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MINIMAL NUMBER OF PERIODIC POINTS
FOR SMOOTH SELF-MAPS

OF TWO-HOLED 3-DIMENSIONAL CLOSED BALL

Grzegorz Graff

Abstract. Let M be two-holed 3-dimensional closed ball, r a given nat-

ural number. We consider f , a continuous self-map of M with real eigen-
values on the second homology group, and determine the minimal number

of r-periodic points for all smooth maps homotopic to f .

1. Introduction

Let M be a compact manifold of dimension m, r > 1 be a fixed natural
number. One of the central questions in the periodic point theory concerns
finding minimal number of r-periodic points in the homotopy class of a given
continuous self-map f of M . This problem, for manifolds of dimension not less
than 3, was solved by J. Jezierski, who proved in [10] that the answer is given
by the classical invariant NFr(f) defined by B. Jiang (cf. [11]), i.e.

(1.1) NFr(f) = min{#Fix(gr) : g ∼ f}.

However, if we consider smooth f and its smooth homotopy class, the mini-
mum in the formula (1.1) turned out to be completely different and for simply-
connected manifold it is given by the invariant Dm

r [f ] defined in [5]. In fact,
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the invariant may be applied in a bit more general situation. Instead of taking
a smooth f and smooth homotopies, we may consider continuous f and search
for the minimum over smooth g in the continuous homotopy class. As every
smooth homotopy may be approximated by a continuous one, both approaches
in the common domain lead to the same result, thus Dm

r [f ] = min{#Fix(gr) :
g ∼ f and g is smooth}.

The important problem is to determine the value of Dm
r [f ] for different mani-

folds. The construction of this invariant bases on the notion of so-called DDm(p)-
sequence, which is a sequence of integers which can be realized as sequence of
indices at an isolated p-orbit for some smooth map. The minimal decomposition
of the sequence of Lefschetz numbers {L(fn)}n|r into the sum of DDm(p) se-
quences, in which the contribution of each DDm(p) sequence is equal to p, gives
the value of Dm

r [f ]. As, up to now, only the forms of DD3(p)-sequences are
known [7], the calculations of Dm

r [f ] are possible for 3-dimensional manifolds.
The complete description of D3

r [f ] for self-maps of S2 × I and S3 were given
in [5] and [6], respectively.

The aim of this paper is to determine D3
r [f ] for self-maps of M , a two-holed

3-dimensional closed ball, with real eigenvalues on the second homology group
and without periodic points on the boundary.

In order to find the value of D3
r [f ] we have to write down Lefschetz numbers

of iterations in the form of so-called periodic expansion. It is usually difficult to
obtain general form of such representation for any self-map of a given manifold.
The limitation of our study to the maps with real eigenvalues results from the
fact that, up to now, only for this class of maps we know the exact form of the
periodic expansion.

The article is based on [5], in which the invariant Dm
r [f ] was introduced,

and [9] where the periodic expansions of Lefschetz numbers for self-maps of M

were given. The case of odd r is relatively easy to deal with, by the combination
of the previously known theorems. Considering the case of even r we notice
(Theorem 5.3) that the same technics as for S2 × I may be applied for some
self-maps of 3-dimensional manifolds with fast grow of Lefschetz numbers, which
gives the common value of D3

r [f ] for them. Next, we show that the considered
self-maps of M belong to that class of maps. The final results of the paper are
given in Proposition 5.1 and Theorems 5.2 and 5.4.

2. Periodic expansions, DDm sequences and the definition of Dm
r [f ]

A sequence of indices of iterations at an isolated fixed or periodic point is
an important tool used to find minimal number of periodic points in homotopy
class. Let U be an open subset of Rm. For a map f such that f :U → Rm we
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consider x0, an isolated fixed point for each iteration of f . Under this assumption
the sequence of local fixed point indices {ind(fn, x0)}∞n=1 is well-defined.

Definition 2.1. For a given d we define the basic sequence:

regd(n) =

{
d if d|n,

0 if d 6 |n.

Each regd is an elementary periodic sequence of the form:

(0, . . . , 0, d, 0, . . . , 0, d, . . . ),

where the non-zero entries appear for indices divisible by d.

Definition 2.2. For a given sequence of indices {ind(fn, x0)}∞n=1, we define
the sequence of Dold coefficients {ad}∞d=1 by the formula:

ad =
1
d

∑
k|d

µ(k)ind(f (d/k), x0),

where µ is the Möbius function, i.e. µ: N → Z is defined by the following three
properties:

(a) µ(1) = 1,
(b) µ(k) = (−1)s if k is a product of s different primes,
(c) µ(k) = 0 otherwise.

By a use of basic sequences and Dold coefficients we may write down se-
quences of indices of iterations in the following form, called periodic expansion
(cf. [13]):

(2.1) ind(fn, x0) =
∞∑

d=1

adregd(n).

Remark 2.3. A. Dold found in 1983 the following congruences called Dold
relations [4]: ∑

k|d

µ(k)ind(f (d/k), x0) ≡ 0 (mod d).

This implies that the sequence of Dold coefficients consists of integer numbers,
and thus all coefficients ad in the periodic expansion (2.1) are integers.

The notion of Differential Dold sequence (DD-sequences in short) was intro-
duced in [5] in order to define the invariant Dm

r [f ] (mentioned in the introduc-
tion). Briefly speaking it is a sequence which can be locally realized as a sequence
of indices on an isolated p-orbit for some smooth map.
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Definition 2.4. A sequence of integers {cn}∞n=1 is called a DDm(p)-sequen-
ce if there is an isolated p-orbit P , its neighbourhood U ⊂ Rm and a C1 map
φ:U → Rm such that cn = ind(φn, P ). If this equality holds for n|r, where r is
fixed, then the finite sequence {cn}n|r will be called DDm(p|r) sequence.

Using Definition 2.4 we may define the invariant Dm
r [f ].

Definition 2.5. Let {L(fn)}n|r be a finite sequence of Lefschetz numbers.
We decompose {L(fn)}n|r into the sum:

(2.2) L(fn) = c1(n) + . . . + cs(n),

where ci is a DDm(li|r) sequence for i = 1, . . . , s. Each such decomposition
determines the number l = l1 + . . . + ls. We define the number Dm

r [f ] as the
smallest l which can be obtained in this way.

The invariant Dm
r [f ] gives the value of the minimal number of r-periodic

points for all smooth maps in homotopy class of f .

Theorem 2.6 ([5]). Let M be a smooth compact connected and simply-
connected manifold of dimension m ≥ 3 and r ∈ N a fixed number. For M

with nonempty boundary we assume additionally that f has no periodic points
on the boundary. Then,

Dm
r [f ] = min{#Fix(gr) : g is C1 and is homotopic to f}.

In order to find the invariant Dm
r [f ] we must know, by Definition 2.5, the

forms of all DDm(p) sequences. It turns out that it is enough to know only the
forms of DDm(1) sequences, as the every DDm(p) sequences can be obtained
from some DDm(1) one.

Definition 2.7. We will say that the DDm(p) sequence {c̃n}n comes from
the given DDm(1) sequence {cn}n with the periodic expansion

cn =
∞∑

d=1

adregd(n)

if the periodic expansion of {c̃n}n has the form:

c̃n =
∞∑

d=1

adregpd(n).

Lemma 2.8 ([5, Remark 2.10]). Each DDm(p) sequence comes from some
DDm(1) sequence.
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3. Invariant Dm
r for m = 3

We start our analysis with the right-hand side of the formula (2.2). Due to
Lemma 2.8, we will be able to calculate D3

r [f ] if we know all the forms of DD3(1)
sequences. The description of DD3(1) sequences was given in [7] by the following
theorem:

Theorem 3.1. There are seven kinds of DD3(1) sequences:

(A) cA(n) = a1reg1(n) + a2reg2(n),
(B) cB(n) = reg1(n) + adregd(n),
(C) cC(n) = −reg1(n) + adregd(n),
(D) cD(n) = adregd(n),
(E) cE(n) = reg1(n)− reg2(n) + adregd(n),
(F) cF (n) = reg1(n) + adregd(n) + a2dreg2d(n), where d is odd,
(G) cG(n) = reg1(n)− reg2(n) + adregd(n) + a2dreg2d(n), where d is odd.

In all cases d ≥ 3 and ai ∈ Z.

What is more, in dimension 3 except for the DDm(1|r) sequences we need
only some DDm(2|r) for calculating D3

r [f ].

Lemma 3.2 ([5]). Let f :M → M be a C1 map, dim M = 3, then in the
definition of D3

r [f ] it is enough to consider only DD3(1|r) sequences i.e. sequences
which, for n|r, are of the forms (A)–(G); and DD3(2|r) sequences which comes
(in the sense of Definition 2.7) from the sequences of the form (E)–(G).

Now, we turn to the left-hand side of the formula (2.2). By Definition 2.5
the value of Dm

r [f ] depends on the decomposition of Lefschetz numbers into
DDm(p|r) sequences. The most convenient way to study such decompositions is
to find periodic expansion of Lefschetz numbers. Then, in the formula (2.2) both
sides have the form of periodic expansion and the problem of minimal realization
becomes a combinatorial question.

Dold congruences are valid not only for local, but also for global indices, so
in the periodic expansion of Lefschetz numbers of iterations

(3.1) L(fn) =
∞∑

d=1

bdregd(n),

all coefficients bd = (1/d)
∑

k|d µ(k)L(fd/k) are integers.
Let r be a fixed natural number. Now we introduce the following notation.

By the set of algebraic period of f we will call the subset of natural numbers
B(f), given by:

(3.2) B(f) = {d ∈ N : bd 6= 0},
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we will also consider its subset Br(f), defined as:

Br(f) = {d ∈ N : d|r and bd 6= 0}.

Because DD3(1) sequences have very special forms, it will be useful for us to
write some first terms in the formula (3.1) (for n|r) separately:

(3.3) L(fn) = b1reg1(n) + b2reg2(n) + b4reg4(n) +
∑
d∈G

bdregd(n),

where b1, b2, b4 are arbitrary integers,

G = {d ∈ N : d 6∈ {1, 2, 4} and bd 6= 0} = Br(f) \ {1, 2, 4}.

Let us define H, the subset of G:

H = {d ∈ G : d is odd and bd 6= 0, b2d 6= 0}.

Applying the above notation we may formulate the theorem from [5], which
enables us to find or estimate D3

r [f ].

Theorem 3.3.

(∗) If r is odd, then:

D3
r [f ] =

{
#G if |L(f)| ≤ #G,

#G + 1 otherwise.

(∗∗) If r is even and r ≥ 4, then:

D3
r [f ] ∈ [#G−#H,#G−#H + 2].

4. Algebraic periods

In this section we describe the form of periodic expansion of Lefschetz num-
bers for considered self-maps of a two-holed 3-dimensional closed ball. More
precisely, we give the exact form of the set of algebraic periods of f (cf. the
formula (3.2)). We base on the description of algebraic periods for self-maps of
some types of manifolds, which was given in [9].

We use homology with the coefficients in the field of rational numbers Q. Let
us consider a manifold M which satisfies the assumptions of Theorem 2.6 and
has non-empty boundary. We get: H0(M) = Q (M is connected), H1(M) = 0
(M is simple-connected), H2(M) = Qi, H3(M) = 0 (M has boundary). This is
equivalent to the statement that the boundary of M consists of i + 1 pairwise
disjoined 2-spheres (cf. [8]). We consider here the case i = 2, so the boundary
consists of three 2-spheres. Gluing 3-disks along these spheres we get a compact
simply-connected 3-manifold, thus S3 by Poincaré Theorem. As a result, M is
a closed 3-dimensional ball with two open ball removed.
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Let f∗2:H2(M ; Q) → H2(M ; Q), we denote by t and d the trace and deter-
minant of the corresponding 2× 2 integral matrix.

Theorem 4.1 cited below was originally proved in [9] for a different class
of manifolds, namely for manifolds M̃ with the homology H0(M̃ ; Q) = Q,
H1(M̃ ; Q) = Q × Q, Hk(M̃ ; Q) = 0 for k 6= 1, 2. Nevertheless, the descrip-
tion of the set of algebraic periods for self-maps of M̃ and M is the same (except
for a slight difference in the case (d)). Assume that λ1, λ2, the eigenvalues of
f∗2:H2(M ; Q) → H2(M ; Q), are equal to the eigenvalues of f̃∗1:H1(M̃ ; Q) →
H1(M̃ ; Q). Then the coefficients of periodic expansion of Lefschetz numbers for
self-maps of M̃ are equal to

b̃d =
1
d

∑
k|d

µ(k)[1− (λd/k
1 + λ

d/k
2 )],

while for M we have:

bd =
1
d

∑
k|d

µ(k)[1 + (λd/k
1 + λ

d/k
2 )].

As
∑

k|d µ(k) = 0 for k > 1, b̃d 6= 0 if and only if bd 6= 0 for d 6= 1.

Theorem 4.1 ([9, Theorem B]). Assume that the eigenvalues of f∗2 are
real. Let bn denote the nth coefficient of the periodic expansion (3.1), then the
following statements hold:

(a) If n > 1 is odd, then bn = 0 if and only if (t, d) ∈ Eo, where Eo =
{(±1, 0), (±2, 1)} ∪ {(0, d) : d ∈ Z and d ≤ 0}.

(b) If n > 2 is even, then bn = 0 if and only if (t, d) ∈ Ee, where Ee =
{(±1, 0), (±2, 1), (0, 0), (0,−1)}.

(c) b2 = 0 if and only if (t, d) ∈ {(1, 0), (2, 1), (0, 0)}.
(d) b1 = 0 if and only if t = −1.

5. D3
r [f ] for self-maps of two-holed 3-dimensional closed ball

We begin our analysis with the special cases of the pairs (t, d) which are in
the sets Eo or Ee.

Proposition 5.1. Let r be odd. Then (t, d) ∈ Eo\{(−1, 0)} implies D3
r [f ] =

1; (t, d) = (−1, 0) implies D3
r [f ] = 0. Let r be even and (t, d) ∈ Ee, then

D3
r [f ] = 1.

Proof. By Theorem 4.1 it is easy to observe that for odd r and (t, d) ∈
Eo\{(−1, 0)}, as well as for even r and (t, d) ∈ Ee, we have: L(fn) = b1reg1(n)+
b2reg2(n) with some coefficients b1 and b2 which are not both equal to zero. As
a consequence, the sequence of Lefschetz numbers can be realized by one sequence
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of the type (A) from Theorem 3.1. If r is odd and (t, d) = (−1, 0), then L(fn)
is constantly equal to zero, and thus D3

r [f ] = 0. �

Let ζ(r) denote the number of all divisors of r.

Theorem 5.2. If r is odd and (t, d) 6∈ Eo then:

D3
r [f ] =

{
ζ(r)− 1 if − ζ(r) ≤ t ≤ ζ(r)− 2,

ζ(r) otherwise.

Proof. By Theorem 4.1(a) each n dividing r is an algebraic period. As
a consequence, Br(f) = {n ∈ N : n|r}, or equivalently #Br(f) = ζ(r). Because
for odd r, G = Br(f) \ {1}, we get that

#G = ζ(r)− 1.

On the other hand, notice that L(f) = 1+t. Now, the application of Theorem
3.3 gives the thesis. �

Let us consider the case of r even. First, we determine D3
r [f ] in more general

setting, namely for some class of self-maps of 3-manifolds. This will give the
common value of D3

r [f ] for the whole class, which consists of maps with positive
coefficients b2 and b4 and such that the set of algebraic periods is equal to all
natural numbers. By η(r) we will denote the number of all odd divisors of r.

Theorem 5.3. Assume that r is even and f is a self-map of a compact
connected and simply-connected 3-manifold such that two following conditions
are satisfied:

(i) B(f) = N,
(ii) b2 > 0 and b4 > 0.

Then
D3

r [f ] = ζ(r)− η(r).

Proof. We start with the case 4|r. By Theorem 3.3 (∗∗)

(5.1) D3
r [f ] ∈ [#G−#H,#G−#H + 2].

By Lemma 3.2 during the calculation of D3
r [f ] we need the DD3(1)-sequences

(A)–(G) of Theorem 3.1 and DD3(2|r) sequences which comes from the sequences
of the form (E)–(G). Applying the same argument as in the proof of Theorem
4.23 in [5] we get that for maps satisfying (i) we may use only DD3(1)-sequences
(A)–(G) of Theorem 3.1.

Now let us notice that to get the decomposition of Lefschetz numbers in the
formula (3.3) for d 6= 1, 2, 4 we need at least #H sequences (F) and (G), each
of which reduces two basic sequence bdregd and #G− 2#H sequences (B)–(E),
each of which reduces one sequence bdregd. Because by (ii) both b2 and b4 are
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positive, we cannot obtain b2reg2 and b4reg4 as a part of the previously used
sequences, and thus we need two more sequences (among them one of the type
(A) in Theorem 3.1) to realize the expression

b1reg1(n) + b2reg2(n) + b4reg4(n).

Finally, D3
r [f ] is not less than (#H) + (#G − 2#H) + 2 = #G −#H + 2,

but by (5.1) this is its exact value.
Now by the assumption (i) Br(f) = {n ∈ N : n|r}, so #Br(f) = ζ(r). On

the other hand G = Br(f) \ {1, 2, 4}, and thus #G = ζ(r)− 3. By Lemma 4.19
in [5], #H = η(r) − 1. Taking into account the values of #G and #H we get
that:

D3
r [f ] = ζ(r)− η(r).

The proof of the case 4 - r may be easily obtained from the above considerations
as a special case. �

Theorem 5.4. Assume that r is even and (t, d) 6∈ Ee. Then

D3
r [f ] = ζ(r)− η(r).

Proof. By Theorem 5.3 it is enough to check whether the conditions (i)
and (ii) are satisfied.

By Theorem 4.1(b), the condition (i) in Theorem 5.3 is satisfied. Now we
verify the condition (ii) of Theorem 5.3. In the case of real eigenvalues λ1, λ2

of f∗2 we have the inequality t2 − 4d ≥ 0 (remind that λ1 + λ2 = t, λ1λ2 = d).
This implies that

b2 =
1
2
(L(f2)− L(f)) =

1
2
[(λ2

1 + λ2
2)− (λ1 + λ2)] =

1
2
(t2 − 2d− t).

On the other hand,
1
2
(t2 − 2d− t) ≥ 1

4
(t2 − 4d) ≥ 0

for all (t, d) such that t 6= 1. For t = 1, t2−4d ≥ 0 implies d ≤ 1/4 or equivalently,
as d is an integer, d ≤ 0. Then b2 = (1/2)(t2 − 2d − t) = −d ≥ 0. Finally, for
all pairs (t, d) we have that b2 ≥ 0. What is more, we know by Theorem 4.1(c)
that if (t, d) 6∈ Ee, then b2 6= 0.

Now we show that b4 ≥ 0, and then by Theorem 4.1(b) we will get the desired
conclusion. We have:

4b4 = L(f4)− L(f2) = (λ4
1 + λ4

2)− (λ2
1 + λ2

2)

= (t2 − 2d)2 − 2d2 − (t2 − 2d) = 2d2 + (2− 4t2)d + t4 − t2.

It is non-negative for d satisfying:

(5.2) d ≤ 1
2
(2t2 − 1−

√
2t4 − 2t2 + 1).



130 G. Graff

On the other hand, by the assumption d ≤ t2/4. Thus, if t is such that t2/4 ≤
(1/2)(2t2 − 1 −

√
2t4 − 2t2 + 1), then b4 is non-negative. The last inequality is

satisfied for |t| > 1. For |t| ≤ 1, d < 0 implies that (5.2) is satisfied. As a result,
we must only check whether b4 ≥ 0 for (t, d) such that |t| ≤ 1 and 0 ≤ d ≤ t2/4,
but then we get that (t, d) ∈ Ee and so b4 = 0. This ends the proof. �
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