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NOT FINITELY BUT COUNTABLY HOPF-EQUIVALENT
CLOPEN SETS IN A CANTOR MINIMAL SYSTEM

Hisatoshi Yuasa

Abstract. We investigate topological Hopf-equivalences in the Morse sub-
stitution system. In particular, we give an example of not finitely but
countably Hopf-equivalent clopen sets in a Cantor minimal system.

1. Introduction

E. Hopf [11] introduced the notions of Hopf-equivalences for non-singular and
bi-measurable transformations on non-atomic Lebesgue spaces, and completely
characterized both the existence of an equivalent finite invariant measure and
the conservativity of the transformation in terms of countable and finite Hopf-
equivalences, respectively. Then, the countable Hopf-equivalence played funda-
mental roles in the classification of the transformations up to orbit equivalence;
see for example [9], [12]. After that, topological versions of the Hopf-equivalences
played fundamental and crucial roles even in the classifications of Cantor min-
imal systems up to topological orbit equivalences; see for example [4], [5], [7].
Motivated by the above importance of Hopf-equivalences, the author [21] stud-
ied the Hopf-equivalences in zero-dimensional, topological dynamical systems in
connection with several recurrence properties of the systems.
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In the present paper, we continue the investigation into the Hopf-equivalences
in the zero-dimensional systems. The main purpose of the present work is to give
an example of clopen sets in a Cantor minimal system which are not finitely but
countably Hopf-equivalent. Specifically, by following an algorithm developed by
F. Durand, B. Host and C. Skau [1], we present a Bratteli–Vershik representation
B [10] of a bilateral minimal subshift (Xσ, Tσ) arising from the Morse substi-
tution σ (Proposition 4.2), and then completely classify the cylinder sets in the
infinite path space XB of B up to the finite and countable Hopf-equivalences,
respectively (Theorems 4.4 and 4.5). By means of the Bratteli–Vershik rep-
resentation B, we also compute the dimension group K0(Xσ, Tσ) modulo the
coboundaries associated with (Xσ, Tσ) in an explicit and simple form (Proposi-
tion 4.6). Although A. H. Forrest [3] computed the abelian group K0(Xσ, Tσ)
itself to be Z ⊕ Z[1/2], where Z[1/2] is the abelian group of dyadic rationals,
he could not determine its order structure. Although H. Matui [15] also com-
puted it together with its order structure and distinguished order unit, it may be
impossible to determine which element of the resultant group is the equivalence
class of the characteristic function of a given cylinder set in Xσ. Similar negative
factor may be seen also in a computation by J. Kwiatkowski and M. Wata [13].
These defects do not exist in our result.

On the other hand, we show that [10, Proposition 5.1] is still valid un-
der a weaker assumption: any point in a totally disconnected, compact met-
ric space X is chain recurrent for a homeomorphism S on X , then the pair
(K0(X,S),K0(X,S)+) is an ordered group (Proposition 3.4). This fact is a con-
sequence of a characterization, in terms of integer-valued continuous functions,
of an incompressibility under the finite Hopf-equivalence (Proposition 3.3). By
[21], we already know the equivalence of the incompressibility and the condi-
tion that any point is chain recurrent. Another important result is complete
characterizations of orbit structures of a Cantor minimal system in terms of the
Hopf-equivalences (Proposition 3.8), though its proof heavily depends on the
orbit equivalence theorems of T. Giordano, I. Putnam and C. Skau [4].

The author is grateful to the anonymous referee for helpful suggestions.

2. Primitive substitutions and Vershik maps

The purpose of this section is to briefly review some facts on bilateral min-
imal subshifts arising from primitive substitutions in connection with Vershik
maps. Throughout the present paper, we omit several definitions relevant to our
discussion, for example, those for a properly ordered Bratteli diagram, a Ver-
shik map, a dimension group, a primitive substitution and so on, because we
already have excellent and concise expositions on those materials, for example
[1], [4] and [18]. Also, we freely use the notation of [1], except when we take an
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opposite attitude. As in [4], [10] and so on, any Bratteli diagram is supposed
to have a unique vertex which is only sources of edges; that is the top vertex.
Let B = (V,E,≥) be a properly ordered Bratteli diagram. Let n ∈ N and
p = (p1, . . . , pn) be a path in E1 ◦ . . . ◦ En. The range vertex r(pn) of the edge
pn is referred to as the range vertex of the cylinder set

[p] := {x = (x(i))i∈N ∈ XB : x(i) = pi for all i, 1 ≤ i ≤ n}
in the infinite path space XB of B. Let r([p]) denote r(pn). By the length of [p],
we mean the length n of p. Let λB denote the Vershik map associated with B.
We denote by N the set of positive integers, and by Z+ the set of nonnegative
integers.

2.1. Model theorems. We start with a model theorem of the Cantor min-
imal systems.

Theorem 2.1 ([10]). Any Cantor minimal system (X,S) is conjugate to
the Bratteli–Vershik system (XB, λB) associated with a properly ordered Bratteli
diagram B, and vice versa.

The following model theorem is fundamental for our discussion. In fact, we
can say more than the statement; see [1], [3] for details.

Theorem 2.2 ([1], [3]). Given an aperiodic, primitive substitution σ on an
alphabet A, we can construct a stationary, properly ordered Bratteli diagram
B = (V,E,≥), in an explicit and algorithmic method, such that the Bratteli–
Vershik system (XB, λB) is conjugate to the bilateral minimal subshift (Xσ, Tσ)
arising from the substitution σ.

We shall review the construction, which depends on whether the substitution
σ is proper, or not. Since the Morse substitution is not proper, it is enough for
us to consider the case where σ is not proper. As the alphabet A is finite, we
can find l, r ∈ A and k ∈ N such that

(1) the word rl belongs to the language L(σ) of the substitution σ;
(2) the last letter of σk(r) is r;
(3) the first letter of σk(l) is l.

Then x = limn→∞ σkn(. . . rrrr | llll . . . ) ∈ AZ is a fixed point of the map
σk:AZ → AZ, where the vertical bar is, as in [1], the separation between the neg-
ative and the nonnegative coordinates. The bilateral minimal subshift (Xσ, Tσ)
arising from σ coincides with the subshift of orbit-closure of x under the shift
on AZ. Let R denote the set of return words to r.l in x. Put R = {1, . . . , �R}.
Take a bijection φ:R → R. For any w ∈ R, σk(w) can be a concatenation of
words in R. Then we can define a proper and primitive substitution τ on R so
that σk(φ(i)) = φ(τ(i)) for each i ∈ R. Then we construct B = (V,E,≥) as
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follows. Set Vn = {(n, i) : i ∈ R} for n ∈ N, and let V0 be a singleton, say {v0}.
For each i ∈ R, we draw |φ(i)| edges from the top vertex v0 to the vertex (1, i),
where |φ(i)| is the length of the word φ(i). For each n ∈ N, we draw a single
edge from (n, i) to (n+ 1, j) with the numerical order m− 1 if τ(j)m = i, where
m varies from 1 to |τ(j)|. This completes the construction.

If, by following Subsection 2.3 of [1], we construct an ordered Bratteli diagram
from Kakutani–Rohlin partitions:

Pn := {Tσ
i[σkn(r).σkn(w)σkn(l)] : 0 ≤ i < |σkn(w)|, w ∈ R}, n ≥ 1,

then the resultant diagram is nothing but the ordered Bratteli diagram B, where
for words u and v,

[u.v] = {y ∈ Xσ : y[−|u|,|v|) = uv}.
This fact is not explicitly stated in [1] but is a consequence of results of [1]. It is
verified with the aid of B. Mossé’s bilateral recognizability [16].

2.2. Invariant measures of Vershik maps. The following lemma by
F. Sugisaki tells us when the Vershik map associated with a properly ordered
Bratteli diagram is uniquely ergodic.

Lemma 2.3. Suppose that B = (V,E,≥) is a properly ordered Bratteli di-
agram. For vertices u, v ∈ V , let N(u, v) denote the number of paths starting
from u and terminating at v. Then the following conditions are equivalent:

(a) the Vershik map λB is uniquely ergodic;
(b) for any k ∈ N and any u ∈ Vk, the limits

m(u) := lim
l→∞

min
v∈Vk+l

N(u, v)
N(v0, v)

and M(u) := lim
l→∞

max
v∈Vk+l

N(u, v)
N(v0, v)

exist and coincide, where V0 = {v0}.
Furthermore, when these conditions hold, the unique λB-invariant probability
measure assigns the value m(r(C)) = M(r(C)) to a given cylinder set C ⊂ XB.

Proof. (a) ⇒ (b) Let µ denote the unique λB-invariant probability measure.
Let k ∈ N, u ∈ Vk and ε > 0. Take a cylinder set C ⊂ XB with r(C) = u. By
[17] (cf. [19, Theorem 6.19]), there is n0 ∈ N such that for any n ≥ n0 and any
x ∈ X , ∣∣∣∣ 1

n

n−1∑
i=0

χC(λB
ix) − µ(C)

∣∣∣∣ < ε.

Take l0 ∈ N so that N(v0, v) ≥ n0 for any l ≥ l0 and any v ∈ Vk+l. This is
possible because (V,E) is simple. For l ≥ l0 and v ∈ Vk+l, take xv ∈ XB so that
for every integer 1 ≤ i ≤ k + l, the i-th edge xv(i) is minimal in Ei. Then, for



Hopf-Euivalent Clopen Sets 359

any l ≥ l0 and any v ∈ Vk+l,∣∣∣∣ N(u, v)
N(v0, v)

− µ(C)
∣∣∣∣ =

∣∣∣∣ 1
N(v0, v)

N(v0,v)−1∑
i=0

χC(λB
ixv) − µ(C)

∣∣∣∣ < ε.

We hence have m(u) = M(u) = µ(C).
(b) ⇒ (a) Take integers n0 = 0 < n1 < n2 < . . . so that for every i ∈ Z+,

a path exists from any vertex in Vni to any vertex in Vni+1 . Let µ be a λB-
invariant probability measure. Let i ∈ N and p ∈ E1 ◦ E2 ◦ . . . ◦ Eni . Put
u = r(pni). Let j ∈ N with j > i. Then

µ([p]) =
∑

v∈Vnj

N(u, v)µ([pqv]) and 1 =
∑

v∈Vnj

N(v0, v)µ([pqv]),

where qv is a path in Eni+1 ◦ . . . ◦ Enj starting from r(pni) and terminating at
v. We hence obtain

min
v∈Vnj

N(u, v)
N(v0, v)

≤ µ([p]) ≤ max
v∈Vnj

N(u, v)
N(v0, v)

,

and letting j → ∞ shows that m(u) ≤ µ([p]) ≤ M(u). By the assumption,
µ([p]) = m(u) = M(u). This completes the proof. �

Remark 2.4. (a) The equivalence of (a) and (b) in Lemma 2.3 was originally
proved by R. Gjerde [6]. However, instead of (b), he used another condition
equivalent to (b) which is not so understandable as (b). Moreover, the above
proof is much simpler.

(b) Recall that there is a bijective correspondence between the set of states on
the dimension group K0(V,E) and the set of λB-invariant probability measures
[10, Theorem 5.5]. It was shown by E. G. Effros [2] and R. Gjerde [6], respectively,
that the dimension group K0(V,E) associated with a stationary, simple Bratteli
diagram (V,E) has a unique state. Although E. G. Effros [2] showed how we can
construct the unique state, he mentioned no reason why we must adopt the way
of construction.

Under the assumption that B = (V,E,≥) is stationary, we shall compute
m(u) and M(u). By definition of the stationarity, there is a constant n ∈ N

such that �Vk = n for all k ∈ N, and we may label the vertices in each Vk, say
(k, 1), . . . , (k, n), so that the incidence matrices Mk are constant for all integers
k ≥ 2, where

(Mk)i,j := �{e ∈ Ek : s(e) = (k − 1, j), r(e) = (k, i)} for 1 ≤ i, j ≤ n.

Put α = M1, which is a column vector. Since (V,E) is simple, the matrix
M := M2 must be primitive. Hence, M has the so-called Perron–Frobenius
eigenvalue, say θ, and corresponding left and right, positive eigenvectors β and
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γ, respectively. We may assume that βγ = 1. By Perron–Frobenius Theorem;
see for example [14], we have liml→∞(θ−lM l)i,j = γiβj for any integers (i, j)
with 1 ≤ i, j ≤ n. Fix k ∈ N and u := (k, i) ∈ Vk. It follows that for any l ∈ N

and any v := (k + l, j) ∈ Vk+l,

N(u, v)
N(v0, v)

=
1

θk−1

(θ−lM l)j,i∑n
h=1(θ−(k+l−1)Mk+l−1)j,hαh

.

This implies that

m(u) = M(u) =
βi

θk−1
∑n

h=1 βhαh
.

What we have shown is:

Lemma 2.5. Under the above setting, the Vershik map λB is uniquely er-
godic, and the unique invariant probability measure assigns the value

βi

θk−1
∑n

h=1 βhαh

to a given cylinder set C ⊂ XB, where (k, i) = r(C).

2.3. Dimension groups. Given a properly ordered Bratteli diagram B =
(V,E,≥), the dimension group (K0(XB, λB),K0(XB, λB)+) is order isomorphic
to (K0(V,E),K0(V,E)+) by a map preserving the distinguished ordered units
[10]. The dimension group is a complete invariant for the strong orbit equivalence
class of (XB, λB); see [4] for details. For k ∈ Z+, we define groups Gk = {(k, a) :
a ∈ Z�Vk} with the addition (k, a) + (k, b) = (k, a + b). For k ∈ N, we define
homomorphisms fk:Gk−1 → Gk, (k−1, a) 
→ (k,Mka), whereMk is the incidence
matrix of B at the level k. Recall that the abelian group K0(V,E) is defined to
be the inductive limit of the system of groups:

G0
f1−→ G1

f2−→ G2
f3−→ G3

f4−→ · · ·
For k ∈ Z+, let ψk denote the canonical morphism from Gk to K0(V,E). By
definition, K0(V,E)+ =

⋃∞
k=0 ψk(G+

k ), where G+
k = {(k, a) : a ∈ (Z+)�Vk}.

Suppose that B is stationary, so that Mk are constant for all k ≥ 2. Let s
denote the size of M := M2. Following Sections 7.4 and 7.5 of [14], we set

RM =
∞⋂

k=1

Mk(Qs),

∆M = {x ∈ RM : Mkx ∈ Zs for some k ∈ Z+},
∆+

M = {x ∈ RM : Mkx ∈ (Z+)s for some k ∈ Z+}.
The abelian group ∆M with the usual addition is a dimension group with a pos-
itive cone ∆+

M . Notice that RM = M s(Qs), and the map RM → RM , x 
→ Mx

is both invertible and surjective. Then, the following lemma is readily verified.
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Lemma 2.6. Under the above setting, (K0(XB , λB),K0(XB, λB)+) is order
isomorphic to (∆M ,∆+

M ).

See also [14, Exercise 7.5.6] in connection with Lemma 2.6.

3. Hopf-equivalences

Definition 3.1. Let S be a homeomorphism on a totally disconnected,
compact metric space X , and C,D ⊂ X nonempty clopen sets.

(a) We say that C and D are finitely Hopf-equivalent if there are integers
{ni : 1 ≤ i ≤ k} and decompositions

C =
k⋃

i=1

Ci and D =
k⋃

i=1

Di

into nonempty clopen sets such that Sni(Ci) = Di for every integer
1 ≤ i ≤ k.

(b) We say that C and D are countably Hopf-equivalent if there are integers
{ni : i ∈ Z+} and decompositions

C =
⋃
i∈N

Ci ∪ {x0} and D =
⋃
i∈N

Di ∪ {y0}

into nonempty clopen sets Ci, Di and singletons {x0}, {y0} such that
(i) Sn0(x0) = y0, and Sni(Ci) = Di for every i ∈ N,
(ii) the map α:C → D defined by

α(x) =

{
Sni(x) if x ∈ Ci and i ∈ N,

y0 if x = x0

is a homeomorphism.

Remark 3.2. In [21], the notion of countable Hopf-equivalence is defined in
a more general fashion: the clopen sets C and D are said to be countably Hopf-
equivalent if there are partitions {Ci : i ∈ N} and {Di : i ∈ N} into nonempty
closed sets of C and D, respectively, and integers {ni}i∈N such that Sni(Ci) = Di

for each i ∈ N.

3.1. Chain recurrence, incompressibility and ordered group. Recall
that a point x in a compact metric space X is said to be chain recurrent for
a homeomorphism S on X if for any ε > 0, there are points x0 = x, x1, . . . , xn−1,
xn = x in X such that d(Sxi, xi+1) < ε for every integer 0 ≤ i < n, where d is
a fixed metric on X .
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Proposition 3.3. Suppose that S is a homeomorphism on a totally discon-
nected, compact metric space X. Then the following conditions are equivalent:

(a) any point in X is chain recurrent for S;
(b) there exists no clopen subset C of X such that S(C) � C;
(c) there exists no clopen subset C of X which is finitely Hopf-equivalent to

a proper subset of C;
(d) if f ∈ C(X,Z) satisfies the property that f(S(x)) ≥ f(x) for any x ∈ X,

then f(S(x)) = f(x) for any x ∈ X;
(e) if C is a clopen subset of X whose characteristic function χC is a co-

boundary, then C is the empty set.

Proof. The equivalence of (a), (b) and (c) was proved by [21].
(b) ⇒ (d) Let f ∈ C(X,Z) be such that f(S(x)) ≥ f(x) for any x ∈ X . Set

f(X) = {m1 < m2 < . . . < mk}. For 1 ≤ i ≤ k, set Ai = f−1(mi), which is
clopen. Since S(Ak) = {x ∈ X : f(S−1(x)) = mk} and f(S(x)) ≥ f(x) for any
x ∈ X , we have S(Ak) ⊂ Ak and so S(Ak) = Ak. Similar arguments show that
S(Ai) = Ai for all integers 1 ≤ i ≤ k. Hence, f is S-invariant.

(d) ⇒ (e) Suppose that C ⊂ X is a clopen set such that χC = f ◦ S − f for
some f ∈ C(X,Z). Condition (d) forces that f is S-invariant, and so χC = 0.

(e) ⇒ (b) Assume that (b) does not hold but (e) holds. There is a nonempty
clopen set C ⊂ X such that S(C) � C. Then χC\S(C) is a coboundary, a con-
tradiction to (e). This completes the proof. �

Question. What dynamical property of a homeomorphism S on a totally
disconnected, compact metric space X is equivalent to the nonexistence of clopen
sets C ⊂ X which are countably Hopf-equivalent to a proper subset of C?

In a measurable case, there is an answer due to E. Hopf [11]: a non-singular
and bi-measurable transformation T on a non-atomic Lebesgue space has no
measurable set C which is “countably Hopf-equivalent” to a proper subset of C
if and only if T has an equivalent, finite invariant measure.

It was proved by [10, Proposition 5.1] that if S is an essentially minimal
homeomorphism on a totally disconnected, compact metric space X , then the
pair (K0(X,S),K0(X,S)+) is an ordered group with the distinguished order
unit. This conclusion is still valid under a weaker assumption:

Proposition 3.4. If any point in a totally disconnected, compact metric
space X is chain recurrent for a homeomorphism S on X, then the pair (K0(X,S),
K0(X,S)+) is an ordered group with the distinguished order unit.

Proof. It is sufficient to show that K0(X,S)+ ∩ (−K0(X,S)+) = {0}.
Suppose that the equivalence class of f ∈ C(X,Z) belongs to K0(X,S)+ ∩
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(−K0(X,S)+). There exist f1, f2 ∈ C(X,Z+) and g1, g2 ∈ C(X,Z) such that

f = f1 + g1 ◦ S − g1 and f = −f2 + g2 ◦ S − g2.

Hence, f1 + f2 = (g2 − g1) ◦ S − (g2 − g1) ≥ 0.
Proposition 3.3 forces that g2 = g1, and so f1 = f2 = 0. This completes the

proof. �

Question. The converse of Proposition 3.4 is also true?

3.2. Preliminaries for the next section. The following two lemmas will
help us classify clopen sets in the Morse substitution system up to the Hopf-
equivalences. For a Cantor minimal system (X,S), let M(S) denote the S-
invariant probability measures. E. Glasner and B. Weiss [7] obtained a criterion
to determine whether given two clopen sets are countably Hopf-equivalent, or
not:

Lemma 3.5 ([7]). Suppose that (X,S) is a Cantor minimal system, and
C,D ⊂ X are nonempty clopen sets. Then, the clopen sets C and D are count-
ably Hopf-equivalent if and only if µ(C) = µ(D) for any µ ∈M(S).

The following lemma is a criterion to determine whether given clopen sets are
finitely Hopf-equivalent, or not. Although it has been implicitly used in several
literatures, we provide it with a proof.

Lemma 3.6. Suppose that B = (V,E,≥) is a properly ordered Bratteli dia-
gram, and C,D ⊂ XB are nonempty clopen sets. Then the following conditions
are equivalent:

(a) C and D are finitely Hopf-equivalent;
(b) χC − χD is a coboundary;
(c) there is n ∈ N such that for any v ∈ Vn,

�{p ∈ Pn : r(pn) = v, [p] ⊂ C} = �{p ∈ Pn : r(pn) = v, [p] ⊂ D},
where Pn = E1 ◦ . . . ◦ En.

Proof. (a) ⇒ (b) Let {ni}k
i=1, {Ci}k

i=1, {Di}k
i=1 be as in Definition 3.1(a).

We have

χC − χD =
k∑

i=1

(χCi − χCi ◦ λB
−ni).

However, for any f ∈ C(XB ,Z) and any n ∈ Z,

f − f ◦ λB
n =




n−1∑
i=0

f ◦ λB
i −

( n−1∑
i=0

f ◦ λB
i

)
◦ λB if n > 0,

0 if n = 0,
−n−1∑
i=0

f ◦ λB
−i −

(−n−1∑
i=0

f ◦ λB
−i

)
◦ λB if n < 0.
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Hence, χC − χD is a coboundary.
(b) ⇒ (c) There is f ∈ C(XB ,Z) such that χC − χD = f ◦ λB − f . Take

m ∈ N so that the functions f , χC and χD are all constant on each cylinder
set of length m. Since XB has a unique, minimal infinite path xmin, we can
find n ∈ N with n > m such that if a path (pm+1, . . . , pn) ∈ Em+1 ◦ . . . ◦ En is
such that every pi is minimal in Ei, then s(pm+1) = r(xmin(m)). For v ∈ Vn,
let pv denote the path in E1 ◦ . . . ◦ En terminating at v such that for every
integer 1 ≤ i ≤ n, the i-th edge (pv)i is minimal in Ei. For v ∈ Vn, set
nv = �{p ∈ Pn : r(pn) = v}, and fix a point xv ∈ [pv] ⊂ [(xmin(1), . . . , xmin(m))].
Since λB

nv (xv) ∈ [(xmin(1), . . . , xmin(m))], we have

nv−1∑
i=0

{χC ◦ λB
i(xv) − χD ◦ λB

i(xv)} = f(λB
nv (xv)) − f(xv) = 0.

This implies the conclusion.
(c) ⇒ (a) For n ∈ N and v ∈ Vn, set

Cv =
⋃

{[p] ⊂ C : p ∈ Pn, r(pn) = v},
Dv =

⋃
{[p] ⊂ D : p ∈ Pn, r(pn) = v}.

By the assumption, Cv and Dv are finitely Hopf-equivalent, and so are C and D,
because C =

⋃
v∈Vn

Cv and D =
⋃

v∈Vn
Dv are disjoint unions. This completes

the proof. �

Remark 3.7. As a consequence of the equivalence of (a) and (c) in Lem-
ma 3.6, it follows that for a properly ordered Bratteli diagram B, the finite
Hopf-equivalences for the Vershik map λB and for the finite coordinate change
relation R [8] on XB are equivalent. The relation R is called the cofinal relation
in [4]. For infinite paths x, y ∈ XB, we define (x, y) ∈ R if x and y have
the same tail, i.e. x(n) = y(n) for all sufficiently large n ∈ N. If clopen sets
C,D ⊂ XB are finitely Hopf-equivalent for S := λB as in Definition 3.1(a), and
if for each integer 1 ≤ i ≤ k, the map Ci → Di, x 
→ Snix in Definition 3.1(a)
implements (x, Snix) ∈ R for any x ∈ Ci, then C and D are said to be finitely
Hopf-equivalent for R. As a consequence of this equivalence, it also follows that
the countable Hopf-equivalences for λB and R are equivalent, because we are
allowed to choose both of the points x0 ∈ C and y0 ∈ D in Definition 3.1(b)
from a single equivalence class of R, in view of the proof of Lemma 3.5 by
E. Glasner and B. Weiss [7].

3.3. Complete characterizations of orbit structures. Lemmas 3.5 and
3.6 help us show that the Hopf-equivalences completely determine orbit struc-
tures of a Cantor minimal system:
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Proposition 3.8. Suppose that (X,S) and (Y, T ) are Cantor minimal sys-
tems. Then the following two statements hold.

(a) (X,S) and (Y, T ) are strong orbit equivalent if and only if there is
a homeomorphism F :X → Y which respects the finite Hopf-equivalence.

(b) (X,S) and (Y, T ) are orbit equivalent if and only if there is a homeo-
morphism F :X → Y which respects the countable Hopf-equivalence.

Proof. (a) Let F :X → Y be an orbit map implementing the strong or-
bit equivalence of (X,S) and (Y, T ). We have the associated orbit cocycles
m,n:X → Z, i.e. F ◦ S(x) = T n(x) ◦ F (x) and F ◦ Sm(x)(x) = T ◦ F (x) for all
x ∈ X , such that a point x1 ∈ X is the possible discontinuity point of m and n.
Suppose that clopen sets C,D ⊂ X are finitely Hopf-equivalent. We shall show
that F (C) and F (D) are finitely Hopf-equivalent. We may assume C ∩D = ∅.
Since one of C and D does not contain x1, the continuity of n except x1 implies
that F (D) and F (C) are finitely Hopf-equivalent. Similar arguments involving
m show that if F (C) and F (D) are finitely Hopf-equivalent, then so are C and D.

Conversely, if a homeomorphism F :X → Y respects the finite Hopf-equi-
valence, then F induces the bijection F∗: ∂SC(X,Z) → ∂TC(Y,Z), f 
→ f ◦
F−1, where ∂S(f) = f ◦ S − f . Hence, F∗ induces an order isomorphism from
K0(X,S) to K0(Y, T ) which preserves the distinguished order units; see also [7,
Theorem 1.1]. Then the strong orbit equivalence theorem [4, Theorem 2.1] leads
us to the conclusion.

(b) Let F :X → Y be an orbit map. Since F induces a bijective corre-
spondence between M(S) and M(T ), it follows that for clopen sets C,D ⊂ X ,
µ(C) = µ(D) for any µ ∈ M(S) if and only if ν(F (C)) = ν(F (D)) for any
ν ∈M(T ). Lemma 3.5 shows that F respects the countable Hopf-equivalence.

Conversely, if a homeomorphism F :X → Y respects the countable Hopf-
equivalence, then the map M(S) → M(T ), µ 
→ µ ◦ F−1 is both well-defined
and bijective. Hence, the orbit equivalence theorem [4, Theorem 2.2] shows that
(X,S) and (Y, T ) are orbit equivalent. This completes the proof. �

4. The Morse substitution

4.1. A Bratteli–Vershik model of the Morse substitution system.

We again use definitions and notation of [1]. Let A be an alphabet of two letters,
say A = {a, b}. Let σ denote the Morse substitution on A, that is, σ(a) = ab

and σ(b) = ba. Put x = limn→∞ σ2n(. . . bbbb | aaaa . . . ). Since there is no
nonempty word u such that uuu1 occurs in x [18, Proposition 5.1.6], the subshift
Xσ contains no periodic point. We shall construct a stationary, properly ordered
Bratteli diagram B with (XB, λB) conjugate to (Xσ, Tσ) as in Subsection 2.1.
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Lemma 4.1. The return words to b.a in x are

w1 := abb, w2 := ab, w3 := aabb, and w4 := aab.

Proof. Since the word ba occurs in each of σ2(a) and σ2(b), and since
σ2(x) = x, all the return words to b.a occur in some word of the form σ2(cd) for
c, d ∈ A. This leads us to the conclusion. �

Since

σ2(w1) = abbabaabbaab = w1w2w3w4,

σ2(w2) = abbabaab = w1w2w4,

σ2(w3) = abbaabbabaabbaab = w1w3w2w3w4,

σ2(w4) = abbaabbabaab = w1w3w2w4,

we define a proper and primitive substitution τ :R → R+, where R := {1, 2, 3, 4},
by

τ(1) = 1234, τ(2) = 124, τ(3) = 13234, and τ(4) = 1324.

...

V0

V1

V2

V3

...

E1

E2

E3

...

0 0 0 0
1 1 1 12

2
2 2

3
3

34

Figure 1. A stationary, properly ordered Bratteli diagram B

Consequently, we obtain the following.
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Proposition 4.2. Let B = (V,E,≥) denote the stationary, properly ordered
Bratteli diagram associated with Kakutani–Rohlin partitions of (Xσ, Tσ):

Pk = {Tσ
j [uk.wk,ivk] : 0 ≤ j < |wk,i|, i ∈ R}, k ∈ N,

where uk = σ2(k−1)(b), vk = σ2(k−1)(a) and wk,i = σ2(k−1)(wi). Then, the
Bratteli–Vershik system (XB, λB) is conjugate to (Xσ, Tσ).

Proof. See Subsection 2.1. �

Figure 1 shows the diagram B, where the partial order ≥ is indicated by the
numerical order by edges.

4.2. Hopf-equivalences in (XB, λB). We continue to consider the sta-
tionary, properly ordered Bratteli diagram B = (V,E,≥). For each k ∈ N, we
shall label the vertices in Vk (k, 1), (k, 2), (k, 3) and (k, 4) from the leftmost one.
The incidence matrices {Mk}k∈N of B are

M1 =




3
2
4
3


 and Mk = M :=




1 1 1 1
1 1 0 1
1 1 2 1
1 1 1 1


 (k ≥ 2),

whereMi,j := �{e ∈ E2 : s(e) = (1, j), r(e) = (2, i)} for all i, j ∈ R. The Perron–
Frobenius eigenvalue of M is 4, and a corresponding left, positive eigenvector is
β := [1, 1, 1, 1]. By Lemma 2.5, we obtain:

Lemma 4.3. Let µ be the unique λB-invariant probability measure. Then,
for a cylinder set C ⊂ XB, we have µ(C) = 1/(3 · 22k), where k is the length
of C.

We are now in a position to classify the cylinder sets in XB up to the finite
and countable Hopf-equivalences, respectively.

Theorem 4.4. Suppose that C,D ⊂ XB are cylinder sets. We may write
r(C) = (m, i) and r(D) = (n, j) for some (m, i), (n, j) ∈ N × R. Then the
following two statements hold.

(a) C and D are countably Hopf-equivalent if and only if m = n.
(b) C and D are finitely Hopf-equivalent if and only if m = n and one of

the following exclusive conditions holds:
(i) i �= 3 and j �= 3,
(ii) i = j = 3.

Proof. (a) It is obvious from Lemmas 3.5 and 4.3.
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(b) The eigenvalues of M are 0, 1, and 4 whose multiplicities are 2, 1, and
1, respectively. Corresponding right eigenvectors are respectively

α1 :=




1
0
0
−1


 , α2 :=




0
1
0
−1


 , β :=




0
1
−1
0


 and γ :=




3
2
4
3


 .

These vectors constitute a basis of R4. Let {u1, u2, u3, u4} denote the standard
basis of R4. By Lemma 3.6, C and D are finitely Hopf-equivalent if and only if
m = n and there is k ∈ N such that Mk(ui − uj) = 0. Since for each k ∈ N,

Mku1 =
1
3
β +

4k

12
γ =

1
3
(β + 4k−1γ),

Mku2 =
1
3
β +

4k

12
γ =

1
3
(β + 4k−1γ),

Mku3 = −2
3
β +

4k

12
γ =

1
3
(−2β + 4k−1γ),

Mku4 =
1
3
β +

4k

12
γ =

1
3
(β + 4k−1γ),

we obtain the conclusion. �

The following is an immediate consequnece of Theorem 4.4.

Theorem 4.5. Suppose that C,D ⊂ XB are cylinder sets. We may write
r(C) = (m, i) and r(D) = (n, j) for some (m, i), (n, j) ∈ N × R. Then the
following conditions are equivalent:

(a) C and D are not finitely but countably Hopf-equivalent;
(b) m = n, and moreover, one of i and j does not equal 3 but so does

another.

4.3. The dimension group K0(Xσ, Tσ). In view of Lemma 2.6, we shall
compute (∆M ,∆+

M ). It is easy to show that RM = {sβ+ tγ : s, t ∈ Q}. Assume
that sβ + tγ ∈ ∆M for some s, t ∈ Q. It is necessary that there is k ∈ N such
that

3 · 22kt ∈ Z,(4.1)

s+ 22k+1t ∈ Z,(4.2)

−s+ 22k+2t ∈ Z.(4.3)

By (4.2) × 2 − (4.3), we obtain s ∈ (1/3)Z. Since (4.2) implies that

22k+1(t− s) + (22k+1 + 1)s ∈ Z,
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and since 22k+1 + 1 is a multiple of 3, we obtain t− s ∈ Z[1/2], where Z[1/2] =
{m2−n : m ∈ Z, n ∈ N}. What we have shown is the implication that for s, t ∈ Q,

sβ + tγ ∈ ∆M ⇒ s ∈ 1
3

Z, t− s ∈ Z[1/2].

It is straightforward to prove that the converse implication also holds. We obtain

∆M =
{
sβ + tγ : s ∈ 1

3
Z, t− s ∈ Z[1/2]

}
.

The condition that t = 0 ⇒ s = 0 is necessary for a pair (s, t) ∈ Q2 with both
s ∈ (1/3)Z and t− s ∈ Z[1/2] to satisfy the condition that

Mk(sβ + tγ) =




3 · 22kt

s+ 22k+1t

−s+ 22k+2t

3 · 22kt


 ∈ (Z+)4 for some k ∈ N.

It is clear that Mk(sβ + tγ) ∈ (Z+)4 for some k ∈ N whenever t > 0. We hence
obtain ∆+

M ⊂ {sβ+ tγ ∈ ∆M : t > 0}∪ {0}. It is easy to show that the converse
inclusion relation also holds. We obtain

∆+
M = {sβ + tγ ∈ ∆M : t > 0} ∪ {0}.

The order isomorphism f :K0(V,E) → ∆M , which was defined in Lemma 2.6,
maps the distinguished order unit of K0(V,E) to γ. It also follows that for all
(k, i) ∈ N × R,

f(k, ui) =




1
3

(
β +

1
4k
γ

)
if i �= 3,

1
3

(
− 2β +

1
4k
γ

)
if i = 3.

What we have shown is:

Proposition 4.6. The dimension group (K0(Xσ, Tσ),K0(Xσ, Tσ)+) is or-
der isomorphic to (∆M ,∆+

M ) by a map which maps the distinguished order unit
of K0(Xσ, Tσ) to γ, where

∆M =
{
sβ + tγ : s ∈ 1

3
Z, t− s ∈ Z[1/2]

}
,

∆+
M = {sβ + tγ ∈ ∆M : t > 0} ∪ {0},

β =




0
1
0
−1


 , γ =




3
2
4
3


 .

Furthermore, for k ∈ N, i ∈ R and 0 ≤ j < |wk,i|, the element of ∆M whose
representative is the characterisric function of the cylinder set Tσ

jBk,i is 3−1(β+
γ/4k) if i �= 3; otherwise, 3−1(−2β + γ/4k).
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We shall compute the infinitesimal subgroup Inf(∆M ) of ∆M . By [4, Defini-
tion 1.10],

Inf(∆M ) = {α ∈ ∆M : −nγ ≤ mα ≤ nγ for any integers m > n > 0},
where a ≤ b means b−a ∈ ∆+

M . Suppose α := sβ+ tγ ∈ Inf(∆M ). If t > 0, then
nγ −mα /∈ ∆+

M for some integers m > n > 0. Hence, t is necessarily zero, and
so Inf(∆M ) ⊂ {sβ : s ∈ (1/3)Z∩ Z[1/2]} = {sβ : s ∈ Z}. It is easy to show that
the converse inclusion relation also holds, and so

Inf(∆+
M ) = {sβ : s ∈ Z}.

The quotient (∆M/ Inf(∆M ),∆+
M/ Inf(∆M )) with the order unit [γ] is order

isomorphic to ((1/3)Z[1/2], (1/3)Z[1/2] ∩ R+) with the order unit 1 by a map
which maps [γ] to 1, where [γ] denotes the equivalence class of γ, and R+ is the set
of nonnegative real numbers. By [4, Theorem 2.2], the Morse substitution system
(Xσ, Tσ) is orbit equivalent to the odometer with stationary base (3, 2, 2, . . . ),
which was shown in [20].

We shall determine the order automorphisms δ on (∆M ,∆+
M ) which preserve

the distinguished order unit γ. Thus, δ(γ) = γ. Since the restriction of δ onto
Inf(∆M ) is an automorphism of Inf(∆M ), one of δ(β) = β and δ(β) = −β must
hold. Hence, the order automorphisms are {id∆M , δ}, where δ: ∆M → ∆M ,
sβ + tγ 
→ −sβ + tγ.
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