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CONSTANTS OF MOTION FOR NON-DIFFERENTIABLE
QUANTUM VARIATIONAL PROBLEMS

Jacky Cresson — Gastão S. F. Frederico — Delfim F. M. Torres

Abstract. We extend the DuBois–Reymond necessary optimality condi-

tion and Noether’s symmetry theorem to the scale relativity theory set-
ting. Both Lagrangian and Hamiltonian versions of Noether’s theorem are

proved, covering problems of the calculus of variations with functionals

defined on sets of non-differentiable functions, as well as more general non-
differentiable problems of optimal control. As an application we obtain con-

stants of motion for some linear and nonlinear variants of the Schrödinger
equation.

1. Introduction

The notion of symmetry play an important role both in physics and math-
ematics. Symmetries are defined as transformations of a certain system, which
result in the same object after the transformation is carried out. They are math-
ematically described by parameter groups of transformations. Their importance
range from fundamental and theoretical aspects to concrete applications, having
profound implications in the dynamical behavior of the systems, and in their
basic qualitative properties (see [17] and references therein).
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Constants of motion are another fundamental notion of physics and mathe-
matics. Typically, they are used in the calculus of variations and optimal control
to reduce the number of degrees of freedom, thus reducing the problems to a lower
dimension and facilitating the integration of the equations given by the necessary
optimality conditions (see [6], [15] and references therein).

Emmy Noether was the first to prove, in 1918, that these two notions are
connected: when a system exhibits a symmetry, then a constant of motion exists.
The celebrated Noether’s theorem provide an explicit formula for such constants
of motion. Since the pioneer work of Emmy Noether, many extensions of the
classical results were done both in the calculus of variations setting as well as
in more general setting of optimal control (see [5], [7]–[9], [16], [18], [19] and
references therein). All available versions of Noether’s theorem are, however,
proved for problems whose admissible functions are differentiable.

In 1992 L. Nottale introduced the theory of scale-relativity without the hy-
pothesis of space-time differentiability [12], [13]. A rigorous foundation to Not-
tale’s scale-relativity theory was recently given by J. Cresson [3], [4]. The calculus
of variations developed in [3] cover sets of non differentiable curves, by substi-
tuting the classical derivative by a new complex operator, known as the scale
derivative.

In this work we use the scale Euler–Lagrange equations and respective scale
extremals [3], to prove an extension of Noether’s theorem for problems of the
calculus of variations and optimal control whose admissible functions are non-
differentiable (Theorems 4.9 and 4.20). The results are proved by first extending
the classical DuBois–Reymond necessary optimality condition to the scale calcu-
lus of variations (Theorem 4.8). Illustrative examples are given to Schrödinger
equations in the scale framework [1]–[3].

2. Quantum calculus

In this section we briefly review the quantum calculus of [3], which extends
the classical differential calculus to non-differentiable functions.

We denote by C0 the set of real-valued continuous functions defined on R.

Definition 2.1. Let f ∈ C0. For all ε > 0, the ε left- and right-quantum
derivatives of f , denoted respectively by ∆+

ε f(t) and ∆−
ε f(t), are defined by

∆+
ε f(t) =

f(t + ε)− f(t)
ε

and

∆−
ε f(t) =

f(t)− f(t− ε)
ε

.

Remark 2.2. The ε left- and right-quantum derivative of a continuous func-
tion f correspond to the classical derivative of the ε-mean function fσ

ε defined
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by

fσ
ε (t) =

σ

ε

∫ t+σε

t

f(s) ds,

with σ = ±.

Next we define an operator which generalize the classical derivative.

Definition 2.3. Let f ∈ C0. For all ε > 0, the ε scale derivative of f at
point t, denoted by (�εf/�t)(t), is defined by

�εf

�t
(t) =

1
2
[(∆+

ε f(t) + ∆−
ε f(t))− i(∆+

ε f(t)−∆−
ε f(t))].

Remark 2.4. If f is differentiable, we can take the limit of the scale deriv-
ative when ε goes to zero. We then obtain the classical derivative (df/dt)(t) of
f at t.

We also need to extend the scale derivative to complex valued functions.

Definition 2.5. Let f be a continuous complex valued function. For all
ε > 0, the ε scale derivative of f , denoted by �εf/�t, is defined by

�εf

�t
(t) =

�εRe(f)
�t

+ i
�εIm(f)

�t
,

where Re(f) and Im(f) denote the real and imaginary part of f , respectively.

In what follows, we will frequently use �ε to denote the scale derivative
operator �ε/�t.

Theorem 2.6 (cf. [3]). Let f and g be two C0 functions. For all ε > 0 one
has

(2.1) �ε(f · g) = �εf · g + f ·�εg

+ εi(�εf �ε g −�εf�εg −�εf�εg −�εf �ε g)

where �f denotes the complex conjugate of �f .

Remark 2.7. For two differentiable functions f and g, one obtains the clas-
sical Leibniz rule (f · g)′ = f ′ · g + f · g′ by taking the limit of (2.1) when ε goes
to zero.

Remark 2.8. It is not difficult to prove the following equality:

(2.2)
∫ b

a

�εf(t) dt =
1
2
[(f+

ε (t) + f−ε (t))− i(f+
ε (t)− f−ε (t))]

∣∣∣∣b
a

.

When ε goes to zero, (2.2) reduces to∫ b

a

d

dt
f(t) dt = f(t)|ba.
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Definition 2.9 (α-Hölderian functions). A continuous real valued function
f is said to be α-Hölderian, 0 < α < 1, if for all ε > 0 and all t, t′ ∈ R there
exists a constant c such that |t− t′| ≤ ε implies |f(t)− f(t′)| ≤ cεα.

We denote by Hα the set of continuous functions which are α-Hölderian.

Theorem 2.10 (cf. [3]). Let f(t, x) be a Cn+1 real valued function and x(t) ∈
H1/n, n ≥ 1. For all ε > 0 sufficiently small one has

�εf

�t
(t, x(t)) =

∂f

∂t
(t, x(t)) +

n∑
j=1

1
j!

∂jf

∂xj
(t, x(t))εj−1aε,j(t) + o(ε1/n)

where

aε,j(t) =
1
2
[((∆ε

+x)j − (−1)j(∆ε
−x)j)− i((∆ε

+x)j + (−1)j(∆ε
−x)j)].

Lemma 2.11 is crucial for our purposes (see proof of Theorem 4.9).

Lemma 2.11 (cf. [3]). Let h ∈ Hβ, β ≥ α1[1/2,1] + (1 − α)1]0,1/2[, satisfy
h(a) = h(b) = 0 for some a, b ∈ R. If fε: R 7→ C, ε > 0, is such that for all
t ∈ [a, b] one has

sup
s∈{t,t+σε}

|fε(s)| ≤ Cεα−1,

then ∫ b

a

�ε

�t
(fε(t)h(t)) dt = o(εα+β−1)

and

ε

∫ b

a

Opε(fε)Op′ε(h) dt = o(εα+β)

where Opε and Op′ε are either �ε or �ε.

3. Review of the classical Noether’s theorem

There are several ways to prove the classical Noether’s theorem. In this
section we review one of those proofs.

We begin by formulating the fundamental problem of the calculus of varia-
tions: to minimize

(3.1) I[q( · )] =
∫ b

a

L(t, q(t), q̇(t)) dt

under given boundary conditions q(a) = qa and q(b) = qb, and where q̇ = dq/dt.
The Lagrangian L: [a, b] × Rn × Rn → R is assumed to be a C1-function with
respect to all its arguments, and admissible functions q( · ) are assumed to be
C2-smooth.
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Definition 3.1 (Invariance of (3.1)). The functional (3.1) is said to be
invariant under the s-parameter group of infinitesimal transformations

(3.2)

{
t = t + sτ(t, q) + o(s),

q(t) = q(t) + sξ(t, q) + o(s),

if

(3.3)
∫ tb

ta

L(t, q(t), q̇(t)) dt =
∫ t(tb)

t(ta)

L(t, q(t), q̇(t)) dt

for any subinterval [ta, tb] ⊆ [a, b].

We will denote by ∂iL the partial derivative of L with respect to its i-th
argument, i = 1, 2, 3.

Theorem 3.2 (Necessary and sufficient condition of invariance). If func-
tional (3.1) is invariant under transformations (3.2), then

(3.4) ∂1L(t, q, q̇)τ + ∂2L(t, q, q̇) · ξ + ∂3L(t, q, q̇) · (ξ̇ − q̇τ̇) + L(t, q, q̇)τ̇ = 0.

Proof. Since (3.3) is to be satisfied for any subinterval [ta, tb] of [a, b], one
can get rid off of the integral sign in (3.3) and write the equivalent equality

(3.5) L(t, q, q̇) =
[
L

(
t + sτ + o(s), q + sξ + o(s),

q̇ + sξ̇ + o(s)
1 + sτ̇ + o(s)

)]
dt

dt
.

Equation (3.4) is obtained differentiating both sides of condition (3.5) with re-
spect to s and then putting s = 0. �

Definition 3.3 (Constant of motion). A quantity C(t, q(t), q̇(t)), t ∈ [a, b],
is said to be a constant of motion if (d/dt)C(t, q(t), q̇(t)) = 0 for all the solutions
q of the Euler–Lagrange equation

(3.6)
d

dt
∂3L(t, q(t), q̇(t)) = ∂2L(t, q(t), q̇(t)).

Theorem 3.4 (DuBois–Reymond necessary optimality condition). If func-
tion q is a minimizer or maximizer of functional (3.1), then

(3.7) ∂1L(t, q(t), q̇(t)) =
d

dt
{L(t, q(t), q̇(t))− ∂3L(t, q(t), q̇(t)) · q̇(t)}.

Proof. The conclusion follows by direct calculations using the Euler–La-
grange equation (3.6):

d

dt
{L(t, q, q̇) − ∂3L(t, q, q̇) · q̇} = ∂1L(t, q, q̇) + ∂2L(t, q, q̇) · q̇

+ ∂3L(t, q, q̇) · q̈ − d

dt
∂3L(t, q, q̇) · q̇ − ∂3L(t, q, q̇) · q̈

= ∂1L(t, q, q̇) + q̇ · (∂2L(t, q, q̇)− d

dt
∂3L(t, q, q̇)) = ∂1L(t, q, q̇). �
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Theorem 3.5 (Noether’s theorem). If (3.1) is invariant under (3.2), then

(3.8) C(t, q, q̇) = ∂3L(t, q, q̇) · ξ(t, q) + (L(t, q, q̇)− ∂3L(t, q, q̇) · q̇)τ(t, q)

is a constant of motion.

Proof. To prove Noether’s theorem we use the Euler–Lagrange equations
(3.6) and the DuBois–Reymond necessary optimality condition (3.7) into the
necessary and sufficient condition of invariance (3.4):

0 = ∂1L(t, q, q̇)τ + ∂2L(t, q, q̇) · ξ + ∂3L(t, q, q̇) · (ξ̇ − q̇τ̇) + L(t, q, q̇)τ̇

= ∂2L(t, q, q̇) · ξ + ∂3L(t, q, q̇) · ξ̇ + ∂1L(t, q, q̇)τ + τ̇(L(t, q, q̇)− ∂3L(t, q, q̇) · q̇)

=
d

dt
∂3L(t, q, q̇) · ξ + ∂3L(t, q, q̇) · ξ̇

+
d

dt
{L(t, q, q̇)− ∂3L(t, q, q̇) · q̇}τ + τ̇(L(t, q, q̇)− ∂3L(t, q, q̇) · q̇)

=
d

dt
{∂3L(t, q, q̇) · ξ + (L(t, q, q̇)− ∂3L(t, q, q̇) · q̇)τ}. �

4. Main results: Non-differentiable Noether-type theorems

The classical Noether’s theorem is valid for extremals q( · ) which are C2

differentiable, as considered in Section 3. The biggest class where a Noether-
type theorem has been proved is the class of Lipschitz functions [18]. In this
work we prove a more general Noether-type theorem, valid for non-differentiable
scale extremals.

4.1. Calculus of variations with scale derivatives. In [3] the calculus
of variations with scale derivatives is introduced and respective Euler–Lagrange
equations derived. In this section we obtain a formulation of Noether’s theorem
for the scale calculus of variations. The proof of our Noether’s theorem is done in
two steps: first we extend the DuBois–Reymond condition to problems with scale
derivatives (Theorem 4.8); then, using this result, we obtain the scale/quantum
Noether’s theorem (Theorem 4.9).

The problem of the calculus of variations with scale derivatives is defined as

(4.1) I[q( · )] =
∫ b+ε

a−ε

L(t, q(t),�εq(t)) dt → min

under given boundary conditions q(a − ε) = qaε and q(b + ε) = qbε , 0 < ε � 1,
q( · ) ∈ Hα, 0 < α < 1. The Lagrangian L: [a − ε, b + ε] × Rn × Cn → C is
assumed to be a C1-function with respect to all its arguments satisfying

(4.2) ||DL(t, q(t),�εq(t))|| ≤ K,

where K is a non-negative constant, D denotes the differential and || · || is a norm
for matrices (see [3]).
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Remark 4.1. In the case of admissible differentiable functions q( · ), prob-
lem (4.1) tends to problem (3.1) when ε tends to zero.

Remark 4.2. We need to assume a−ε ≤ t ≤ b+ε in order to avoid problems
with the definition of scale derivative in the boundaries of the interval.

Theorem 4.3 (Scale Euler–Lagrange equation, cf. [3]). If q is a minimizer
of problem (4.1), then q satisfy the following scale Euler–Lagrange equation:

(4.3) ∂2L(t, q(t),�εq(t))−�ε∂3L(t, q(t),�εq(t)) = 0.

Definition 4.4 (Scale extremals). The solutions q(t) of the scale Euler–
Lagrange equation (4.3) are called scale extremals.

Definition 4.5 (cf. Definition 3.1). The functional (4.1) is said to be in-
variant under a s-parameter group of infinitesimal transformations

(4.4)

{
t = t + sτ(t, q) + o(s),

q(t) = q(t) + sξ(t, q) + o(s),

τ , ξ ∈ Hβ , β ≥ α1[1/2,1] + (1− α)1]0,1/2[, if

(4.5)
∫ tb

ta

L(t, q(t),�εq(t)) dt =
∫ t(tb)

t(ta)

L(t, q(t),�εq(t)) dt

for any subinterval [ta, tb] ⊆ [a− ε, b + ε].

Theorem 4.6 establish a necessary and sufficient condition of invariance for
(4.1). Condition (4.6) will be used in the proof of our Noether-type theorem.

Theorem 4.6 (cf. Theorem 3.2). If functional (4.1) is invariant under the
one-parameter group of transformations (4.4), then

(4.6)
∫ tb

ta

[∂1L(t, q(t),�εq(t))τ + ∂2L(t, q(t),�εq(t)) · ξ

+ ∂3L(t, q(t),�εq(t)) · (�εξ −�εq(t)�ετ)] dt = 0

for any subinterval [ta, tb] ⊆ [a− ε, b + ε].

Proof. Equation (4.5) is equivalent to

(4.7)
∫ tb

ta

L(t, q(t),�εq(t)) dt

=
∫ tb+sτ

ta+sτ

L

(
t + sτ + o(s), q + sξ + o(s),

�εq + s�εξ + o(s)
1 + s�ετ + o(s)

)
dt.

Differentiating both sides of equation (4.7) with respect to s, then putting s = 0,
we obtain equality (4.6). �
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Definition 4.7 (Scale constants of motion). We say that quantity C(t, q(t),
�εq(t)) is a scale constant of motion if, and only if, C(t, q(t),�εq(t)) = constant
along all the scale extremals q( · ) (cf. Definition 4.4).

Theorem 4.8 generalizes the DuBois–Reymond necessary optimality condi-
tion (cf. Theorem 3.4) for problems of the calculus of variations with scale deriva-
tives.

Theorem 4.8 (Scale DuBois–Reymond necessary condition). If q( · ) is a
minimizer of problem (4.1), then it satisfy the following condition:

(4.8)
�ε

�t

{
L

(
t, q,

�εq

�t

)
− ∂3L

(
t, q,

�εq

�t

)
· �εq

�t

}
= ∂1L

(
t, q,

�εq

�t

)
− εi(�εf �ε g −�εf�εg −�εf�εg −�εf �ε g)

where f = ∂3L(t, q,�εq/�t), g = �εq/�t , �f and �g are the complex conjugate
of �f and �g, respectively.

proof. The scale DuBois–Reymond necessary condition (4.8) follows from
the linearity of the scale derivative operator, Theorems 2.6 and 2.10, and the
scale Euler–Lagrange equations (4.3):

�ε{L(t,q, �εq)− ∂3L(t, q,�εq) ·�εq}

= ∂1L(t, q,�εq) + ∂2L(t, q,�εq) ·�εq + ∂3L(t, q,�εq) ·�ε�εq

−�ε∂3L(t, q,�εq) ·�εq − ∂3L(t, q,�εq) ·�ε�εq

− εi(�εf �ε g −�εf�εg −�εf�εg −�εf �ε g)

= ∂1L(t, q,�εq) + �εq · (∂2L(t, q,�εq)−�ε∂3L(t, q,�εq))

− εi(�εf �ε g −�εf�εg −�εf�εg −�εf �ε g)

= ∂1L(t, q,�εq)− εi(�εf �ε g −�εf�εg −�εf�εg −�εf �ε g). �

Theorem 4.9 establish an extension of Noether’s theorem for problems of the
calculus of variations with scale derivatives.

Theorem 4.9 (Scale Noether’s theorem in Lagrangian form). If functional
(4.1) is invariant in the sense of Definition 4.5, then

(4.9) C(t, q(t),�εq(t)) = ∂3L(t, q,�εq)) · ξ(t, q)

+ (L(t, q,�εq)− ∂3L(t, q,�εq) ·�εq)τ(t, q)

is a scale constant of motion (cf. Definition 4.7).

Remark 4.10. If the admissible functions q are differentiable, the scale con-
stant of motion (4.9) tends to (3.8) when we take the limit ε → 0.
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Proof. Noether’s scale constant of motion (4.9) follows by using the scale
DuBois–Raymond condition (4.8), the scale Euler–Lagrange equation (4.3) and
Theorem 2.6 into the necessary and sufficient condition of invariance (4.6):

(4.10) 0 =
∫ tb

ta

[∂1L(t, q(t),�εq(t))τ + ∂2L(t, q(t),�εq(t)) · ξ

+ ∂3L(t, q,�εq) · (�εξ −�εq�ετ) + L�ετ − L�ετ ] dt

=
∫ tb

ta

[τ�ε(L(t, q,�εq)− ∂3L(t, q,�εq) ·�εq)

+ (L(t, q,�εq)− ∂3L(t, q,�εq) ·�εq)�ετ

+ ξ ·�ε∂3L(t, q,�εq) + ∂3L(t, q,�εq) ·�εξ] dt + R(ε)

=
∫ tb

ta

�ε

�t
{∂3L(t, q,�εq) · ξ + (L(t, q,�εq)− ∂3L(t, q,�εq) ·�εq)τ} dt

+ R(ε) + R′(ε),

where R(ε) and R′(ε) are integrals with terms resulting from the application
of formula (2.1) of Theorem 2.6. Taking into consideration condition (4.2) and
Lemma 2.11, the integrals R(ε) and R′(ε) vanish. Thus, (4.10) simplify to

(4.11)
∫ tb

ta

�ε

�t
{∂3L(t, q,�εq) · ξ + (L(t, q,�εq)− ∂3L(t, q,�εq) ·�εq)τ} dt = 0.

Using formula (2.2) and having in mind that (4.11) holds for an arbitrary
[ta, tb] ⊆ [a− ε, b + ε], we conclude that

∂3L(t, q,�εq) · ξ + (L(t, q,�εq)− ∂3L(t, q,�εq) ·�εq)τ = constant. �

4.2. Scale optimal control. Theorem 4.9 gives a Lagrangian formulation
of Noether’s principle to the non-differentiable scale setting. Now we give a scale
Hamiltonian formulation of Noether’s principle for more general scale problems
of optimal control (Theorem 4.20). The result is obtained as a corollary of
Theorem 4.9.

We define the scale optimal control problem as follows:

(4.12)
I[q( · ), u( · )] =

∫ b+ε

a−ε

L(t, q(t), u(t)) dt → min,

�εq(t) = ϕ(t, q(t), u(t)),

under the given initial condition q(a − ε) = qaε
, 0 < ε � 1, q( · ), u( · ) ∈ Hα,

0 < α < 1. The Lagrangian L: [a − ε, b + ε] × Rn × Cm → C and the velocity
vector ϕ: [a − ε, b + ε] × Rn × Cm → Cn are assumed to be C1-functions with
respect to all its arguments. Similarly as before, we assume that

||DL(t, q(t), u(t))|| ≤ K,
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where K is a non-negative constant, D denotes the differential and ||·|| a classical
norm of matrices.

Remark 4.11. In the particular case when ϕ(t, q, u) = u, (4.12) is reduced
to the scale problem of the calculus of variations (4.1).

Remark 4.12. If functions q are differentiable, problem (4.12) tends to the
classical problem of optimal control,

I[q( · ), u( · )] =
∫ b

a

L(t, q(t), u(t)) dt → min,

q̇(t) = ϕ(t, q(t), u(t)),

as ε → 0.

Theorem 4.13. If (q( · ), u( · )) is a minimizer of (4.12), then there exists a
co-vector function p(t) ∈ Hα([a− ε, b+ ε]; Rn) such that the following conditions
hold:

(a) the scale Hamiltonian system

(4.13)

{
�εq(t) = ∂4H(t, q(t), u(t), p(t)),

�εp(t) = −∂2H(t, q(t), u(t), p(t));

(b) the stationary condition

(4.14) ∂3H(t, q(t), u(t), p(t)) = 0;

where the Hamiltonian H is defined by

(4.15) H(t, q, u, p) = L(t, q, u) + p · ϕ(t, q, u).

Remark 4.14. The first equation in the scale Hamiltonian system (4.13) is
nothing more than the scale control system �εq(t) = ϕ(t, q(t), u(t)) given in the
formulation of problem (4.12).

Remark 4.15. In classical mechanics p is called the generalized momentum.
In the language of optimal control [14], p is known as the adjoint variable.

Definition 4.16. A triplet (q( · ), u( · ), p( · )) satisfying the conditions of
Theorem 4.13 will be called a scale Pontryagin extremal.

Remark 4.17. In the particular case when ϕ(t, q, u) = u, Theorem 4.13
reduces to Theorem 4.3: the stationary condition (4.14) gives p = −∂3L and the
second equation in the scale Hamiltonian system (4.13) gives �εp(t) = −∂2L.
Comparing both equalities, one obtains the scale Euler–Lagrange equation (4.3):
�ε∂3L = ∂2L. In other words, the scale Pontryagin extremals (Definition 4.16)
are a generalization of the scale Euler–Lagrange extremals (Definition 4.4).
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Proof of Theorem 4.13. Using the Lagrange multiplier rule, (4.12) is
equivalent to the augmented problem

(4.16) J [q( · ), u( · ), p( · )] =
∫ b

a

[H(t, q(t), u(t), p(t))− p(t) ·�εq(t)] dt → min .

The necessary optimality condition (4.13)–(4.14) is obtained from the Euler–
Lagrange equations (4.3) applied to problem (4.16):



�ε

�t

∂

∂�εq
(H− p ·�εq) =

∂

∂q
(H− p ·�εq),

�ε

�t

∂

∂�εu
(H− p ·�εq) =

∂

∂u
(H− p ·�εq),

�ε

�t

∂

∂�εp
(H− p ·�εq) =

∂

∂p
(H− p ·�εq)

⇔


−�εp = ∂2H,

0 = ∂3H,

0 = ∂4H−�εq.

�

The notion of invariance for problem (4.12) is defined using the equivalent
augmented problem (4.16).

Definition 4.18 (cf. Definition 4.5). The functional (4.16) is said to be
invariant under the s-parameter group of infinitesimal transformations

t = t + sτ(t, q, u, p) + o(s),

q(t) = q(t) + sξ(t, q, u, p) + o(s),

u(t) = u(t) + s%(t, q, u, p) + o(s),

p(t) = p(t) + sς(t, q, u, p) + o(s),

τ , ξ, %, ς ∈ Hβ , β ≥ α1[1/2,1] + (1− α)1]0,1/2[, if∫ tb

ta

[H(t, q(t), u(t), p(t))− p(t) ·�εq(t)] dt

=
∫ t(tb)

t(ta)

[H(t, q(t), u(t), p(t))− p(t) ·�εq(t)] dt

for any subinterval [ta, tb] ⊆ [a− ε, b + ε].

Definition 4.19 (cf. Definition 4.7). A function C(t, q(t), u(t), p(t)) pre-
served along any scale Pontryagin extremal (q( · ), u( · ), p( · )) of problem (4.12)
is said to be a scale constant of motion for (4.12).

Theorem 4.20 gives a Noether-type theorem for scale optimal control prob-
lems (4.12).
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Theorem 4.20 (Scale Noether’s theorem in Hamiltonian form). If we have
invariance in the sense of Definition 4.18, then

(4.17) C(t, q(t), u(t), p(t)) = H(t, q(t), u(t), p(t))τ − p(t) · ξ

is a scale constant of motion for (4.12).

Proof. The scale constant of motion (4.17) is obtained by applying Theo-
rem 4.9 to problem (4.16). �

Remark 4.21. For the scale problem of the calculus of variations (4.1) the
Hamiltonian (4.15) takes the form

H = L + p · u, with u = �εq(t) and p = −∂3L

(cf. Remark 4.17). In this case the scale constant of motion (4.17) reduces
to (4.9).

5. Application: scale constants of motion
for Schrödinger equations

In [3, §5] some fractional variants of the Schrödinger equation, with particu-
lar interest in quantum mechanics, are studied. It is proved that under certain
conditions, solutions of both linear and nonlinear Schrödinger’s equations co-
incide with the extremals of certain functionals (4.1) of the scale calculus of
variations. In this section we use our Noether theorem to find scale constants
of motion for the problems studied in [3, §5]. In all the examples we use the
computer program [10], [11] (1) to compute the symmetries (i.e. the invariance
transformations (4.4)).

Example 5.1. Let us consider the following nonlinear Schrödinger equation:

(5.1) 2iγm

[
− 1

Ψ

(
∂Ψ
∂q

)2(
iγ +

aε(t)
2

)
+

∂Ψ
∂t

+
aε(t)

2
∂2Ψ
∂q2

]
= (U(q) + α(q))Ψ

where m > 0, γ ∈ R, U : R 7→ R, α(q) is an arbitrary continuous function,
q(t) ∈ H1/2, Ψ(t, q) satisfy the condition

�εq(t)
�t

= −i2γ
∂ ln(Ψ(t, q))

∂q

and aε: R 7→ C is given by

aε(t) =
1
2
[((∆+

ε q(t))2 − (∆−
ε q(t))2)− i((∆+

ε q(t))2 + (∆−
ε q(t))2)].

(1) The software is available from the Maple Application Centre at http://www.maplesoft.
com/applications/app center view.aspx?AID=1983.
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It is shown in [3, Theorem 5.1] that the solutions q(t) of (5.1) coincide with the
Euler–Lagrange extremals of functional (4.1) with the Lagrangian

L(t, q(t),�εq(t)) =
1
2
m(�εq(t))2 + U(q).

The functional

I[q( · )] =
1
2

∫ b

a

[
m

(
− i2γ

∂ ln(Ψ(t, q))
∂q

)2

+ 2U(q)
]

dt

is invariant in the sense of Definition 4.5 under the symmetries (τ, ξ) = (c, 0),
where c is an arbitrary constant. It follows from our Theorem 4.9 that

(5.2) −2m

(
γ

∂ ln(Ψ(t, q))
∂q

)2

+ U(q)

is a scale constant of motion: (5.2) is preserved along all the solutions q(t) of the
nonlinear Schrödinger equation (5.1).

Example 5.2. We now consider the following linear Schrödinger’s equation:

(5.3) ih
∂Ψ
∂t

+
h

2

2m

∂2Ψ
∂q2

= U(q)Ψ

where h = h/(2π), m > 0, U : R 7→ R, Ψ(t, q) satisfy

�εq(t)
�t

= −i
h

m

∂ ln(Ψ(t, q))
∂q

and q(t) ∈ H1/2 are such that

1
2
[((∆+

ε q(t))2 − (∆−
ε q(t))2)− i((∆+

ε q(t))2 + (∆−
ε q(t))2)] = −i

h

m
.

In [3, Theorem 5.2] it is proved that the solutions of (5.3) coincide with Euler–
Lagrange extremals of functional (4.1) with Lagrangian

L(t, q(t),�εq(t)) =
1
2
m(�εq(t))2 + U(q).

It happens that functional

I[q( · )] =
1
2

∫ b

a

[
m

(
− i

h

m

∂ ln(Ψ(t, q))
∂q

)2

+ 2U(q)
]

dt

is invariant in the sense of Definition 4.5 under the symmetries (τ, ξ) = (c, 0),
where c is an arbitrary constant. It follows from our Theorem 4.9 that

(5.4) − 1
2m

(
h

∂ ln(Ψ(t, q))
∂q

)2

+ U(q) = − 1
8m

(
h

π

∂ ln(Ψ(t, q))
∂q

)2

+ U(q)

is a scale constant of motion: expression (5.4) is constant along all the solutions
q(t) of the linear Schrödinger’s equation (5.3).
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