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ON NONSYMMETRIC THEOREMS
FOR (H,G)-COINCIDENCES

Denise de Mattos — Edivaldo L. dos Santos

Abstract. Let X be a compact Hausdorff space, ϕ: X → Sn a contin-

uous map into the n-sphere Sn that induces a nonzero homomorphism

ϕ∗: Hn(Sn; Zp)→ Hn(X; Zp), Y a k-dimensional CW-complex and f : X→
Y a continuous map. Let G a finite group which acts freely on Sn. Suppose

that H ⊂ G is a normal cyclic subgroup of a prime order. In this paper, we

define and we estimate the cohomological dimension of the set Aϕ(f, H, G)
of (H, G)-coincidence points of f relative to ϕ.

1. Introduction

K. D. Joshi [10] has proved a nonsymmetric generalization of the Borsuk–
Ulam theorem [1], in which the n-sphere Sn is replaced by a certain compact
subset X of the (n + 1)-dimensional Euclidean space Rn+1. In this context,
a pair of points x, y ∈ X are said to be antipodal if y = −λx, for some λ > 0.
The Joshi’s theorem shows that for every continuous map f :X → Rn there exist
antipodal points x, y ∈ X such that f(x) = f(y).
K. Borsuk has suggested to define antipodal points in an arbitrary space

in the following way: x1, x2 ∈ X are said to be antipodal points relative to an
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essential map1 ϕ:X → Sn if ϕ(x1) = −ϕ(x2). Using the Borsuk’s suggestion,
Spież [11] has proved that if X is a compact Hausdorff space and if ϕ:X → Sn

is an essential map, then for every continuous map f :X → Rk, the covering
dimension of the set

Aϕ(f)={x ∈ X : there exists y∈X, such that ϕ(x)=−ϕ(y) and f(x)=f(y)}

is not less than n− k, obtaining thus a generalization of the Joshi’s theorem.
M. Izydorek [7] has extended the proposition of Borsuk for a cyclic group G

of order prime which acts freely on a n-dimensional sphere Sn and has proved the
following generalization of the SpiePlr ż’s theorem: if X is a compact Hausdorff
space and if ϕ:X → Sn is an essential map, then for every continuous map
f :X → Rk, the covering dimension of the set

Aϕ(f) = {x ∈ X : there exists x2, . . . , xp such that
ϕ(x) = g−1ϕ(x2) = . . . = g1−pϕ(xp) and f(x) = f(x2) = . . . = f(xp)}

is not less than n− (p−1)k, where g is a fixed generator of G. Moreover, if Rk is
replace by a generalized k-dimensional manifold Mk over Zp, then an analogous
theorem has been proved (see [7, Theorem 4]).
Gonçalves, Jaworowski and Pergher [3] have defined (H,G)-concidence for

a continuous map f from a n-sphere Sn into a k-dimensional CW-complex Y ,
where G is a finite group which acts freely on Sn and have proved that if H is
a nontrivial normal cyclic subgroup of a prime order, then

cohom.dimA(f,H,G) ≥ n− |G|k,

where A(f,H,G) is the set of (H,G)-coincidence points of f and cohom.dim
denotes the cohomological dimension. The other papers closely related to [3] are
[4]–[6], [8], [9] and [13].
The purpose of this paper is to define the set Aϕ(f,H,G) of (H,G)-coinciden-

ce points of a continuous map f :X → Y relative to an essential map ϕ:X → Sn,
where X is a compact Hausdorff space, Y is a topological space, G is a finite
group which acts freely on the n-dimensional sphere Sn and H is a subgroup
of G. Using this definition, under certain conditions, we estimate the cohomo-
logical dimension of the set Aϕ(f,H,G). Specifically, we will prove the following
nonsymmetric version of the main theorem of [3]:

Theorem 1.1. Let X be a compact Hausdorff space, Y a k-dimensional
CW-complex and ϕ:X → Sn an essential map. Given a finite group G which
acts freely on Sn and H a normal cyclic subgroup of prime order, then for every

(1) A map ϕ: X → Sn is said to be an essential map if ϕ induces nonzero homomorphism
ϕ∗: Hn(Sn; Zp)→ Hn(X; Zp).
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continuous map f :X → Y such that f∗:Hi(Y ;Zp) → Hi(X;Zp) is trivial for
i ≥ 1, cohom.dimAϕ(f,H,G) ≥ n− |G|k.

For the proof of Theorem 1.1, it was fundamental to prove the following
version of the main Theorem of [3],

Theorem 1.2. Let X be a paracompact Hausdorff space, Y a k-dimensional
CW-complex, G a finite group which acts freely on X and H ⊂ G a normal
cyclic subgroup of prime order. Let f :X → Y be a continuous map such that
f∗:Hi(Y ;Zp)→ Hi(X;Zp) is trivial, for i ≥ 1. Suppose that the Zp-index of X
is greater than or equal to n, then the Zp-index of the set A(f,H,G) is greater
than or equal to n− |G|k. Consequently, cohom.dimA(f,H,G) ≥ n− |G|k.

2. Preliminaries

Throughout this paper the symbols H∗ and H∗ will denote Čech homology
and cohomology groups with coefficients in Zp, unless otherwise indicated. If G
is a group which acts on a topological space X, we will denote by X∗ the orbit
space X/G.
We start by introducing some basic notions and definitions as follows.

2.1. (H,G)-coincidence. Suppose that X,Y are topological spaces, G is
a group acting freely on X and f :X → Y is a map. If H is a subgroup of G,
then H acts on the right on each orbit Gx of G as follows: if y ∈ Gx and y = gx,
g ∈ G, then hy = ghx (such action may depend on the choice of the reference
point x). Following [4], [6], [9] the concept of G-coincidence is generalized as
follows: a point x ∈ X is said to be a (H,G)-coincidence point of f if f sends
every orbit of the action of H on the G-orbit of x to a single point (see [5]). We
will denote by A(f,H,G) the set of all (H,G)-coincidence points of f . If H is the
trivial subgroup, then every point of X is a (H,G)-coincidence. If H = G, this
is the usual definition of coincidence. If G = Zp with p prime, then a nontrivial
(H,G)-coincidence point is a G-coincidence point.

2.2. The space Xϕ and the set Aϕ(f,H,G). Let us consider X a compact
Hausdorff space and an essential map ϕ:X −→ Sn. Suppose G be a finite group
of order r which acts freely on Sn and H be a subgroup of order p of G. Let
G = {g1, g2, . . . , gr} be a fixed enumeration of elements of G, where g1 is the
identity of G. A nonempty space Xϕ can be associated with the essential map
ϕ:X → Sn as follows:

Xϕ = {(x1, . . . , xr) ∈ Xr : ϕ(x1) = (g2)−1ϕ(x2) = . . . = (gr)−1ϕ(xr)}
= {(x1, . . . , xr) ∈ Xr : giϕ(x1) = ϕ(xi), i = 1, . . . , r},

where Xr denotes the r-fold cartesian product of X. The set Xϕ is a closed
subset of Xr and so it is compact. We define a G-action on Xϕ as follows: for
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each gi ∈ G and for each (x1, . . . , xr) ∈ Xϕ,

(2.1) gi(x1, . . . , xr) = (xσgi (1), . . . , xσgi (r)),

where the permutation σgi is defined by σgi(k) = j, gkgi = gj . We observe that
if x = (x1, . . . , xr) ∈ Xϕ then xi 6= xj , for any i 6= j and therefore G acts freely
on Xϕ.

Now, let us consider a continuous map f :X → Y , where Y is a topological
space and f̃ :Xϕ → Y given by f̃(x1, . . . , xr) = f(x1). Let y = (x1, . . . , xr) ∈
A(f̃ , H,G) and consider the orbit Gy = {g1y, g2y, . . . , gry}. Note that
(i) From (2.1), we have that for each i, the 1-th coordinate of giy is xi.

(ii) The action of H on Gy determines a partition of the orbit Gy in s = (r/p)
disjoint suborbits, and we can be rewrite

Gy = {g11y, . . . , g1py; . . . ; gj1y, . . . , gjpy; . . . ; gs1y, . . . , gspy},

where {1, . . . , r} ↔ {11, . . . , 1p; . . . ; j1, . . . , jp; . . . ; s1, . . . , sp} is a bijection.
Since y is a (H,G)-coincidence point of f̃ , it follows from (i) and (ii) that,

f(x11) = . . . = f(x1p); . . . ; f(xj1) = . . . = f(xjp); . . . ; f(xs1) = . . . = f(xsp).

In these conditions, we have the following

Definition 2.1. The set Aϕ(f,H,G) of (H,G)-coincidence points of f rel-
ative to ϕ is defined by

Aϕ(f,H,G) = A(f̃ , H,G) = {(x1, . . . , xr) ∈ Xr :

giϕ(x1) = ϕ(xi), i = 1, . . . , r and f(xj1) = . . . = f(xjp), j = 1, . . . , s}.

Remark 2.2. Let us observe that if G = H = Zp,

Aϕ(f,H,G) = Aϕ(f) = {(x1, . . . , xp) ∈ Xp :

giϕ(x1) = ϕ(xi), i = 1, . . . , p and f(x1) = . . . = f(xp)}.

2.3. The Zp-index. Suppose that the cyclic group G = Zp of order prime
p acts freely on a Hausdorff and paracompact space X. Then X → X∗ is
a principal Zp-bundle and one can take h:X∗ → BZp a classifying map for the
G-bundle X → X∗.

Remark 2.3. It is well known that if ĥ is another classifying map for the
principal Zp-bundle X → X∗, then there is a homotopy between h and ĥ.

We will consider the following definition for the Zp-index of X (see [7]).



On Nonsymmetric Theorems for (H, G)-Coincidences 109

Definition 2.4. We say that the Zp-index of X is greater than or equal
to k if the homomorphism h∗:Hk(BZp) → Hk(X∗) is nontrivial. We say that
the Zp-index of X is equal to k if it is greater than or equal to k and moreover
h∗:Hi(BZp)→ Hi(X∗) is zero, for any i ≥ k + 1.

Remark 2.5. A model for BZ2 the classifying space for Z2 is the infinite
real projective space P∞. Then H∗(BZ2) ∼= H∗(P∞) is isomorphic to Z2[a],
where a ∈ H1(P∞) is the generator. The generator of Hi(BZ2) is ai for any
i ≥ 0. If p > 2 a model for BZp the classifying space for Zp is the infinite lens
space L∞p = S∞/Zp. Thus, Hi(BZp) = Hi(L∞p ) ∼= Zp for any i ≥ 0 and given
any nonzero element a ∈ H1(L∞p ), one has that b = β(a) is a nonzero element of
H2(L∞p ), where β:H

1(L∞p ) → H2(L∞p ) is the Bockstein homomorphism. More
generally, a generator µ ∈ Hi(BZp) is given by

µ =

{
a ` b(i−1)/2 if i is odd

bi/2 if i is even.

2.4. The Smith special cohomology groups with coefficients in Zp.
In this work, we will be considering the definition of the Smith special coho-
mology groups with coefficients in Zp in the sense of [2]. Smith homology and
cohomology were originally defined in [12] and in a series of subsequent papers.
A systematic exposition of the Smith theory can be found in [2]. Let X be
a topological space; given a finite group G of prime order p which acts freely on
X, let g be a fixed generator of G and put

σ = 1 + g + g2 + . . .+ gp−1 and τ = 1− g,

in the group ring Zp(G). We have that σ = τp−1. If ρ = τ i, we put ρ = τp−i,
then τ = σ and σ = τ . There exists an exact sequence with coefficients in Zp [2,
p.125],

// Hn
ρ (X)

ρ∗
// Hn(X) T // Hn(X∗) δ // Hn+1

ρ (X)
ρ∗

//

called Smith exact sequence, whereH∗ρ (X) denotes the Smith special cohomology
groups and T is the transfer homomorphism.

Remark 2.6. The Smith cohomology groups are natural with respect to Zp-
equivariant maps, that is, if f :X → Y is a Zp-equivariant map then f induces ho-
momorphism fρ

∗:H∗ρ (Y ) → H∗ρ (X) which commutes with the homomorphisms
in the Smith sequence.

3. The Zp-index of Xϕ

Let us consider the free G-space Xϕ as defined in Section 2.2. If H ⊂ G is
a cyclic subgroup of prime order p, then Xϕ is a free H ∼= Zp-space. In these
conditions, as in [7, Theorem 3], we have the following
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Theorem 3.1. Let X be a compact Hausdorff space and ϕ:X −→ Sn an
essential map. Then, the Zp-index of Xϕ is equal to n.

Proof. For i = 1, . . . , r, let us consider the maps ϕi:X → Sn given by
ϕi(x) = (gi)−1ϕ(x), where gi ∈ G. Then, we can define the map

ψ = ϕ1 × . . .× ϕr:Xr → [Sn]r,

where [Sn]r denotes the r-fold cartesian product of r copies of Sn, such that
Xϕ = ψ−1∆[Sn]r, where ∆[Sn]r is the diagonal in [Sn]r. In these conditions,
we prove the following

Lemma 3.2. The homomorphism ψ∗:H∗([Sn]r)→H∗(Xr) induced by ψ:Xr

→ [Sn]r is a monomorphism in each dimension.

Proof. Let m be an integer and for each t = 1, . . . , r consider Hm([Sn]t).
If m is not divisible by n then Hm([Sn]t) = 0 and the result follows. Suppose
that m is divisible by n; one then has that there exists α = 0, 1, . . . , such that
m = αn. Let us consider the following commutative diagram

(3.1)

Hαn([Sn]t)⊗H0(Sn)⊕H(α−1)n([Sn]t)⊗Hn(Sn)

(ϕ1×...×ϕt)∗⊗ϕ∗t+1
��

×
// Hαn([Sn]t+1)

(ϕ1×...×ϕt+1)∗

��

Hαn(Xt)⊗H0(X)⊕H(α−1)n(Xt)⊗Hn(X) ×
// Hαn(Xt+1)

Applying the Künneth’s formula, we have that the upper row of the above
diagram is an isomorphism and the lower row is a monomorphism, for each
α = 0, 1, . . . and t = 1, . . . , r.
The proof will be done by induction on t. We assume inductively that for

some t = 1, . . . , r − 1 and for each α = 0, 1, . . . the homomorphism (ϕ1 ×
. . . × ϕt)∗:Hαn([Sn]t) → Hαn(Xt) is a monomorphism and we will show that
(ϕ1 × . . .× ϕt)∗ ⊗ ϕ∗t+1 is a monomorphism.
The result will follow from the commutativity of the diagram (3.1). By

induction hypothesis it suffices to show that ϕ∗t+1 is a monomorphism. For this,
observe that ϕ∗i = ϕ

∗
j , for any 1 ≤ i, j ≤ r. If ϕ∗t+1 is not a monomorphism, then

ϕ∗i is not a monomorphism, for any 1 ≤ i ≤ t, which completes the proof. �

The next step is to use Lemma 3.2 to show that the homomorphism in-
duced by ψ|Xϕ :Xϕ → ∆[Sn]r is a monomorphism. Let us consider the following
commutative diagram

(3.2)

Hn(Xr, Xϕ)
j∗

// Hn(Xr) k∗ // Hn(Xϕ)

Hn([Sn]r,∆[Sn]r)

ψ∗

OO

// Hn([Sn]r)

ψ∗

OO

i∗
// Hn(∆[Sn]r)

(ψ|Xϕ )
∗

OO
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whose rows are exact. If γ is a generator of Hn(Sn) ∼= Zp let us denote by αi
the element q∗i (γ) ∈ Hn([Sn]r), where qi: [Sn]r → Sn is the natural projection
on the i-th coordinate for i = 1, 2, . . . , r. Let us observe that qi ◦ i = qj ◦ i for
any 1 ≤ i, j ≤ r, where i:∆[Sn]r ↪→ [Sn]r is the natural inclusion. In this way,
one has that

(3.3) i∗(αi) = i∗ ◦ q∗i (γ) = (qi ◦ i)∗(γ) = (qj ◦ i)∗(γ) = i∗(αj).

Lemma 3.3. (ψ|Xϕ)∗:Hn(∆[Sn]r)→ Hn(Xϕ) is a monomorphism.

Proof. Since ∆[Sn]r is homeomorphic to Sn, it follows from (3.3) that
i∗(αi) is a nonzero element in Hn(∆[Sn]r) for any i = 1, . . . , r. Thus, it suffices
to show that (ψ|Xϕ)∗(i∗(α1)) 6= 0. Let us assume that this does not happen.
From the diagram (3.2) we have that

k∗ ◦ ψ∗(α1) = (ψ|Xϕ)∗ ◦ i∗(α1) = 0,

which implies that ψ∗(α1) ∈ Ker(k∗) = Im (j∗) and there exists an element
U ∈ Hn(Xr, Xϕ) such that

(3.4) j∗(U) = ψ∗(α1) 6= 0,

since by Lemma 3.2 ψ∗ is a monomorphism and α1 = q∗1(γ) ∈ Hn([Sn]r) is
a nonzero element. Let us consider the following commutative diagram,

(3.5)

H(r−1)n(Xr, Xr −Xϕ)
j∗

// H(r−1)n(Xr)
k∗ // H(r−1)n(Xr −Xϕ)

H(r−1)n([Sn]r, [Sn]r −∆[Sn]r)

ψ∗

OO

j∗1 // H(r−1)n([Sn]r)

ψ∗

OO

k∗1 // H(r−1)n([Sn]r −∆[Sn]r)

ψ∗

OO

Hn(∆[Sn]r)

D−1

OO

i∗
// Hn([Sn]r)

D−1

OO

where the first and the second rows are exact, D is the Alexander–Spanier Du-
ality which is an isomorphism and all others maps are induced by appropriate
inclusions.
Let us denote by a1, . . . , ar the elements of Hn([Sn]r) which are conjugated

to α1, . . . , αr in Hn([Sn]r). More precisely,

〈αj , ai〉 =

{
1 if i = j,

0 if i 6= j,

where the map 〈 · , ·〉:Hn([Sn]r)×Hn([Sn]r)→ Zp denotes the Kronecker prod-
uct. Let us denote by c ∈ Hn(∆[Sn]r) the conjugated element to i∗(α1) =
. . . = i∗(αr) in Hn(∆[Sn]r). Then for any j = 1, . . . , r one has 〈i∗(αj), c〉 = 1.
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Furthermore, it follows from properties of the Kronecker product that for any
j = 1, . . . , r

〈i∗(αj), c〉 = 〈αj , i∗(c)〉 = 1,
which implies that

(3.6) i∗(c) =
r∑
i=1

ai.

Let us consider for each i = 1, . . . , r the elements

βi = α1 ` . . . ` αi−1 ` α̂i ` αi+1 ` . . . ` αr ∈ H(n−1)r([Sn]r),

where the symbol α̂i means that the element αi is omitted.
To simplify notation, here we will also denote by [Sn]r the generator of

Hnr([Sn]r), which is called the fundamental class of [Sn]r. We will show that

D−1(ai) = (−1)i+1βi, that is, (−1)i+1βi a [Sn]r = ai.

In fact, it follows from properties of the cup and cap products with respect to
the Kronecker product and by definition of βi that

(3.7) 〈αi, (−1)i+1βi a [Sn]r〉 = 〈αi ` (−1)i+1βi, [Sn]r〉
= 〈(−1)i+1(−1)n(n(i−1))α1 ` . . . ` αr, [Sn]r〉
= 〈α1 ` . . . ` αr, [Sn]r〉 = 1

observing that α1 ` . . . ` αr is the generator of Hnr([Sn]r). Thus,

D−1
( r∑
i=1

ai

)
=

r∑
i=1

D−1(ai) =
r∑
i=1

(−1)i+1βi.

It follows from (3.6), (3.7) and from commutativity of diagram (3.5) that

j∗1 ◦D−1(c) = D−1 ◦ i∗(c) =
r∑
i=1

(−1)i+1βi,

that is,
r∑
i=1

(−1)i+1βi ∈ Im (j∗1 ).

Since the second row of diagram (3.5) is exact, one has that

k∗1

( r∑
i=1

(−1)i+1βi
)
= 0.

By using again the commutativity of diagram (3.5)

k∗ ◦ ψ∗
( r∑
i=1

(−1)i+1βi
)
= ψ∗ ◦ k∗1

( r∑
i=1

(−1)i+1βi
)
= 0,
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which implies that

ψ∗
( r∑
i=1

(−1)i+1βi
)
∈ Ker(k∗) = Im (j∗).

Thus, there exists an element V ∈ H(r−1)n(Xr, Xr −Xϕ) such that

(3.8) j∗(V ) = ψ∗
( p∑
i=1

(−1)i+1βi
)
6= 0,

since ψ∗ is a monomorphism. Using the naturality of the cup product in the
following diagram

Hn(Xr)⊗H(r−1)n(Xr)
`

// Hrn(Xr)

Hn([Sn]r)⊗H(r−1)n([Sn]r)
`

//

ψ∗

OO

Hrn([Sn]r)

ψ∗

OO

and observing that
r∑
i=2

α1 ` (−1)i+1βi = 0

one has that

(3.9) ψ∗(α1) ` ψ∗
( r∑
i=1

(−1)i+1βi
)
= ψ∗
(
α1 `

r∑
i=1

(−1)i+1βi
)

= ψ∗
(
α1 ` β1 +

r∑
i=2

α1 ` (−1)i+1βi
)

= ψ∗(α1 ` β1) = ψ∗
(
α1 ` . . . ` αr

)
6= 0,

since α1 ` . . . ` αr is the generator of Hrn([Sn]r) and ψ∗ is a monomorphism.
On the other hand, from naturality of the cup product in the diagram

Hn(Xr, Xϕ)⊗H(r−1)n(Xr, Xr −Xϕ)

j∗

��

`
// Hrn(Xr, Xr)

j∗

��

Hn(Xr)⊗H(r−1)n(Xr)
`

// Hrn(Xr)

and from equations (3.4) and (3.8) we conclude that

ψ∗(α1 ` . . . ` αr) = ψ∗(α1) ` ψ∗
( p∑
i=1

(−1)i+1βi
)

= j∗(U) ` j∗(V ) = j∗(U ` V ) = j∗(0) = 0,

which contradicts (3.9). This completes the proof. �
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Now, let us consider the map θ = q1 ◦ ψ|Xϕ :Xϕ → Sn, where q1:∆[Sn]r →
Sn is the natural projection on the 1-th coordinate, which is an homeomor-
phism. Since by Lemma 3.3, (ψ|Xϕ)∗ is a monomorphism, one then has that
θ∗:Hn(Sn)→ Hn(Xϕ) is a monomorphism. Note that, if (x1, . . . , xr) ∈ Xϕ, we
have that for each i, giθ(x1, . . . , xr) = giϕ(x1) = ϕ(xi) = θgi(x1, . . . , xr), thus
θ is a G-equivariant map, and consequently, θ is a H-equivariant map, where
H ⊂ G is a cyclic subgroup of prime order. Thus, in particular for ρ = σ, we
can consider the homomorphism induced by θ, θ∗σ:H

n
σ (S

n) → Hn
σ (Xϕ), where

Hn
σ denotes the n-dimensional Smith special cohomology group with coefficients
in Zp in the sense of Section 2.4.
By remarks in [2, Results following 5.2] whose dual holds in cohomology,

i∗:Hn(Sn) → Hn
σ (S

n) is an isomorphism, and since θ∗:Hn(Sn) → Hn(Xϕ) is
a monomorphism it follows that θ∗σ is a monomorphism. To conclude that the Zp-
index ofXϕ is equal to n it suffices to verify that the map between the orbit spaces
θ:Xϕ/H → Sn/H induces a monomorphism in cohomology. From results in [2,
(3.10), p. 125], we have that Hn

σ (S
n) ∼= Hn(Sn/H) and Hn

σ (Xϕ) ∼= Hn(Xϕ/H),
and considering the commutative diagram

Hn
σ (S

n)
θ∗σ // Hn

σ (Xϕ)

Hn(Sn/H)

∼=

OO

θ
∗

// Hn(Xϕ/H)

∼=

OO

it follows that θ
∗
:Hn(Sn/H)→ Hn(Xϕ/H) is a monomorphism. Therefore, the

Zp-index of Xϕ is equal to n. �

4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.2. By following the similar steps of [3], we first prove
Theorem 1.2 in the case that G = H = Zp, where p ≥ 2. We need to show that
the Zp-index of the set Af = {x ∈ X : f(x) = f(gx) = . . . = f(gp−1x)} is
greater than or equal to n − pk. For this, let us consider F :X → Y p given by
F (x) = (f(x), f(gx), . . . , f(gp−1x)), where Y p = Y × . . .× Y denotes the p-fold
cartesian product of Y and g is a fixed generator of Zp. In these conditions, we
prove the following

Lemma 4.1. The homomorphism F ∗:Hq(Y p)→ Hq(X) induced by the map
F :X → Y p is zero for any q ≥ 1.

Proof. We have that F = (f0 × . . . × fp−1) ◦ d, where d:X → Xp is the
diagonal map and fi(x) = f(gix), for any x ∈ X and i = 0, . . . , p − 1. In this
way, it suffices to show that (f0× f1× . . .× fp−1)∗:Hq(Y p)→ Hq(Xp) is trivial
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for any q ≥ 1. Let us consider the following commutative diagram

(4.1)

⊕
i+j=q

Hi(Y t)⊗Hj(Y )

(f0×...×ft)∗⊗f∗t+1
��

∼= // Hq(Y t+1)

(f0×...×ft+1)∗

��⊕
i+j=q

Hi(Xt)⊗Hj(X)
×

// Hq(Xt+1)

Since Y is a CW-complex, applying the Künneth’s formula we have that the
upper row of diagram (4.1) is an isomorphism for any q = 1, 2, . . . and t =
1, . . . , p− 1.
The proof will be done by induction on t. Suppose inductively that (f0 ×

. . . × ft)∗:Hi(Y t) → Hi(Xt) is zero for some t = 1, . . . , p − 1 and for each i =
1, 2, . . . . By hypothesis, f induces the zero homomorphism in each dimension;
in particular f∗t+1 is zero and thus (f0 × . . . × ft)∗ ⊗ f∗t+1 is trivial. It follows
from commutativity of the diagram (4.1) that (f0 × . . . × ft+1)∗ is zero, which
completes the proof. �

We can define a Zp-action on Y p as follows: for each (y1, . . . , yp) ∈ Y p

g(y1, . . . , yp−1, yp) = (yp, y1, . . . , yp−1). Since p is a prime, this action is free on
Y p−∆, where ∆ is the diagonal in Y p. Let us observe that Af = F−1(∆), thus
F determines a Zp-equivariant map F0:X−Af → Y p−∆, which induces a map
between the orbit spaces F 0: [X − Af ]∗ → [Y p − ∆]∗. In these conditions, we
prove that

Lemma 4.2. The map F
∗
0:H

pk([Y p −∆]∗)→ Hpk([X −Af ]∗) is zero.

Proof. Let us consider the map of pairs (F, F0): (X,X−Af )→ (Y, Y −∆).
One then has the following commutative diagram

// Hpk(X)
i∗ // Hpk(X −Af ) // Hpk+1(X,X −Af ) //

// Hpk(Y p)
j∗

//

F∗

OO

Hpk(Y p −∆) //

F∗0

OO

Hpk+1(Y p, Y p −∆) //

(F,F0)∗

OO

where the homomorphisms i∗ and j∗ are induced by appropriate inclusions. Since
dim(Y p) is less than or equal to pk we have that Hpk+1(Y p, Y p −∆) is trivial
and thus j∗ is surjective. On the other hand F0: (X − Af ) → (Y p − ∆) is
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a Zp-equivariant map and it follows from Remark 2.6 that the diagram

Hpk(X −Af )
T // Hpk([X −Af ]∗) // Hpk+1

ρ (X −Af )

Hpk(Y p −∆)
T

//

F0
∗

OO

Hpk([Y p −∆]∗) //

F
∗
0

OO

Hpk+1
ρ (Y p −∆)

OO

between the Smith sequences of X − Af and Y p −∆ is commutative and since
Hpk+1
ρ (Y p −∆) is zero, T is surjective.
Putting together these diagrams, one obtains a new commutative diagram

(4.2)

Hpk(X)
i∗ // Hpk(X −Af )

T // Hpk([X −Af ]∗)

Hpk(Y p)
j∗

//

F∗

OO

Hpk(Y p −∆)
T

//

F∗0

OO

Hpk([Y p −∆]∗)

F
∗
0

OO

where the horizontal sequences are not necessarily exacts, but the composition
T ◦ j∗ is surjective. Therefore, as F ∗ is zero by Lemma 4.1, it follows from
commutativity of the diagram (4.2) that F 0

∗
is zero. �

Let h:X∗ → BZp be a classifying map for the principal Zp-bundle X → X∗.
Then the compositions h ◦ i1:A∗f → BZp and h ◦ i2: [X − Af ]∗ → BZp are
classifying maps for the following principal Zp-bundles Af → A∗f and X −Af →
[X − Af ]∗ respectively, where the maps i1:A∗f → X∗ and i2: [X − Af ]∗ → X∗

are induced by the inclusions between the orbit spaces.
Let us consider G:Y p − ∆ → BZp a classifying map for the principal Zp-

bundle Y p −∆ → [Y p −∆]∗. Since F0:X − Af → Y p −∆ is a Zp-equivariant
map, one the has that

G ◦ F 0: [X −Af ]∗ → BZp
also classifies the principal Zp-bundle X −Af → [X −Af ]∗. In this way,

(4.3) i∗2 ◦ h∗ = F
∗
0 ◦G∗:H∗(BZp)→ H∗([X −Af ]∗).

To conclude that the Zp-index of Af is greater than or equal to n−pk, it suffices
to show that i∗1 ◦ h∗(µ) 6= 0, where µ is the generator of Hn−pk(BZp).
We first consider the case when k is odd. Let us observe that n must be

necessarily odd, since p > 2 is a prime. Then, n− pk is even and it follows from
Remark 2.5 that µ = b(n−pk)/2 ∈ Hn−pk(BZp). Suppose that i∗1 ◦ h∗(µ) = 0.
From continuity of the cohomology, there exists a neighbourhood V of Af in X
which is invariant by the action of Zp and such that i∗1 ◦h∗(µ) = 0 in Hn−pk(V ∗).
From the exact cohomology sequence of the pair (X∗, V ∗) one has

(4.4) h∗(µ) ∈ Im [Hn−pk(X∗, V ∗)→ Hn−pk(X∗)].



On Nonsymmetric Theorems for (H, G)-Coincidences 117

Since pk is odd from Remark 2.5 η = a ` b(pk−1)/2 is a generator of Hpk(BZp).
It follows from Lemma 4.2 and (4.3) that

i∗2 ◦ h∗(η) = F
∗
0 ◦G∗(η) = 0 ∈ Hpk([X −Af ]∗)

and from the exact cohomology sequence of the pair (X∗, [X −Af ]∗) one has

(4.5) h∗(η) ∈ Im [Hpk(X∗, [X −Af ]∗)→ Hpk(X∗)].

Thus from (4.4), (4.5) and by the naturality of the cup product we have

h∗(η ` µ) = h∗(η) ` h∗(µ) ∈ Im [Hn(X∗, [X −Af ]∗ ∪ V ∗)→ Hn(X∗)].

Let us note that the element

η ` µ = a ` b(pk−1)/2 ` b(n−pk)/2 = a ` b(n−1)/2

is a generator of Hn(BZp). Furthermore,

Hn(X∗, [X −Af ]∗ ∪ V ∗) = Hn(X∗, X∗) = 0

and then h∗(η ` µ) = 0 ∈ Hn(X∗), that is, h∗:Hn(BZp) → Hn(X∗) is trivial
which contradicts the hypothesis that the Zp-index of X is greater than or equal
to n.
If k is even, then n − pk is odd and pk is even. In this case, the proof is

analogous to the previous case, considering now the generators

µ = a ` b(n−pk−1)/2 ∈ Hn−pk(BZp) and η = b(pk)/2 ∈ Hpk(BZp).

Let us examine the case where G = Z2. Here, n can be any positive integer
and the generator of Hn−2k(BZ2) is µ = an−2k. To show that the Z2-index of
Af is greater than or equal to n−2k, it suffices to prove that i∗1 ◦h∗(µ) 6= 0. Let
us assume that i∗1 ◦ h∗(µ) = 0. Then there exists a neighbourhood V of Af in
X which is invariant with respect to the action and such that i∗1 ◦ h∗(µ) = 0 in
Hn−2k(V ∗). From exact cohomology sequence of the pair (X∗, V ∗) one has that

(4.6) h∗(µ) ∈ Im [Hn−2k(X∗, V ∗)→ Hn−2k(X∗)].

On the other hand, η = a2k is the generator of H2k(BZ2) and it follows from
Lemma 4.2 and (4.3) that

i∗2 ◦ h∗(η) = F
∗
0 ◦G∗(η) = 0 ∈ H2k([X −Af ]∗).

Moreover, from exact cohomology sequence of (X∗, [X −Af ]∗) one has that

(4.7) h∗(η) ∈ Im [H2k(X∗, [X −Af ]∗)→ H2k(X∗)].

Thus, from (4.6), (4.7) and by the naturality of the cup product we have

h∗(η ` µ) = h∗(η) ` h∗(µ) ∈ Im [Hn(X∗, [X −Af ]∗ ∪ V ∗)→ Hn(X∗)].
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Let us observe that η ` µ = a2k ` an−2k = an is the generator of Hn(BZ2).
Furthermore, Hn(X∗, [X −Af ]∗ ∪V ∗) = Hn(X∗, X∗) is trivial and then h∗(η `

µ) = 0 ∈ Hn(X∗) which contradicts the hypothesis that the Z2-index of X is
greater than or equal to n. This concludes the proof of Theorem 1.2 in the case
G = H = Zp.
For the general case, suppose that G is a finite group which acts freely on

X and let H ⊂ G be a normal cyclic subgroup of prime order p. We denote by
s = |G|/p, the number of the left cosets of G/H and let a1, . . . , as be a set of
representatives of the cosets. We define the map F :X → Y s by

(4.8) F (x) = (f(a1x), . . . , f(aix), . . . , f(asx)).

We need to show that

A(f,H,G) = AF = {x ∈ X : F (x) = F (hx), for all h ∈ H}.

Let x be a point in the set A(f,H,G), then f collapses each orbit determined
by the action of H on aix to a single point, for each i = 1, . . . , s. If h ∈ H

F (hx) = (f(ha1x), . . . , f(haix), . . . , f(hasx)).

Since H is a normal subgroup of G, haix = aiĥx. Furthermore, aix and aiĥx =
haix belongs to the same H-orbit and f(aix) = f(haix), for each i = 1, . . . , s
which implies that F (x) = F (hx). Therefore x ∈ AF . The proof of the another
inclusion is entirely analogous.

To conclude, let us observe thatH ∼= Zp acts freely onX by restriction and by
hypothesis the Zp-index of X is greater than or equal to n. By using Lemma 4.1
for the map F :X → Y s defined in (4.8) one has that F ∗:Hq(Y s) → Hq(X) is
trivial for any q ≥ 1. Since dimension of Y s is ks and Theorem 1.2 is true for
G = Zp we can conclude that the Zp-index of AF = A(f,H,G) is greater than
or equal n− p(ks) = n− pk(|G|/p) = n− |G|k and this completes the proof. �

Proof of Theorem 1.1. Let f̃ :Xϕ → Y given by f̃(x1, . . . , xr) = f(x1),
that is f̃ = f ◦ π1 where π1 is the natural projection on the 1-th coordinate. By
hypothesis f induces the zero homomorphism in each dimension, then we have
that f̃∗:Hi(Y ) → Hi(Xϕ) is trivial for any i ≥ 1. Moreover, the Zp-index of
Xϕ is equal to n by Theorem 3.1. In this way, Xϕ and f̃ satisfy the hypotheses
of Theorem 1.2 which implies that the Zp-index of the set A(f̃ , H,G) is greater
than or equal to n−|G|k. By Definition 2.1 Aϕ(f,H,G) = A(f̃ , H,G), and then
cohom.dimAϕ(f,H,G) ≥ n− |G|k. �

Remark 4.3. In the particular case that G = H = Zp with p prime,
Volovikov in [13, Theorem 3.2] proved a version of Theorem 1.1.
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