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AN APPROXIMATIVE SCHEME
OF FINDING ALMOST HOMOCLINIC SOLUTIONS

FOR A CLASS OF NEWTONIAN SYSTEMS

Joanna Janczewska

Abstract. In this work the problem of the existence of almost homoclinic
solutions for a Newtonian system q̈ + Vq(t, q) = f(t), where t ∈ R and

q ∈ Rn, is considered. It is assumed that a potential V : R × Rn → R is

C1-smooth with respect to all variables and T -periodic in a time variable t.
Moreover, f : R → Rn is a continuous bounded square integrable function

and f 6= 0. This system may not have a trivial solution. However, we

show that under some additional conditions there exists a solution ema-
nating from 0 and terminating to 0. We are to call such a solution almost

homoclinic to 0.

1. Introduction

The goal of this paper is to establish the existence of an almost homoclinic
solution for a class of Newtonian systems of the form:

(1.1) q̈ + Vq(t, q) = f(t),

where t ∈ R, q ∈ Rn.
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Definition 1.1. We will say that a solution q: R → Rn of the Newtonian
system (1.1) is almost homoclinic to 0, if q(t) → 0, as t → ±∞.

Note that q0 ≡ 0 may not satisfy (1.1).
We assume that V : R× Rn → R and f : R → Rn satisfy the following condi-

tions:

(C1) V is C1-smooth with respect to all variables and T -periodic with respect
to t, T > 0,

(C2) f 6= 0 is bounded, continuous and square integrable.

Our approach to (1.1) involves the use of a variational method of an approxima-
tive nature. To formulate a theorem, let E := W 1,2(R, Rn) be a Hilbert space
under the standard norm

‖q‖E :=
( ∫ ∞

−∞
(|q(t)|2 + |q̇(t)|2) dt

)1/2

.

For every k ∈ N, let fk: R → Rn be a 2kT -periodic extension of f restricted to
the interval [−kT, kT ) over R. Let us remark that fk may not be continuous at
points: kT ± 2kTj, j ∈ Z.

We consider a family of Newtonian systems

(1.2) q̈ + Vq(t, q) = fk(t),

where t ∈ R, q ∈ Rn. Let Ek := W 1,2
2kT (R, Rn) be a Hilbert space of 2kT -periodic

functions with the usual norm

‖q‖Ek
:=

( ∫ kT

−kT

(|q(t)|2 + |q̇(t)|2) dt

)1/2

.

Finally, denote by C2
loc(R, Rn) the space of C2-smooth functions on R with values

in Rn under the topology of almost uniformly convergence of functions and all
derivatives up to the order 2.

Theorem 1.2. Let V and f satisfy (C1) and (C2). Assume also that for
each k ∈ N, the Newtonian system (1.2) has a solution qk ∈ Ek. If {‖qk‖Ek

}k∈N

is a bounded sequence in R then there exist a subsequence {qkj
}j∈N and a function

q ∈ E such that
qkj

→ q, as j →∞,

in the topology of C2
loc(R, Rn) and q is a desired almost homoclinic solution of

the Newtonian system (1.1).

In the last twenty years many authors studied homoclinic and heteroclinic
solutions of Hamiltonian and Newtonian systems. In particular, homoclinic or-
bits were considered in [1], [3]–[5], [10], [12], [13]. Many questions are still open
(see the survey of P. Rabinowitz [11]). The present paper is partially motivated
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by P. Rabinowitz [9] in which the existence of a nontrivial homoclinic orbit for
a Newtonian system

(1.3) q̈ + Vq(t, q) = 0

was proved. The functional V considered by Rabinowitz was of the form:

V (t, q) = −1
2
(L(t)q, q) + W (t, q),

where L is a continuous T -periodic matrix valued function such that L(t) is
positive definite and symmetric for every t ∈ [0, T ], and W ∈ C1(R × Rn, R) is
T -periodic in t and satisfies:

(H1) Wq(t, q) = o(|q|), as |q| → 0 uniformly with respect to t,
(H2) there is µ > 2 such that for all t ∈ R, q ∈ Rn \ {0},

0 < µW (t, q) ≤ (q, Wq(t, q)).

Under the above assumptions, a nontrivial homoclinic solution of the Newto-
nian system (1.3) was obtained as a limit in C2

loc(R, Rn) of a certain subsequence
of 2kT -periodic solutions of this system. The same method was applied in [2].

In [6] we received an essential and interesting generalization of Rabinowitz’s
result. Namely, we proved the existence of an almost homoclinic solution for
(1.1) with V of the form:

V (t, q) = −K(t, q) + W (t, q),

where W and K are C1-smooth and T -periodic with respect to t, W satisfies
(H1)–(H2) and K satisfies:

(H3) the pinching condition, i.e. there are positive constants b1, b2 such that
for all (t, q) ∈ R× Rn,

b1|q|2 ≤ K(t, q) ≤ b2|q|2,

(H4) for all (t, q) ∈ R× Rn, K(t, q) ≤ (q, Kq(t, q)) ≤ 2K(t, q).

Moreover, we assumed that f is bounded, continuous and “sufficiently” small in
L2(R, Rn) (see [6] for more details).

Writing [7] we noticed that the same scheme as in [6] can be used to prove
another existence result for (1.1). Therefore we decided to look more closely at
this scheme and to formulate a more general result, i.e. Theorem 1.2.

The paper is divided into three sections. Section 2 provides a detailed proof
of Theorem 1.2. In Section 3 an application of this theorem is presented.
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2. The proof of Theorem 1.2

At the begining we recall two basic facts which are necessary to prove The-
orem 1.2 (see [6] for their proofs).

Fact 2.1. Let q: R → Rn be a continuous map. If a weak derivative q̇: R →
Rn is continuous at a point t0 then q is differentiable at t0 and

q̇(t0) = lim
t→t0

q(t)− q(t0)
t− t0

.

Let L2
loc(R, Rn) be a space of functions from R into Rn locally square inte-

grable.

Fact 2.2. Let q: R → Rn be a continuous map such that q̇ ∈ L2
loc(R, Rn).

Then for each t ∈ R the following inequality holds:

(2.1) |q(t)| ≤
√

2
( ∫ t+1/2

t−1/2

(|q(s)|2 + |q̇(s)|2) ds

)1/2

.

Let L∞2kT (R, Rn) denote a space of 2kT -periodic essentially bounded functions
from R into Rn under the standard norm

‖q‖L∞2kT
:= ess sup{|q(t)|: t ∈ [−kT, kT ]}.

A direct consequence of the inequality (2.1) is as follows.

Fact 2.3. There is C > 0 such that for each k ∈ N and each q ∈ Ek,

(2.2) ‖q‖L∞2kT
≤ C‖q‖Ek

.

If T ≥ 1/2 then one can choose C =
√

2.
We divided the proof of Theorem 1.2 into two lemmas.

Lemma 2.4. Let V and f satisfy (C1) and (C2). Assume also that for each
k ∈ N, the Newtonian system (1.2) has a solution qk ∈ Ek. If {‖qk‖Ek

}k∈N is
a bounded sequence in R then there exist a subsequence {qkj

}j∈N and a function
q ∈ E such that

qkj
→ q, as j →∞,

in C1
loc(R, Rn).

Proof. At first, let us observe that {qk}k∈N, {q̇k}k∈N and {q̈k}k∈N are uni-
formly bounded sequences. By assumption, there is M > 0 such that for every
k ∈ N,

(2.3) ‖qk‖Ek
≤ M.

Combining (2.2) with (2.3) we get

(2.4) ‖qk‖L∞2kT
≤ CM.
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Since qk is a 2kT -periodic solution of (1.2), for every t ∈ [−kT, kT ) we have

|q̈k(t)| ≤ |Vq(t, qk(t))|+ |fk(t)| = |Vq(t, qk(t))|+ |f(t)|.

From (2.4) and (C1)–(C2) it follows that there exists M1 > 0 such that for each
k ∈ N,

(2.5) ‖q̈k‖L∞2kT
≤ M1.

Applying the Mean Value Theorem we have that for every k ∈ N and for every
t ∈ R there is sk ∈ [t− 1, t] such that

q̇k(sk) =
∫ t

t−1

q̇k(s) ds = qk(t)− qk(t− 1).

Hence

|q̇k(t)| =
∣∣∣∣ ∫ t

sk

q̈k(s) ds+q̇k(sk)
∣∣∣∣ ≤ ∫ t

t−1

|q̈k(s)| ds+|qk(t)−qk(t−1)| ≤ M1+2CM,

and consequently, for each k ∈ N,

(2.6) ‖q̇k‖L∞2kT
≤ M1 + 2CM ≡ M2.

To complete the proof, it is sufficient to notice that {qk}k∈N and {q̇k}k∈N are
equicontinuous. To this end we show that they satisfy Lipschitz’s condition with
the same constant independent of k. For each k ∈ N and for all t1, t2 ∈ R we get

|qk(t2)− qk(t1)| =
∣∣∣∣ ∫ t2

t1

q̇k(s) ds

∣∣∣∣ ≤ M2|t2 − t1|

by (2.6), and analogously

|q̇k(t2)− q̇k(t1)| ≤ M1|t2 − t1|

by (2.5). Applying now the Ascolá–Arzeli lemma we receive the claim. �

Lemma 2.5. The function q given by Lemma 2.4 is a desired almost homo-
clinic solution of the Newtonian system (1.1). Moreover,

qkj
→ q, as j →∞,

in the topology of C2
loc(R, Rn).

Proof. At the beginning we show that q satisfies the Newtonian system
(1.1). We have

q̈kj (t) + Vq(t, qkj (t)) = fkj (t)

for every j ∈ N and t ∈ R. Since qkj → q and fkj → f almost uniformly on
R, we get q̈kj

→ w almost uniformly on R, where w(t) = f(t) − Vq(t, q(t)). Fix
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a, b ∈ R and assume that a < b. There is j0 ∈ N such that for every j > j0,
[a, b] ⊂ [−kjT, kjT ). Hence for every j > j0 and t ∈ [a, b] we have

q̈kj
(t) + Vq(t, qkj

(t)) = f(t).

By this we get that q̈kj is continuous in [a, b] for j > j0. From Fact 2.1 we
conlude that q̈kj

is a derivative of q̇kj
in (a, b) for every j > j0. Since q̇kj

→ q̇

and q̈kj
→ w almost uniformly on R, we obtain q̈ = w in (a, b). In consequence,

q̈ = w in R and q is a solution of (1.1). Moreover, {qkj
}j∈N goes to q in the

topology of C2
loc(R, Rn).

Now we notice that q emanates from 0 and terminates at 0. We have∫ ∞

−∞
(|q(t)|2 + |q̇(t)|2) dt = lim

m→∞

∫ mT

−mT

(|q(t)|2 + |q̇(t)|2) dt

= lim
m→∞

lim
j→∞

∫ mT

−mT

(|qkj
(t)|2 + |q̇kj

(t)|2) dt.

By (2.3), for each m ∈ N there is j(m) ∈ N such that for all j > j(m),∫ mT

−mT

(|qkj
(t)|2 + |q̇kj

(t)|2) dt ≤ M2.

Hence ∫ ∞

−∞
(|q(t)|2 + |q̇(t)|2) dt ≤ M2,

and, in consequence,

(2.7)
∫
|t|≥r

(|q(t)|2 + |q̇(t)|2) dt → 0,

as r → ∞. Combining (2.7) with (2.1), we get q(t) → 0, as t → ±∞, which
completes the proof. �

3. Application

Let us consider the Newtonian system

(3.1) q̈ − Vq(t, q) = f(t),

where t ∈ R, q ∈ Rn. We will assume that V : R×Rn → R and f : R → Rn satisfy
(C1)–(C2), and moreover,

(C3) V (t, q) ≥ b(t)|q|2 for all (t, q) ∈ R×Rn, where b: R → R+ is a continuous
positive-valued function that achieves a minimum,

(C4) V (t, 0) = 0 for every t ∈ R.

Notice that if b ∈ CT (R, R+) then b has a minimum.
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Theorem 3.1. Under the assumptions (C1)–(C4), the Newtonian system
(3.1) possesses an almost homoclinic solution.

Our aim is to prove Theorem 3.1 by using Theorem 1.2. An approximative
sequence of second order differential equations for the Newtonian system (3.1)
is as follows:

(3.2) q̈ − Vq(t, q) = fk(t),

where t ∈ R, q ∈ Rn and for each k ∈ N, fk: R → Rn is a 2kT -periodic extension
of f|[−kT,kT ) onto R.

For each k ∈ N, let Ik:Ek → R be given by

Ik(q) :=
∫ kT

−kT

(
1
2
|q̇(t)|2 + V (t, q(t)) + (fk(t), q(t))

)
dt.

It is well-known that for a fixed k ∈ N critical points of the functional Ik are
classical 2kT -periodic solutions of (3.2). In order to show that all assumptions
of Theorem 1.2 are fulfilled, we need a standard minimizing argument, i.e. the
following theorem.

Theorem 3.2 (see [8, Theorem 1.1]). If ϕ:X → R is a weakly lower semi-
continuous functional on a reflexive Banach space X and has a bounded mini-
mizing sequence, then ϕ has a minimum on X.

The existence of a bounded minimizing sequence will be in particular insured
when ϕ is coercive, i.e. such that

ϕ(x) →∞, if ‖x‖ → ∞.

Proof of Theorem 3.1. Let us define B := mint∈R b(t), A := min{1/2, B}
and L := ‖f‖L2(R,Rn). It is obvious that for each k ∈ N,

‖fk‖L2
2kT

≤ L.

Applying (C3) we receive

Ik(q) ≥
∫ kT

−kT

(
1
2
|q̇(t)|2 + b(t)|q(t)|2 + (fk(t), q(t))

)
dt(3.3)

≥ A‖q‖2Ek
+

∫ kT

−kT

(fk(t), q(t)) dt

≥ A‖q‖2Ek
− ‖fk‖L2

2kT
‖q‖Ek

≥ A‖q‖2Ek
− L‖q‖Ek

.

Hence Ik is a functional bounded from below and coercive.
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Assume that qm ⇀ q in Ek. Then q̇m ⇀ q̇ in L2
2kT (R, Rn). Since the square

of norm in a Hilbert space is weakly lower semicontinuous, we conclude that the
functional given by

Ek 3 q 7→
∫ kT

−kT

1
2
|q̇(t)|2 dt =

1
2
‖q̇‖2L2

2kT

is weakly lower semicontinuous, too. Moreover, qm → q almost uniformly on R.
Therefore∫ kT

−kT

[V (t, qm(t)) + (fk(t), qm(t))] dt →
∫ kT

−kT

[V (t, q(t)) + (fk(t), q(t))] dt,

as m →∞, and so the functional defined by

Ek 3 q 7→
∫ kT

−kT

[V (t, q(t)) + (fk(t), q(t))] dt

is weakly continuous. In consequence, we get that Ik is weakly lower semiconti-
nuous. Finally, from Theorem 3.2 it follows that Ik achieves a minimum on Ek.
For every k ∈ N there is qk ∈ Ek such that

Ik(qk) = min
q∈Ek

Ik(q) and I ′k(qk) = 0.

Set

% :=
L +

√
L2 + 4A

2A
.

Clearly, % is independent of k. By (C4), for each k ∈ N, we have Ik(0) = 0. From
(3.3) we get that for each k ∈ N, if ‖q‖Ek

≥ % then Ik(q) ≥ 1. Thus

‖qk‖Ek
< %

for every k ∈ N. Applying now Theorem 1.2 we receive our claim. �
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