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A PRIORI BOUNDS VIA THE RELATIVE MORSE INDEX
OF SOLUTIONS OF AN ELLIPTIC SYSTEM

Miguel Ramos

Abstract. We prove a Liouville-type theorem for entire solutions of the
elliptic system −∆u = |v|q−2v, −∆v = |u|p−2u having finite relative Morse

index in the sense of Abbondandolo. Here, p, q > 2 and 1/p + 1/q >
(N−2)/N . In particular, this yields a result on a priori bounds in L∞×L∞

for solutions of superlinear elliptic systems obtained by means of min-max

theorems, for both Dirichlet and Neumann boundary conditions.

1. Introduction

A celebrated result of A. Bahri and P. L. Lions [8] states that if u ∈ C2(RN )
satisfies

(1.1) −∆u = |u|p−2u, x ∈ RN ,

with 2 < p < 2∗ := 2N/(N − 2) (N ≥ 3) and if u has finite index then u ≡ 0;
the latter assumption means that there exists R0 > 0 such that

(1.2)
∫
|∇ϕ|2 − (p− 1)

∫
|u|p−2ϕ2 ≥ 0, for all ϕ ∈ D(RN \BR0(0)).

(Actually, in [8] it is assumed furthermore that ||u||∞ < ∞ but this restriction
can be removed, as an inspection of its proof shows.) We observe that the
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left-hand member in (1.2) corresponds, formally, to the second derivative of the
energy functional evaluated at the solution u, in the direction ϕ.

This type of results is known to be useful in obtaining a priori bounds for
solutions of equations such as

(1.3) −∆u = f(u), u ∈ H1
0 (Ω),

whenever, say, lim|s|→∞ f ′(s)/|s|p−2 = ` > 0, since (1.1) can be seen as a limit
problem of (1.3) in situations where rescalement arguments are involved; solu-
tions of (1.3) are often constructed by means of critical point theory applied to
the associated energy functional, so that the “limit property” (1.2) is expected
to be a consequence of abstract results providing estimates on the Morse index
of these solutions, such as the ones in e.g. [16], [22], [27], [31]. As an example,
we mention that the main result in [28] strongly relies on this argument, as the
authors deal with a situation where no relevant energy estimates seem to be
available.

The result in [8] was later extended in several directions. In [15], [28] the
authors deal with sign-changing nonlinearities of the form f(x, s) = a(x)|s|p−2s,
in [18], [19] non-homogeneous nonlinearities such as f(s) = A(s+)p−1−B(s−)q−1

with 2 < p, q < 2∗ are considered, while the biharmonic operator ∆2 is treated
in [26]. Also, in [25], [35] it is pointed out that in fact a priori bounds for
(1.3) may be obtained without relying on blow-up arguments; in [35] connexions
between the Morse index and the Hausdorff measure of the nodal sets of the
solutions are also displayed.

A natural extension of problem (1.1) consists in studying strongly coupled
elliptic systems such as

(1.4) −∆u = |v|q−2v, −∆v = |u|p−2u, x ∈ RN .

Here we assume p, q > 2 (we recall that the case of the biharmonic operator was
studied in [26]) and also that p and q are subcritical in the sense of [13], [14],
[20], namely that

1
p

+
1
q
>
N − 2
N

·

Extending results (1.1)–(1.4) may constitute a difficult task. In connexion to
our subject, we recall that a classical result [17] states that if p < 2∗ then (1.1)
admits no positive solutions, while a corresponding statement to system (1.4)
is still to be fully proved (see e.g. [24], [32] for recent developments). Also, an
uniqueness result for positive solutions of −∆u+u = up−1 is known [21], whereas
a corresponding one for elliptic systems seems not to have been proved.

Now, given a solution (u, v) of a system such as the one in (1.4) (satisfying
some boundary conditions on, say, a bounded smooth domain), its Morse index
can be defined by different methods. Let us mention here the finite dimensional
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reduction in [12], the relative Morse index introduced in [1] in terms of a notion
of relative dimension, and also the Morse index relying on the so called spectral
flow [4], [7] and the cohomological approaches in [6], [33]; we refer the reader to
the books [2], [11] for an account of the theory as well as some applications.

In particular, in [7] a remarkable Liouville-type theorem extending Bahri–
Lions’s result [8] is proved, yielding in particular a priori bounds in L∞(Ω) ×
L∞(Ω) for superlinear and subcritical elliptic problems −∆u = g(v), −∆v =
f(u) in Ω, u = v = 0 on ∂Ω, for solutions having uniformly bounded Morse
index in the sense of [7].

Here we aim to prove a similar conclusion with respect to the relative Morse
index in [1], [5]. More precisely, our main result goes as follows.

Theorem 1.1. Let u, v ∈ C2(RN ) satisfy (1.4) with 0 < ||u||∞ <∞, p, q > 2
and 1/p+1/q > (N−2)/N . Then, for every k ∈ N there exist λ = λ(u, v, k) ∈ R+

and a subspace X ⊂ {(λφ, φ), φ ∈ D(RN )} with dimX = k such that

(1.5) I ′′(u, v)(α+ φ, β − λφ)(α+ φ, β − λφ) < 0

for every φ ∈ D(RN ) and every (α, β) ∈ X such that (α+ φ, β − λφ) 6= (0, 0).

Here I(u, v) stands (formally) for the energy functional

I(u, v) =
∫

RN

(
〈∇u,∇v〉 − 1

p
|u|p − 1

q
|v|q

)
,

and so, for ϕ,ψ ∈ D(RN ), the expression in (1.5) is precisely given by

I ′′(u, v)(ϕ,ψ)(ϕ,ψ) =
∫

RN

(2〈∇ϕ,∇ψ〉 − (p− 1)|u|p−2ϕ2 − (q − 1)|v|q−2ψ2).

We point out that the conclusion of Theorem 1.1 may be formally expressed
by stating that (u, v) has an infinite relative Morse index, with respect to the
splitting associated to the bilinear map

∫
RN 〈∇ϕ,∇ψ〉 (see Lemma 3.1 below).

A much weaker version of Theorem 1.1 (namely, the conclusion that (1.5) holds
with φ = 0) is proved in [30, Lemma 1.2]. Here the point is that the full
conclusion in (1.5) gives the correct information in connexion with the relative
Morse index in [1], [5], so that one can combine this straightforwardly with the
general abstract estimates on the Morse index of critical points constructed via
minimax theorems in critical point theory (see [2], [3], [5]).

In fact, as shown in Section 3, by means of a simple Lyapunov–Schmidt type
reduction it turns out that the relative Morse index can be estimated (by be-
low) in terms of the Morse index associated to a functional J which is no longer
strongly indefinite and to which we can therefore apply the well-established the-
ory in e.g. [16], [22], [27], [31]. This, we believe, is a novel feature of our main
theorem (cf. Lemma 3.1 below for details). This idea was recently proved to
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be successful in the study of perturbed symmetric superlinear elliptic systems,
cf. [9].

We also mention that we assume for definiteness that N ≥ 3, since an eas-
ier argument would cover the lower dimensions. This is in contrast with the
main result in [7], where the authors explicitly point out their restriction on the
dimension.

The proof of Theorem 1.1 is given in Section 2 (cf. Theorem 2.9). The argu-
ment is quite elementary and is much in the spirit of the original one in [8]. We
use some energy estimates displayed in [7, Sections 5, 6] (cf. Lemma 2.1 below)
and we fully exploit the Pohoz̆aev’s type-identity for systems stated in [23], [34],
the core of this being the proper choice of the constant λ which appears in (1.5).
We mention that one would hope that the assumption on the boundedness of u
could be dropped, but our argument does depend on this, since the value of λ
relies heavily on the fact that ||u||∞ < ∞. In Section 3 we are concerned with
the reduction method mentioned above and we derive a priori bounds from our
main result, for both Dirichlet and Neumann boundary conditions.

Acknowledgments. We thank the Department of Mathematics of the Uni-
versity of Louvain-la-Neuve (Belgium) for the warm hospitality during a stay in
June 2007, where part of this work was done. In particular, we thank Jean Van
Schaftingen for enlighten discussions on the subject.

2. A Liouville-type theorem

In the following we suppose u, v ∈ C2(ω), u 6= 0, satisfy

(2.1) −∆u = g(v), −∆v = f(u) in ω

where either ω = RN (N ≥ 3) or else ω is a half space which, up to rotation and
translation, we may assume to be given by ω = {x = (x1, . . . , xN ) : xN > 0}; in
the latter case, we also impose Dirichlet (u = 0 = v) or Neumann (∂u/∂xN =
0 = ∂v/∂xN ) boundary conditions on the boundary of ω. The functions f and
g are given by f(s) = |s|p−2s, g(s) = |s|q−2s with

(2.2) p, q > 2 and
1
p

+
1
q
>
N − 2
N

.

In fact, for later purposes in Section 3, we keep f as above but we let g ∈ C1(R; R)
be such that, for some positive constants c1, c2 and every s ∈ R,

(2.3) g′(s)s2 ≥ g(s)s, qG(s) ≥ g(s)s, c1|s|q ≤ g(s)s ≤ c2|s|q,

where G(s) :=
∫ s
0
g(ξ) dξ. We reserve the letter ϕ to denote a smooth cut-off

function with support in an annulus {x : aR ≤ |x| ≤ bR} (0 < a < b) or in some
ball BR(0), the main feature of it being that 0 ≤ ϕ(x) ≤ 1 and |∇ϕ(x)| ≤ C/R
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for all x ∈ RN . The radius R is taken large, as we compute limits as R → ∞.
Moreover, hereafter m is a large integer whose value depends only on p and q,
and all integrals are taken in ω except when indicated otherwise.

For future reference, we collect in our next lemma some estimates in [7].

Lemma 2.1 ([7]). The following holds as R→∞.

(a)
∫
g(v)v ϕm = (1 + o(1))

∫
|u|pϕm + o(1).

(b)
∫
{ϕ=1}

|∇u| |∇v|+ 1
R

∫
|u| |∇v|ϕm−1 ≤ C

∫
|u|pϕm + o(1).

Proof (sketch). The estimate R−1
∫
|u| |∇v|ϕm−1 ≤ o(1)

∫
|u|pϕm + o(1)

as well as the identity in (a) are proved in [7, Theorem 5A], using interpolation
and Hölder’s inequality; here assumption (2.2) plays a crucial role and m is
chosen sufficiently large. As for the other estimate in (b), this follows similarly
to the proof of [7, Lemma 6B] in which, however, it is furthermore assumed that∫
|u|p < ∞; for the reader’s convenience we give a sketch of the argument: for

given α, β > 0 and r, s such that 1/r + 1/s = 1, by Hölder’s inequality∫
{ϕ=1}

|∇u| |∇v| ≤
∫
|∇(uϕα)| |∇(vϕβ)|

≤
( ∫

|∇(uϕα)|r
)1/r( ∫

|∇(vϕβ)|s
)1/s

.

Now, for s given by 1/s = (1/2)(1 + 1/q − 1/p), the Gagliardo–Nirenberg in-
equality (cf. [10, p. 194]) implies that

||∇(vϕβ)||s ≤ C||∆(vϕβ)||1/2p/(p−1)||vϕ
β ||1/2q .

We choose β = m(p− 1)/p. Then, by (a),∫
|v|qϕβq ≤

∫
|v|qϕm ≤ C

∫
|u|pϕm + o(1).

Again by Hölder’s inequality one can prove that∫
|∆(vϕβ)|p/(p−1) ≤ C

∫
|u|pϕm + o(1).

In conclusion,

||∇(vϕβ)||s ≤ C

( ∫
|u|pϕm

)1/s

+ o(1).

By interchanging u and v (whence 1/r = (1/2)(1 + 1/p − 1/q)), the conclusion
follows. �

Next we compare integral terms
∫
ϕm|u|p and

∫
ϕm|u|p where ϕ and ϕ are

both supported in some ball or annulus of radius R > 0.
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Lemma 2.2. If supp∇ϕ ⊂ {ϕ = 1} then, for some C > 0 (independent
of R), ∫

|u|pϕm ≤ C

∫
|u|pϕm + o(1).

Proof. Let F (s) := |s|p/p. The following (formal) identity for solutions of
(2.1)

(N − 2)
∫
〈∇u,∇v〉 = N

∫
(F (u) +G(v))

is well-known (and, as in [7], it holds indeed in case
∫
|u|p < ∞, thanks to

Lemma 2.1. Precisely, following [23], [34] we compute 0 =
∫

div(ϕmW ) where W
is the vector field W (x) := 〈∇v, x〉∇u+〈∇u, x〉∇v−〈∇u,∇v〉x+F (u)x+G(v)x;
by using the fact that qG(v) ≥ g(v)v and also the second equation in (2.1),
according to which

∫
〈∇v,∇(ϕmu)〉 =

∫
ϕmf(u)u we arrive at(

1
p

+
1
q
− N − 2

N
+ o(1)

) ∫
|u|pϕm

≤ C

∫
supp∇ϕ

ϕm−1

(
|u|
R
|∇v|+ |u|p + g(v)v + |∇u| |∇v|

)
.

The conclusion follows from our assumption that supp∇ϕ ⊂ {ϕ = 1}, together
with (2.2) and Lemma 2.1. �

Remark 2.3. Since u 6= 0, if ϕ is supported in some annulus {x : aR < |x| <
bR} it follows from the preceding lemma that

∫
|u|p = ∞ and

∫
|u|pϕm →∞ as

R→∞ (just take ϕ = 1 in BaR(0) in such a way that supp∇ϕ ⊂ {ϕ = 1}).

Lemma 2.4. Let λ = λ(R) > 0 be given by λ = RN(1/p−1/q). Then, uni-
formly in φ ∈ D(ω),∫

|uv| |∇ϕm|2 +
∫
|v − λu| (|φ| |∆ϕm|+ |∇φ| |∇ϕm|)

≤ λ

∫
|∇φ|2 + o(1)

∫
|u|pϕ2m.

Proof. We have |∆ϕm| + R−1|∇ϕm| ≤ Cϕm−1R−2 and so the second in-
tegral on the left-hand side above is bounded by∫

supp∇ϕ

1
R
|v − λu|

(
|φ|
R

+ |∇φ|
)
ϕm−1

≤ δλ

∫
supp∇ϕ

(
φ2

R2
+ |∇φ|2

)
+ Cδ

1
λR2

∫
(v − λu)2ϕ2m−2

for any small δ > 0. Using Hölder’s inequality (recall that ϕ is supported in
some ball of radius CR) and the Sobolev embedding,∫

supp∇ϕ

φ2

R2
≤ C

( ∫
|φ|2

∗
)2/2∗

≤ C ′
∫
|∇φ|2.
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So, provided δ is chosen sufficiently small, the above expression is bounded by

(2.4) λ

∫
|∇φ|2 + C

1
λR2

∫
(v − λu)2ϕ2m−2 +

∫
|uv| |∇ϕm|2.

On the other hand, let us denote α := N(1− 2/p)− 2, β := N(1− 2/q)− 2, so
that λ2 = Rβ−α, and let us fix m large enough so that (2m − 2)p/2 ≥ 2m and
(2m − 2)q/2 ≥ 2m. Then, by Hölder’s inequality and Lemma 2.1 (a) (with m

replaced by 2m),

1
λR2

∫
(v − λu)2ϕ2m−2 ≤ 2

R2

(
λ

∫
u2ϕ2m−2 +

1
λ

∫
v2ϕ2m−2

)
≤λC

( ∫
|u|pϕ2m

)2/p

Rα +
C

λ

( ∫
|v|qϕ2m

)2/q

Rβ

≤C ′
∫
|u|pϕ2m

(
λRα +

1
λ
Rβ

)
=2C ′R(α+β)/2

∫
|u|pϕ2m = o(1)

∫
|u|pϕ2m,

since, by assumption, α + β < 0; we have also taken into account the Re-
mark 2.3. Similarly, by Hölder’s inequality the last term in (2.4) is bounded by
CR(α+β)/2

∫
|u|pϕ2m and the conclusion follows. �

The energy functional associated to (2.1) is formally given by

I(u, v) = 〈u, v〉 −
∫
F (u)−

∫
G(v),

where we have denoted 〈u, v〉 :=
∫
〈∇u,∇v〉. If α, β are smooth functions with

compact support, the quadratic form I ′′(u, v)(α, β)(α, β) is well-defined and is
given by

(2.5) I ′′(u, v)(α, β)(α, β) = 2〈α, β〉 −
∫
f ′(u)α2 −

∫
g′(v)β2.

Our next result summarizes the preceding conclusions.

Proposition 2.5. Let u, v be solutions of the system (2.1), m ∈ N be suf-
ficiently large and ϕ be supported in some ball (or annulus) of radius R. Then,
provided R is large enough and λ := RN(1/p−1/q),

sup
φ∈D(ω)

I ′′(u, v)(uϕm+φ, vϕm−λφ)(uϕm+φ, vϕm−λφ) < −1
2
p− 2
p− 1

∫
|u|pϕ2m.

Proof. We compute (2.5) with α = uψ+φ, β = vψ−λφ, ψ := ϕm. Starting
from −∆(uψ) = g(v)ψ−u∆ψ−2〈∇u,∇ψ〉 and similarly for −∆(vψ), and using
integration by parts, one finds that

2〈uψ, vψ〉 = 2
∫
uv|∇ψ|2 +

∫
f(u)uψ2 +

∫
g(v)vψ2.
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Similarly, by computing −∆((v − λu)ψ) we get that

2〈(v − λu)ψ, φ〉 =2
∫
f(u)ψφ− 2λ

∫
g(v)ψφ

+ 4
∫

(v − λu)φ∆ψ + 2
∫

(v − λu)〈∇φ,∇ψ〉.

Thus in our case the expression in (2.5) is given by

−
∫

(f ′(u)− f(u)
u

)(uψ + φ)2 −
∫
f(u)
u

φ2

−
∫

(g′(v)− g(v)
v

)(vψ − λφ)2 − λ2

∫
g(v)
v
φ2 − 2λ

∫
|∇φ|2

+ 4
∫

(v − λu)φ∆ψ + 2
∫

(v − λu)〈∇φ,∇ψ〉+ 2
∫
uv|∇ψ|2.

According to Lemma 2.4, the last four integrals can be estimated by o(1)
∫
|u|pψ2.

Since g′(v) ≥ g(v)/v, each remaining term is negative. In fact, by recalling that
f(u) = |u|p−2u, the first two integrals above can be written as

−
∫
|u|p−2((p− 1)φ2 + (p− 2)u2ψ2 + 2(p− 2)uψφ) ≤ −p− 2

p− 1

∫
|u|pψ2,

and the conclusion follows. �

Remark 2.6. For future reference in Section 3, we mention that the con-
clusion of Proposition 2.5 still holds, with a much simpler proof, when we take
g = 0 in (2.1) and 0 < ||u||∞ < ∞. Indeed, in this case u is constant (by
Liouville theorem) and v is bounded (by elliptic estimates). Then, by going
through the computations in the proof of Proposition 2.5 with λ := 1 we see
that I ′′(u, v)(uϕm + φ, vϕm − φ)(uϕm + φ, vϕm − φ) is bounded above by

−p− 2
p− 1

∫
|u|pϕ2m +

C

R2

∫
(v − u)2ϕ2m−2 +

C

R2

∫
uvϕ2m−2,

and the conclusion follows.

In view of extending Proposition 2.5, for a given k ∈ N we consider a family
of functions ϕ1, . . . , ϕk supported in disjoint ordered annuli A1, . . . , Ak; that is,
Ai = {x : ciR < |x| < diR} with 0 < ci < di < 1 and di < ci+1; moreover,
ϕi = 1 in {x : αiR < |x| < βiR} ⊂ Ai.

Lemma 2.7. Given ϕ1, . . . , ϕk we can find numbers 0 < a1 < b1 < a2 < b2
and smooth functions ξ1, ξ2 in such a way that

(a) ξ1 = 1 in Ba1R(0), ξ1 = 0 in RN \Bb1R(0), 0 ≤ ξ1 ≤ 1,
ξ2 = 1 in Ba2R(0), ξ2 = 0 in RN \Bb2R(0), 0 ≤ ξ2 ≤ 1,

(b) for every i = 1, . . . , k and some c, c′ > 0 (independent of R)

c

∫
|u|pξm1 ≤

∫
|u|pϕmi ≤ c′

∫
|u|pξm2 .
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Proof. By assumption, ϕ1 = 1 in {x : α1R < |x| < β1R} and suppϕk ⊂
BdkR(0). Take a1 = α1, b1 = β1, a2 = dk, b2 > a2 and let ξ1, ξ2 be defined by the
conditions in (a). For every i = 1, . . . , k, since supp∇ϕi ⊂ Ba2R(0) ⊂ {ξ2 = 1},
it follows from Lemma 2.2 that∫

|u|pϕmi ≤ C

∫
|u|pξm2 .

Similarly, since supp∇ξ1 ⊂ {x : a1R < |x| < b1R} ⊂ {ϕ1 = 1}, we have that∫
|u|pξm1 ≤ C

∫
|u|pϕm1 .

It remains to prove the second inequality in (b) for i = 2, . . . , k. Now, for every
such i, let us fix ξi such that ξi = 1 in BαiR(0) and ξi = 0 in RN \ BβiR(0).
Then, as above, ∫

|u|pξmi ≤ C

∫
|u|pϕmi .

But since, by construction, supp ξ1 ⊂ {ξi = 1}, we have ξm1 ≤ ξ
m

i in RN and the
conclusion follows. �

Lemma2.8. Assume ||u||∞ < ∞. Given k ∈ N we can find a sequence
Rn →∞ and functions ϕ1, . . . , ϕk as in Lemma 2.7 in such a way that

max
{ ∫

|u|pϕmi : i = 1, . . . , k
}
≤ Cmin

{ ∫
|u|pϕmi : i = 1, . . . , k

}
.

Proof. Let ξ1, ξ2 be given by Lemma 2.7. It is sufficient to find C > 0 and
a sequence Rn →∞ such that

(2.6)
∫
|u|pξm2 ≤ C

∫
|u|pξm1 .

The argument is similar to the one in [28, p. 621]. Let θ(R) :=
∫
Ba1R(0)

|u|p and
µ := b2/a1 > 1, so that∫

|u|pξm2 ≤ θ(µR) and θ(R) ≤
∫
|u|pξm1 .

We claim that there exists Rn →∞ such that

θ(µRn) ≤ µN+1θ(Rn), for all n ∈ N.

Indeed, assume by contradiction that θ(R) ≤ θ(µR)/µN+1 for all R ≥ R0. By
iterating this inequality and using the fact that u is bounded we get that, for
every j ∈ N,

θ(R0) ≤ µ−j(N+1)θ(µjR0) ≤ Cµ−j .

Taking limits we conclude that θ(R0) = 0 for every large R0, that is u = 0. This
is a contradiction and therefore (2.7) (whence (2.6)) holds. �

Now we can state the main result of this section.
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Theorem 2.9. Under assumptions (2.2)–(2.3), let u, v be solutions of the
system (2.1) with 0 < ||u||∞ < ∞ and let k ∈ N. Then we can find a positive
constant λ and k functions ξ1, . . . , ξk ∈ D(RN ) with disjoint supports such that

(2.8) I ′′(u, v)(ξ(u, v) + (φ,−λφ))(ξ(u, v) + (φ,−λφ)) < 0,

for all φ ∈ D(ω) and all ξ =
∑k
i=1 µiξi, µi ∈ R, with ξ(u, v) + (φ,−λφ) 6= (0, 0).

Proof. If ξ = 0 then φ 6= 0 and

I ′′(u, v)(φ,−λφ)(φ,−λφ) = −2λ
∫
|∇φ|2 −

∫
f ′(u)φ2 − λ

∫
g′(v)φ2 < 0.

So we may assume ξ 6= 0. Since φ is arbitrary in D(ω), we may assume
∑k
i=1 µ

2
i =

1. We let ξi := ϕmi where m is some large integer depending on p and q, and
ϕ1, . . . , ϕk are given by Lemma 2.8 (with m replaced by 2m) for a sufficiently
large R > 0; the constant λ > 0 is defined by

(2.9) λ = RN(1/p−1/q).

It remains to show that

(2.10) sup
φ∈D(ω),

P
µ2

i =1

I ′′(u, v)(ξ(u, v) + (φ,−λφ))(ξ(u, v) + (φ,−λφ)) < 0.

Similarly to the proof of Proposition 2.5, this expression is bounded above by

− p− 2
p− 1

∫
|u|pξ2 − 2λ

∫
|∇φ|2 + 4

∫
|v − λu| |φ| |∆ξ|

+ 2
∫
|v − λu| |∇φ| |∇ξ|+ 2

∫
|uv| |∇ξ|2.

Since µ2
i ≤ 1 ∀i, we can replace ξ by ξ := ξ1 + · · · + ξk in the last three terms.

Using the definition of λ, these can be estimated as in Proposition 2.5, leading
to the conclusion that the expression in (2.10) is bounded above by

−p− 2
p− 1

∫
|u|pξ2 + o(1)

∫
|u|pξ2,

as R → ∞. We can fix c = c(k,m) such that if
∑
µ2
i = 1 then

∑
µ2m
i ≥ c and

then, since the functions ϕi have disjoint supports and by using Lemma 2.8, the
above expression is dominated by

− c′min
{ ∫

|u|pϕ2m
i : i = 1, . . . , k

}
+ o(1)max

{ ∫
|u|pϕ2m

i : i = 1, . . . , k
}

≤ −c′′min
{ ∫

|u|pϕ2m
i : i = 1, . . . , k

}
→ −∞

as R→∞. This implies (2.10) and completes the proof. �

Remarks 2.10. (a) An inspection of the proof of Lemma 2.4 shows that in
case p and q are both less than 2∗ then we can simply take λ = 1 without any
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reference to the special sequence Rn → ∞ of Lemma 2.8. Similarly conclusion
holds in case when g = 0.

(b) In fact, as the final estimates in the proof of Lemma 2.4 show, in the
general case where 1/p + 1/q > (N − 2)/N we could have chosen λ differently
— namely, in such a way that it would better reflect the symmetries by dilation
of our problem. In view of the applications in Section 3, we have chosen λ =
RN(1/p−1/q) due to its simple expression.

(c) By using a density argument, we see that the conclusion in Theorem 2.9
holds in fact for every φ ∈ D1,2(ω). Then, of course, the expression in (2.8) may
take the value −∞. In the case of Neumann boundary conditions, the conclusion
holds for φ ∈ D(RN ), whence for φ ∈ D1,2(RN ).

(d) In connexion with Theorem 1.1 as stated in the introduction, we see that

X := span{(λ2u+ λv, λu+ v)ξi, i = 1, . . . , k} ⊂ {(λφ, φ), φ ∈ H1
0 (ω)},

for ξi = ϕmi . This follows from the observation that we can write

(λ2u+ λv, λu+ v)ξi = (1 + λ2)(u, v)ξi + (ψ,−λψ),

where ψ = (λv − u)ξi ∈ H1
0 (ω). Moreover, indeed dimX = k if R is sufficiently

large. Otherwise we would have v = −λu, whence −2∆u = g(v) − f(u)/λ over
the support of some function ϕi; multiplying this identity by λuϕ2m

i , a simple
computation and Hölders’s inequality would then lead to the contradiction:∫

|u|pϕ2m
i ≤ C

R2

∫
|u| |v|ϕ2m−2

i ≤ o(1)
∫
|u|pϕ2m

i .

3. A priori bounds and related estimates

Let Ω be a smooth bounded domain of RN , N ≥ 3, and f, g ∈ C1(R). We
consider the problem

(3.1) −∆u = g(v), −∆v = f(u) in Ω, u = v = 0 on ∂Ω,

where f and g satisfy the following:

(H1) f(0) = g(0) = f ′(0) = g′(0) = 0;
(H2) 0 < (1 + δ)f(s)s ≤ f ′(s)s2 and 0 < (1 + δ)g(s)s ≤ g′(s)s2, for some

δ > 0;
(H3) for some p, q > 2 with 1/p+ 1/q > (N − 2)/N

lim
|s|→∞

f ′(s)
|s|p−2

= `1 > 0, lim
|s|→∞

g′(s)
|s|q−2

= `2 > 0,

We first assume that both p and q are smaller than 2∗ := 2N/(N − 2). In
this case, the energy functional

I(u, v) :=
∫

Ω

(〈∇u,∇v〉 − F (u)−G(v)), (u, v) ∈ E := H1
0 (Ω)×H1

0 (Ω),
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is a well defined C2 functional and its critical points correspond to solutions
of (3.1); here, as usual, F (s) :=

∫ s
0
f(ξ) dξ, G(s) :=

∫ s
0
g(ξ) dξ. We denote

E± := {(ϕ,±ϕ) : ϕ ∈ H1
0 (Ω)}. Following [2, Chapter 2.4] and [5, Section 1],

if I ′(u, v) = 0 we denote by mE−(u, v) the relative Morse index of (u, v) with
respect to E−. This integer is given by the relative dimension

(3.2) mE−(u, v) := dimE−V
− := dim(V − ∩ (E−)⊥)− dim(E− ∩ (V −)⊥),

where V − is the negative eigenspace of the quadratic form I ′′(u, v). In particular,
there is an orthogonal splitting E = V − ⊕ V +, −I ′′(u, v) is coercive on V − and
I ′′(u, v) is non-negative on V +; the splitting is orthogonal also with respect to
the quadratic form.

Now, following [29, Section 2], for any λ > 0 we consider the functional
Jλ:H1

0 (Ω) → R,

(3.3) Jλ(u) := I(λu+ ψu, u− λψu) := max{I(λu+ ψ, u− λψ) : ψ ∈ H1
0 (Ω)}.

Then Jλ is C2 and

(3.4) J ′λ(u)ϕ = I ′(λu+ ψu, u− λψu)(λϕ, ϕ), for all u, ϕ ∈ H1
0 (Ω).

In particular, u is a critical point of Jλ if and only if (λu+ψu, u−λψu) is a critical
point of I. We denote by mJλ

(u) the usual Morse index of u as a critical point
of Jλ.

Lemma 3.1. Given a critical point u of Jλ (λ > 0),

mJλ
(u) ≤ mE−(λu+ ψu, u− λψu).

Proof. Assume first λ = 1 and denote J = J1. For any fixed ϕ ∈ H1
0 (Ω),

the quadratic form

φ 7→ I ′′(u+ ψu, u− ψu)(ϕ+ φ, ϕ− φ)(ϕ+ φ, ϕ− φ)

is strictly concave and admits a (unique) maximum point, call it φϕ. Thus

(3.5) I ′′(u+ ψu, u− ψu)(ϕ+ φϕ, ϕ− φϕ)(ψ,−ψ) = 0, for all ψ ∈ H1
0 (Ω).

Going back to the definition in (3.3), we have that

I ′(u+ ψu, u− ψu)(ψ,−ψ) = 0 for all ψ ∈ H1
0 (Ω);

by differentiating this and comparing with (3.5) we see that φϕ = Dψuϕ for
every ϕ ∈ H1

0 (Ω). As a consequence,

J ′′(u)ϕ,ϕ = I ′′(u+ ψu, u− ψu)(ϕ+ φϕ, ϕ− φϕ)(ϕ+ φϕ, ϕ− φϕ)

= max
φ∈H1

0 (Ω)
I ′′(u+ ψu, u− ψu)(ϕ+ φ, ϕ− φ)(ϕ+ φ, ϕ− φ).
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Now, we fix a subspace Y of H1
0 (Ω) such that −J ′′(u) is coercive on Y and

dimY = mJ(u), and denote X := {(ϕ,ϕ) : ϕ ∈ Y }. It follows from the previous
considerations that −I ′′(u + ψu, u − ψu) is coercive on X ⊕ E−, and so (X ⊕
E−) ∩ (V −)⊥ = {0}. Thus, by definition of the relative dimension (cf. (3.2)),

dimV −(X ⊕ E−) = −dim (V − ∩ (X ⊕ E−)⊥) ≤ 0.

The conclusion follows then by using the following properties of the index (see
[2, Chapter 2]),

dimV −(X ⊕ E−) =dimE−(X ⊕ E−) + dimV −(E−)

=dimX − dimE−(V −) = k −mE−(u+ ψu, u− ψu).

In the general case λ > 0, by letting

E+
λ := {(λϕ, ϕ) : ϕ ∈ H1

0 (Ω)},
E−λ := {(ϕ,−λϕ) : ϕ ∈ H1

0 (Ω)},
X := {(λϕ, ϕ) : ϕ ∈ Y )},

one deduces as above that dimX ≤ dimE−λ
V −. It suffices then to observe that

dimE−(V −) = dimE−λ
(V −) + dimE−(E−λ ) = dimE−λ

(V −),

where the last equality comes from the fact that E−λ ∩ (E−)⊥ = E−λ ∩E+ = {0}
and E− ∩ (E−λ )⊥ = E− ∩ E+

λ = {0}. �

Example 3.2. Under the above conditions, let us consider the least non
zero critical level of I,

c := inf{I(u, v) : I ′(u, v) = 0, (u, v) 6= (0, 0)}.

It can be shown that c is indeed attained. Moreover, by letting J = Jλ as in
(3.3), we can rephrase the results in [29, Section 2] by stating that c can be
characterized as a mountain-pass type critical level of J , namely

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)),

where Γ := {γ: [0, 1] → H1
0 (Ω) continuous, γ(0) = 0, J(γ(1)) < 0}; moreover, if

u is any non zero critical point of J then J(tu) < J(u) for every t ≥ 0, t 6= 1.
By standard arguments, this implies that mJ(u) = 1 for every u ∈ H1

0 (Ω) such
that J(u) = c and J ′(u) = 0. On the other hand, by combining [3, Theorem 1.1]
with [29, Proposition 2.4] we can assert that mE−(λu+ ψu, u− λψu) = 1 for at
least one such u.

We consider next the general case where 1/p + 1/q > (N − 2)/N with, say,
2 < p < 2∗ ≤ q. For any sequence aj → ∞, we let gj(s) = Aj |s|p−2s + Bj for
s ≥ aj , gj(s) = g(s) for |s| ≤ aj and gj(s) = Ãj |s|p−2s+ B̃j for s ≤ −aj , where
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the coefficients are chosen in such a way that gj is C1. It can be checked that
g′j(s)s

2 ≥ (1 + δ)gj(s)s > 0 for every s 6= 0 if j is large enough.
Thus we have a well defined C2 functional

Ij(u, v) :=
∫

Ω

(〈∇u,∇v〉 − F (u)−Gj(v)), (u, v) ∈ E := H1
0 (Ω)×H1

0 (Ω),

with Gj(s) :=
∫ s
0
gj(ξ) dξ, whose critical points are the solutions of the system

(3.6) below.

Theorem 3.3. Under assumptions (H1)–(H3), let (uj , vj) be any sequence
of solutions of the truncated systems

(3.6) −∆uj = gj(vj), −∆vj = f(uj), uj , vj ∈ H1
0 (Ω).

If there exists C > 0 such that mE−(uj , vj) ≤ C for all j, then ||uj ||∞+||vj ||∞ ≤
C ′ for some constant C ′ (and so (uj , vj) solves the original problem (3.1) if j
is sufficiently large). More generally, the conclusion holds if the reduced Morse
indices mJλj

associated to (uj , vj) are bounded uniformly in j.

Proof. We prove that if ||uj ||∞ + ||vj ||∞ → ∞ along a subsequence then
we can find positive constants λj in such a way that the reduced Morse indices
mJλj

are arbitrarily large (and so are the indices mE−(uj , vj), according to
Lemma 3.1). Indeed, as proved in [30, Section 1], if ||uj ||∞ + ||vj ||∞ → ∞ we
can find points xj ∈ Ω and constants αj > 0, βj > 0, νj → 0+ such that both
functions

ũj(x) :=
1
αj
uj(νjx+ xj), ṽj(x) :=

1
βj
vj(νjx+ xj)

are uniformly bounded and converge in C2
loc to some non zero functions u, v with

||u||∞ ≤ 1, ||v||∞ ≤ 1; we have that

−∆ũj =
ν2
j

αj
gj(βj ṽj), −∆ũj =

ν2
j

βj
f(αj ũj)

in Ωj := (Ω− xj)/νj , and (u, v) satisfies some limit problem

−∆u = g∞(v), −∆v = f∞(u) in ω,

where f∞(s) = c|s|p−2s (c > 0) and g∞(s) is such that

c1|s|q ≤ g∞(s)s ≤ c2|s|q, qG∞(s) ≥ g∞(s)s, g′∞(s)s2 ≥ (p− 1)g∞(s)s.

Here either ω = RN or else ω := {x : 〈x, y0〉 < d0} for some d0 ≥ 0, y0 ∈ RN ,
y0 6= 0, and in this case u = 0 = v on ∂ω. Moreover,

αj
βj
ν2
j f

′(αj ũj) → f ′∞(u) and
βj
αj
ν2
j g
′
j(βj ṽj) → g′∞(v)

uniformly on compact sets.
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Now, for any given k ∈ N we apply the conclusion of Theorem 2.9 to the
quadratic form I ′′∞(u, v) associated to the limit system above, with λ given by
(2.9). For i = 1, . . . , k and j ∈ N we denote ξi,j(x) = ξi((x − xj)/νj) and
λj = λβj/αj .

To prove the theorem, and by taking the Remark 2.10(d) into account, it is
enough to show that, provided j is large enough,

(3.7) I ′′j (uj , vj)
(
ξj
uj
αj

+ φ, ξj
vj
αj

− λjφ

)(
ξj
uj
αj

+ φ, ξj
vj
αj

− λjφ

)
< 0

for every φ ∈ H1
0 (Ω), ξj =

∑
i µiξi,j , (ξjuj/αj + φ, ξjvj/αj − λjφ) 6= (0, 0).

Indeed, we may already assume that
∑
i µ

2
i = 1 and, up to a factor of νN−2

j βj/αj ,
(3.7) is given by

2
∫
〈∇(ξũj + φj),∇(ξṽj − λφj)〉

−
ν2
jαj

βj

∫
f ′(αj ũj)(ξũj + φj)2 −

ν2
j βj

αj

∫
g′j(βj ṽj)(ξṽj − λφj)2

where we have denoted φj(x) = φ(νjx+ xj), ξ =
∑
µiξi, and we integrate over

Ωj . If we maximize this expression with respect to φj we see that
∫
|∇φj |2 ≤

C = C(R). Thus we can take a weak limit φj ⇀ φ0 in D1,2(RN ). Passing to the
limit we get that the above expression is bounded above by

(3.8) I ′′∞(u, v)(ξ(u, v) + (φ0,−λφ0))(ξ(u, v) + (φ0,−λφ0)).

The conclusion follows from the estimate in (2.10) (see also the Remark 2.10(c)).
We mention that, as proved in [30], in fact this blow-up procedure may lead

to limit systems of the form

−∆u = 0, −∆v = c|u|p−2u in ω, u 6= 0 (2 < p < 2∗, c > 0)

or
−∆u = c|v|p−2v, −∆v = 0 in ω, v 6= 0 (2 < p < 2∗, c > 0).

However, thanks to the Remark 2.10(a), the conclusion in (3.7) still holds in this
case. �

A similar conclusion holds for the Neumann boundary conditions:

Theorem 3.4. Under assumptions (H1)–(H3), let (uj , vj) be any sequence
of solutions of the truncated systems

(3.9) −∆uj + uj = gj(vj), −∆vj + vj = f(uj), uj , vj ∈ H1(Ω).

If there exists C > 0 such that mE−(uj , vj) ≤ C for all j then ||uj ||∞+ ||vj ||∞ ≤
C ′ for some constant C ′ (and so (uj , vj) solves the original problem (3.1) if j
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is sufficiently large). More generally, the conclusion holds if the reduced Morse
indices mJλj

associated to (uj , vj) are bounded uniformly in j.

Proof. The argument follows the lines of Theorem 3.3 but some care is
needed in taking limits as j →∞. We must prove that (3.7) holds uniformly in∑
i µi = 1 and φ ∈ H1(Ω). Let us denote by φ∗ the operator extension in RN , so

that ||φ∗||H1(RN ) ≤ c||φ||H1(Ω) for every φ ∈ H1(Ω). If we maximize (3.7) with
respect to φj we see that∫

Ωj

|∇φj |2 + ν2
j

∫
Ωj

φ2
j ≤ C = C(R),

thus also ∫
RN

|∇φ∗j |2 + ν2
j

∫
RN

(φ∗j )
2 ≤ C ′.

Let φ∗j ⇀ φ0 weakly in D1,2(RN ). By using the differential equation satisfied by
φj in Ωj and by taking weak limits (recall that the support of ξ is fixed) we see
that φ0 satisfies, in ω,

(3.10) −2λ∆φ0 + f ′(u)φ0 + λ2g′(v)φ0 = λg′(v)ξv − f ′(u)ξu+ ∆(ξ(λu− v)),

together with Neumann boundary conditions on ∂ω (in case ω 6= RN ). Now, the
limit as j →∞ of

λβj
αj

ν2
j

∫
Ωj

g′j(βj ṽj)ξṽjφj −
αj
βj
ν2
j

∫
Ωj

f ′(αj ũj)ξũjφj +
∫

Ωj

φj∆(ξ(λũj − ṽj))

is precisely

λ

∫
ω

g′(v)ξvφ0 −
∫
ω

f ′(u)ξuφ0 +
∫
ω

φ0∆(ξ(λu− v)),

that is, thanks to (3.10),

2λ
∫
ω

|∇φ0|2 +
∫
ω

f ′(u)φ2
0 + λ2

∫
ω

g′(v)φ2
0.

Then we can pass the (rescaled) expression in (3.7) to the limit, yielding the
expression in (3.8) with φ0 ∈ D1,2(RN ). Taking into account the Remark 2.10(c),
the conclusion follows. �

As a final remark we stress that the preceding estimates also yield com-
pactness for special sequences of solutions of systems such as (3.1). For ex-
ample, under assumptions (H1)–(H3) with, now, 2 < p, q < 2∗, let (uε, vε) ∈
H1

0 (Ω) ×H1
0 (Ω) with ε → 0 be bounded in L∞(Ω) × L∞(Ω) and solve the sin-

gularly perturbed system

−ε2∆uε + uε = g(vε), −ε2∆vε + vε = f(uε)
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in such a way that the rescaled sequences ũε(x) = uε(εx), ṽε(x) = vε(εx) con-
verge in C1

loc(RN ) to a non zero solution of the limit system in RN ,

−∆u+ u = g(v), −∆v + v = f(u).

In this case we have:

Proposition 3.5. Under (H1)–(H3) with 2 < p, q < 2∗, suppose that the
relative Morse index of (uε, vε) remains ≤ 1 as ε→ 0. Then (u, v) ∈ H1(RN )×
H1(RN ) and strong convergence holds (i.e. ũε → u and ṽε → v in H1(RN )).

Proof (sketch). Let ϕ1 ∈ D(B2R(0)) be such that ϕ1 in BR(0) and ϕ2 ∈
D(RN \ B3R(0)) be such that ϕ2 = 1 in RN \ B4R(0). Our assumption implies
that there exist µ1, µ2 ∈ R, µ2

1 + µ2
2 = 1 and φ ∈ H1(RN ) such that

I ′′(ũε, ṽε)
(
ũε

2∑
i=1

µiϕi+φ, ṽε
2∑
i=1

µiϕi−φ
)(

ũε

2∑
i=1

µiϕi+φ, ṽε
2∑
i=1

µiϕi−φ
)
≥ 0,

where I ′′ stands for the (rescaled) quadratic form associated to the system; we
have dropped the subscript ε in order to simplify the notations. By taking the
Remark 2.10(a) into account, we get that∫ (

(|ũε|p + |ṽε|q)
( 2∑
i=1

µiϕ
2
i

))
= o(1)

as R → ∞, ε → 0. Since (u, v) 6= (0, 0), we must have that µ1 → 0, whence
µ2 → 1. In conclusion, given δ > 0 we can find R, ε0 > 0 such that∫

|x|≥3R

(|ũε|p + |ṽε|q) ≤ δ, for all ε < ε0.

From this the conclusion follows easily. �
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