′(t) + M1b(t)

)2

+
e2(t)

b′(t) + M1b(t)
+

2α0(t)
β(t)

|x||y|+ 2α1(t)
β(t)

|y||z|+ 2c1
|c(t)|
b(t)

|z||x|.

Therefore, it is clear that

d

dt
E(t, xt, yt, zt)

≤ − (b′(t) + M1b(t))
(
|z|
b(t)

− |e(t)|
b′(t) + M1b(t)

)2

+
e2(t)

b′(t) + M1b(t)

+ 2
(

α0(t)
α1(t)

)1/2

E + 2
(

α1(t)b(t)
β(t)

)1/2

E + 2c1|c(t)|
(

β(t)
α0(t)b(t)

)1/2

E

= − (b′(t) + M1b(t))
(
|z|
b(t)

− |e(t)|
b′(t) + M1b(t)

)2

+
e2(t)

b′(t) + M1b(t)

+ 2
[(

α0(t)
α1(t)

)1/2

+
(

α1(t)b(t)
β(t)

)1/2

+ c1|c(t)|
(

β(t)
α0(t)b(t)

)1/2]
E

≤ 2
[(

α0(t)
α1(t)

)1/2

+
(

α1(t)b(t)
β(t)

)1/2

+ c1|c(t)|
(

β(t)
α0(t)b(t)

)1/2]
E

+
e2(t)

b′(t) + M1b(t)
.

This implies that

(2.13)
d

dt
E(t, xt, yt, zt) ≤

e2(t)
b′(t) + M1b(t)

+ [Φ(t)− b−1/2(t)|e(t)|]E,

where Φ(t) is defined as the same as in (2.8). Now, as in the proof of Theorem
2.1, integrating (2.13) from 0 to t, later using assumption (f′) of Theorem 2.2
and the Gronwall–Reid–Bellman inequality, (see also Ahmad and Rama Mohana
Rao [1]), ones can easily obtain the following inequality:

E(t, xt, yt, zt)− E(0, x0, y0, z0)

≤
∫ t

0

e2(s)
b′(s) + M1b(s)

ds +
∫ t

0

E(s, xs, ys, zs)[Φ(s)− b−1/2(s)|e(s)|] ds,

and hence a bound for the functional E. The proof of Theorem 2.2 is now
complete. �
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