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ON NONSYMMETRIC THEOREMS
FOR (H,G)-COINCIDENCES

DENISE DE MATTOS — EDIVALDO L. DOS SANTOS

ABSTRACT. Let X be a compact Hausdorff space, ¢: X — S™ a contin-
uous map into the m-sphere S™ that induces a nonzero homomorphism
@ H"(S™;Zp) — H™(X;Zyp), Y a k-dimensional CW-complex and f: X —
Y a continuous map. Let G a finite group which acts freely on S™. Suppose
that H C G is a normal cyclic subgroup of a prime order. In this paper, we
define and we estimate the cohomological dimension of the set A, (f, H, G)
of (H, G)-coincidence points of f relative to .

1. Introduction

K. D. Joshi [10] has proved a nonsymmetric generalization of the Borsuk—
Ulam theorem [1], in which the n-sphere S™ is replaced by a certain compact
subset X of the (n + 1)-dimensional Euclidean space R™*1. In this context,
a pair of points z,y € X are said to be antipodal if y = —Ax, for some A > 0.
The Joshi’s theorem shows that for every continuous map f: X — R"™ there exist
antipodal points x,y € X such that f(z) = f(y).

K. Borsuk has suggested to define antipodal points in an arbitrary space
in the following way: x1,z2 € X are said to be antipodal points relative to an
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essential map' ¢: X — S™ if ¢(x1) = —p(w2). Using the Borsuk’s suggestion,
Spiez [11] has proved that if X is a compact Hausdorff space and if ¢: X — S™
is an essential map, then for every continuous map f: X — RF, the covering
dimension of the set

A, (f)={x € X : there exists y€ X, such that p(z)=—¢(y) and f(z)=f(y)}

is not less than n — k, obtaining thus a generalization of the Joshi’s theorem.

M. Izydorek [7] has extended the proposition of Borsuk for a cyclic group G
of order prime which acts freely on a n-dimensional sphere S™ and has proved the
following generalization of the SpiePlr z’s theorem: if X is a compact Hausdorff
space and if p: X — S™ is an essential map, then for every continuous map
f: X — RF, the covering dimension of the set

A,(f) = {z € X : there exists xa,... ,x, such that
p(z) =g o(a2) = ... = g' Pp(a,) and f(z) = f(a2) = ... = f(zp)}

is not less than n — (p— 1)k, where g is a fixed generator of G. Moreover, if R¥ is
replace by a generalized k-dimensional manifold M* over Z,, then an analogous
theorem has been proved (see [7, Theorem 4]).

Gongalves, Jaworowski and Pergher [3] have defined (H, G)-concidence for
a continuous map f from a m-sphere S™ into a k-dimensional CW-complex Y,
where G is a finite group which acts freely on S™ and have proved that if H is
a nontrivial normal cyclic subgroup of a prime order, then

cohom.dim A(f, H,G) > n — |G|k,

where A(f, H,G) is the set of (H,G)-coincidence points of f and cohom.dim
denotes the cohomological dimension. The other papers closely related to [3] are
[4]-[6], [8], [9] and [13].

The purpose of this paper is to define the set A, (f, H, G) of (H, G)-coinciden-
ce points of a continuous map f: X — Y relative to an essential map p: X — S™,
where X is a compact Hausdorff space, Y is a topological space, G is a finite
group which acts freely on the n-dimensional sphere S™ and H is a subgroup
of G. Using this definition, under certain conditions, we estimate the cohomo-
logical dimension of the set A, (f, H,G). Specifically, we will prove the following
nonsymmetric version of the main theorem of [3]:

THEOREM 1.1. Let X be a compact Hausdorff space, Y a k-dimensional
CW-complex and p: X — S™ an essential map. Given a finite group G which
acts freely on S™ and H a normal cyclic subgroup of prime order, then for every

(*) A map p: X — S™ is said to be an essential map if ¢ induces nonzero homomorphism
P*  H"(S™; Zp) — H™(X;Zp).
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continuous map f: X — Y such that f*: H(Y;Z,) — HY(X;Z,) is trivial for
i > 1, cohom.dim A, (f, H,G) > n — |G|k.

For the proof of Theorem 1.1, it was fundamental to prove the following
version of the main Theorem of [3],

THEOREM 1.2. Let X be a paracompact Hausdorff space, Y a k-dimensional
CW-complex, G a finite group which acts freely on X and H C G a normal
cyclic subgroup of prime order. Let f: X — Y be a continuous map such that
f*HYY;Z,) — H'(X;Z,) is trivial, for i > 1. Suppose that the Z,-index of X
is greater than or equal to n, then the Z,-index of the set A(f, H,Q) is greater
than or equal to n — |G|k. Consequently, cohom.dim A(f, H,G) > n — |G|k.

2. Preliminaries

Throughout this paper the symbols H, and H* will denote Cech homology
and cohomology groups with coefficients in Z,, unless otherwise indicated. If G
is a group which acts on a topological space X, we will denote by X* the orbit
space X/G.

We start by introducing some basic notions and definitions as follows.

2.1. (H,G)-coincidence. Suppose that XY are topological spaces, G is
a group acting freely on X and f: X — Y is a map. If H is a subgroup of G,
then H acts on the right on each orbit Gz of G as follows: if y € Gz and y = g,
g € G, then hy = ghx (such action may depend on the choice of the reference
point z). Following [4], [6], [9] the concept of G-coincidence is generalized as
follows: a point € X is said to be a (H, G)-coincidence point of f if f sends
every orbit of the action of H on the G-orbit of z to a single point (see [5]). We
will denote by A(f, H, G) the set of all (H, G)-coincidence points of f. If H is the
trivial subgroup, then every point of X is a (H, G)-coincidence. If H = G, this
is the usual definition of coincidence. If G = Z, with p prime, then a nontrivial
(H, G)-coincidence point is a G-coincidence point.

2.2. The space X, and the set A, (f, H,G). Let us consider X a compact
Hausdorff space and an essential map ¢: X — S™. Suppose G be a finite group
of order r which acts freely on S™ and H be a subgroup of order p of G. Let
G ={91,92,--.,9-} be a fixed enumeration of elements of G, where g; is the
identity of G. A nonempty space X, can be associated with the essential map
p: X — S™ as follows:

Xo ={(1,...,2,) € X" p(a1) = (92) pla2) = ... = (9,) "o(r)}
={(x1,...,2) € X" gip(x1) = p(x3), i =1,...,r},

where X" denotes the r-fold cartesian product of X. The set X, is a closed
subset of X" and so it is compact. We define a G-action on X, as follows: for
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each g; € G and for each (z1,... ,2,) € X,

(21) gi(mla-" 7xr) = (zogi(l)a--- 7xagi(7'))7

where the permutation o, is defined by oy, (k) = j, gxg; = g;. We observe that
if £ = (x1,...,2,) € X, then x; # x;, for any i # j and therefore G acts freely
on X,.

Now, let us consider a continuous map f: X — Y, where Y is a topological
space and .]?:Xgo — Y given by f(ml,...,xT) = f(x1). Let y = (x1,...,2,) €
A(f7 H,G) and consider the orbit Gy = {g1v, g2y, - .. , gry}. Note that

(i) From (2.1), we have that for each 4, the 1-th coordinate of g;y is z;.

(ii) The action of H on Gy determines a partition of the orbit Gy in s = (r/p)
disjoint suborbits, and we can be rewrite

Gy={91,9,.-. y91,Y5 - - 5901 Y5 - - - 5 95,5 1951 Y5 - - agspy}u

where {1,... .7} < {11,..., 1. 501, ., Jp;--. ;S1,..., Sp} is a bijection.

Since y is a (H, G)-coincidence point of f, it follows from (i) and (ii) that,

fly)=..= flay,); . s fleg,) = ... = fxy,); . s flos,) = ... = f(xg,).
In these conditions, we have the following

DEFINITION 2.1. The set A,(f, H,G) of (H, G)-coincidence points of f rel-
ative to ¢ is defined by

A (f,H,G) = A(f, H,G) = {(z1,... ,2,) € X" :
g7Q0(I'1) :@(I7)7 1= 17 , T and f(le) ::f(:z’]p)’ ]:17 75}'

REMARK 2.2. Let us observe that if G = H = Z,,

AS(f H,G) = A (f) = {(21,... ,2,) € X7
gﬁp(ml) = 90(1';)7 t=1,...,p and f(xl) == f(xp)}

2.3. The Z,-index. Suppose that the cyclic group G = Z,, of order prime
p acts freely on a Hausdorff and paracompact space X. Then X — X* is
a principal Z,-bundle and one can take h: X* — BZ, a classifying map for the
G-bundle X — X*.

REMARK 2.3. It is well known that if A is another classifying map for the
principal Z,-bundle X — X*, then there is a homotopy between h and h.
We will consider the following definition for the Z,-index of X (see [7]).
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DEFINITION 2.4. We say that the Zj,-index of X is greater than or equal
to k if the homomorphism h*: H*(BZ,) — H*(X*) is nontrivial. We say that
the Z,-index of X is equal to k if it is greater than or equal to & and moreover
h*: H(BZ,) — H'(X*) is zero, for any i > k + 1.

REMARK 2.5. A model for BZs the classifying space for Zs is the infinite
real projective space P>°. Then H*(BZs) = H*(P®) is isomorphic to Zs|al,
where a € H'(P*) is the generator. The generator of H(BZz) is a* for any
i > 0. If p > 2 a model for BZ, the classifying space for Z, is the infinite lens
space L>° = S°°/Z,. Thus, H (BZ,) = H'(L}®) = Z, for any i > 0 and given
any nonzero element a € H'(L:°), one has that b = (3(a) is a nonzero element, of
HQ(L;O), where (: Hl(L;O) — HQ(L;;O) is the Bockstein homomorphism. More
generally, a generator p € H'(BZ,) is given by

a~ bU=1/2 if j is odd
"= { bi/2 if 7 is even.

2.4. The Smith special cohomology groups with coefficients in Z,.
In this work, we will be considering the definition of the Smith special coho-
mology groups with coefficients in Z, in the sense of [2]. Smith homology and
cohomology were originally defined in [12] and in a series of subsequent papers.
A systematic exposition of the Smith theory can be found in [2]. Let X be
a topological space; given a finite group G of prime order p which acts freely on
X, let g be a fixed generator of G and put

c=14+¢g+¢>+...4+¢*' and 7=1-yg,

in the group ring Z,(G). We have that o = 7771 If p = 7%, we put p = 7P7¢,
then 7 =7 and 0 = 7. There exists an exact sequence with coefficients in Z, 2,
p.125],

—— HMX) L o (X) T B (X7 2 H (X —
called Smith exact sequence, where H (X) denotes the Smith special cohomology
groups and 7 is the transfer homomorphism.
REMARK 2.6. The Smith cohomology groups are natural with respect to Z,-
equivariant maps, that is, if f: X — Y is a Zy,-equivariant map then f induces ho-

momorphism f,": H>(Y) — H;(X) which commutes with the homomorphisms
in the Smith sequence.

3. The Z,-index of X,

Let us consider the free G-space X, as defined in Section 2.2. If H C G is
a cyclic subgroup of prime order p, then X, is a free H = Z,-space. In these
conditions, as in [7, Theorem 3], we have the following
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THEOREM 3.1. Let X be a compact Hausdorff space and o: X — S™ an
essential map. Then, the Zy-index of X, is equal to n.

PrROOF. For ¢ = 1,...,r, let us consider the maps ¢;: X — S™ given by
0i(x) = (9;)"L¢(x), where g; € G. Then, we can define the map

P=p1 X...xp: X" = [S"]",

where [S™]" denotes the r-fold cartesian product of r copies of S™, such that
X, = ¢ tA[S"]", where A[S™]" is the diagonal in [S"]". In these conditions,
we prove the following

LEMMA 3.2. The homomorphism ¢p*: H*([S™]") — H*(X") induced by ¢: X"
— [S™]" is a monomorphism in each dimension.

PROOF. Let m be an integer and for each t = 1,... ,r consider H™([S™]").
If m is not divisible by n then H™([S"]") = 0 and the result follows. Suppose
that m is divisible by n; one then has that there exists & = 0,1,... , such that
m = an. Let us consider the following commutative diagram

Hom([sn]t) ® H()(sn) o H(afl)n([sn]t) ® Hn(sn) % Han([sn]t-i—l)
(3-1) (<P1><~‘><<Pt)*®90t*+1J( l(ﬂplx~~x¢t+l)*
Hom(Xt) ® HO(X) oy H(afl)n(Xt) ® Hn(X) - N Hom(Xt+1)

Applying the Kiinneth’s formula, we have that the upper row of the above
diagram is an isomorphism and the lower row is a monomorphism, for each
a=0,1,...andt=1,... 7.

The proof will be done by induction on ¢t. We assume inductively that for
some t = 1,...,r — 1 and for each « = 0,1,... the homomorphism (¢; x

- X @p)* HO™([S™]Y) — H*"(X') is a monomorphism and we will show that
(1 X ... X @)* ® ¢}, is a monomorphism.

The result will follow from the commutativity of the diagram (3.1). By
induction hypothesis it suffices to show that ¢}, is a monomorphism. For this,
observe that ] = ¢7, for any 1 <1i,j <r. If ¢}, is not a monomorphism, then
7 is not a monomorphism, for any 1 <i <t, which completes the proof. O

The next step is to use Lemma 3.2 to show that the homomorphism in-
duced by ¢|x,: X, — A[S™]" is a monomorphism. Let us consider the following
commutative diagram

H* (X", X,) — 5 B (X") —* s B (X,)

(3.2) uﬁ wﬂ %wx@)*

H([S"]", A[S™]") —— H"([S"]") —= H"(A[S"]")
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whose rows are exact. If v is a generator of H"(S™) = Z,, let us denote by «;
the element ¢} (y) € H"([S™]"), where g;: [S"]" — S™ is the natural projection
on the i-th coordinate for ¢ = 1,2,... ,7. Let us observe that ¢; oi = ¢; o4 for
any 1 < ,7 <r, where i: A[S"]" < [S™]" is the natural inclusion. In this way,
one has that

(3.3) i"(ai) =170 g; (v) = (g 01)"(7) = (g 0 1)"(7) = i"(a).
LEMMA 3.3. (Y|x,)*: H"(A[S"]") — H"(X,) is a monomorphism.

PRrROOF. Since A[S™]" is homeomorphic to S”, it follows from (3.3) that
i*(;) is a nonzero element in H"(A[S™]") for any ¢ = 1,... ,r. Thus, it suffices
to show that (¢|x,)*(i*(c1)) # 0. Let us assume that this does not happen.
From the diagram (3.2) we have that

ko™ (ar) = (¢]x,)" 0 i (1) =0,

which implies that ¢¥*(a;) € Ker(k*) = Im(5*) and there exists an element
Ue H"(X",X,) such that

(3.4) J°(U) = ¢ (aa) # 0,

since by Lemma 3.2 ¢* is a monomorphism and a3 = ¢f(vy) € H"([S"]") is

a nonzero element. Let us consider the following commutative diagram,

H(T_l)n(XT,XT _ Xap) J , H(r—l)n(Xr) k*> H(r—l)n(Xr _ XW)

o L T

H(rfl)n([sn]r, [Sn]r _ A[sn}r) g H(rfl)n([sn]r) E; H(rfl)n([sn]r _ A[sn]r)

Dﬂ TDI

Hy(A[S™]") ————— Ha([S"]")

where the first and the second rows are exact, D is the Alexander—Spanier Du-
ality which is an isomorphism and all others maps are induced by appropriate

inclusions.
Let us denote by ay, ... ,a, the elements of H, ([S"]") which are conjugated
to ai,...,a, in H™([S™]"). More precisely,
1 ifi=j,
<aja a;) = o .
0 ifi#j,

where the map (-, -): H*([S"]") x H,([S™]") — Z, denotes the Kronecker prod-
uct. Let us denote by ¢ € H,(A[S"]") the conjugated element to i*(ay) =
. =1"(ay) in H"(A[S"]"). Then for any j = 1,... ,7 one has (i*(q;),c) = 1.
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Furthermore, it follows from properties of the Kronecker product that for any
j=1...,r

(1"(e), ¢) = (aj,ix(c)) = 1,
which implies that

(3.6) ix(c) = Z a;.

Let us consider for each ¢ = 1,... ,r the elements
ﬂi =01~ .. al ~ Ol e O S H(nfl)r([sn]r),

where the symbol @; means that the element «; is omitted.
To simplify notation, here we will also denote by [S™]" the generator of
H,,,-([S™]"), which is called the fundamental class of [S™]". We will show that

D_l(ai) = (—1)i+1ﬁi, that is, (—1)i+1ﬁi ~ [Sn]r = a;.

In fact, it follows from properties of the cup and cap products with respect to
the Kronecker product and by definition of 3; that

(3.7) (o, (=1 ~ [S"]7) = (o = (-1)""1;,[S"]")
= (=) (=)Dl L a,, [ST])
={a1v...va,[S"]) =1

observing that a; « ... < a, is the generator of H™"([S™]"). Thus,

D! <Zai) = ZDil(ai) = Z(_l)iﬂﬂzﬁ
i=1 i=1 i=1
It follows from (3.6), (3.7) and from commutativity of diagram (3.5) that

r

jtoD™He) =D oiu(c) = > (-1)' T4,

i=1

that is,

T

> (=D)™6; € Im (7).
i=1
Since the second row of diagram (3.5) is exact, one has that

ki‘(g(—lf“@) =0.

By using again the commutativity of diagram (3.5)

r

K oy (i(lv‘“@) — 4o ki(Z(ly‘“ﬂi) —0,

i=1 1=1
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which implies that

T

” (Z(—w”%) & Ker(k*) = Tm (j*)

i=1

Thus, there exists an element V € H"~Y" (X" X" — X)) such that

(3.8) V) =g (Z(l)l‘“ﬂi) 40,

i=1
since ¥* is a monomorphism. Using the naturality of the cup product in the
following diagram

HP (X7) @ HO=DM(X7) —— H™(X7)

] ;

H™([S™)") @ HU =D ([8™]7) —— H™([S"]")
and observing that
Zal ~ (= H_lﬂ _0

one has that

9) v~ ot (S0"5) = v (o S 04)

i=1 i=1
=" (Oélvﬂ1+zalv - Hlﬂ)
1=2
:1/’*(041V51):T/)*<C¥1V.~V04r)#0,

since a1 w— ... a, is the generator of H™([S™]") and ¢* is a monomorphism.
On the other hand, from naturality of the cup product in the diagram

H™(X", X,) © Hr=Dn(X7" X" — X)) —— H™(X", X")

1 :

Hn(Xr) ®H(r71)n(X1‘) Hrn(XT)

and from equations (3.4) and (3.8) we conclude that

Voo v ay) = (o) - w*(}]—l)”lm)
=1
= (U) = 5 (V) = " (U = V) = 5°(0) =0,

which contradicts (3.9). This completes the proof. ]
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Now, let us consider the map 6 = q; o 1|x,: X, — S™, where ¢1: A[S"]" —
S™ is the natural projection on the 1-th coordinate, which is an homeomor-
phism. Since by Lemma 3.3, (¥|x,)* is a monomorphism, one then has that
6*: H™(S™) — H™(X,) is a monomorphism. Note that, if (z1,...,z,) € X, we
have that for each i, g;0(x1,... ,2,) = gip(x1) = p(z;) = 0g;(z1,... ,z,), thus
0 is a G-equivariant map, and consequently, 6 is a H-equivariant map, where
H C G is a cyclic subgroup of prime order. Thus, in particular for p = o, we
can consider the homomorphism induced by 6, 6}: H?(S™) — H?(X,), where
H? denotes the n-dimensional Smith special cohomology group with coefficients
in Z, in the sense of Section 2.4.

By remarks in [2, Results following 5.2] whose dual holds in cohomology,
i*: H™(S™) — HZ(S™) is an isomorphism, and since §*: H"(S"™) — H"(X,) is
a monomorphism it follows that 07 is a monomorphism. To conclude that the Z,-
index of X, is equal to n it suffices to verify that the map between the orbit spaces
0: X,/H — S™/H induces a monomorphism in cohomology. From results in |2,
(3.10), p. 125], we have that H2(S™) = H"(S"/H) and H}(X,) = H"(X,/H),
and considering the commutative diagram

o
H(S") ——— H7 (X,)

”T }

HM(S"/H) —— H"(X,/H)

it follows that 8 : H(S"/H) — H"(X,/H) is a monomorphism. Therefore, the
Zy-index of X, is equal to n. O

4. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.2. By following the similar steps of [3], we first prove
Theorem 1.2 in the case that G = H = Z,, where p > 2. We need to show that
the Z,-index of the set Ay = {z € X : f(z) = f(gz) = ... = f(g?'a)} is
greater than or equal to n — pk. For this, let us consider F: X — YP given by
F(z) = (f(z), f(gx),..., f(gP"'z)), where YP =Y x ... x Y denotes the p-fold
cartesian product of Y and g is a fixed generator of Z,. In these conditions, we
prove the following

LEMMA 4.1. The homomorphism F*: H1(Y?) — H%(X) induced by the map
F: X —YP is zero for any q > 1.

PrOOF. We have that F' = (fp X ... X fp—1) od, where d: X — XP is the
diagonal map and f;(x) = f(g'x), for any z € X and i = 0,... ,p — 1. In this
way, it suffices to show that (fo x f1 X ... x fp—1)*: H1(YP?) — HY9(XP) is trivial
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for any ¢ > 1. Let us consider the following commutative diagram

@ H' (Y'Y @ H(Y) = Ha(Y'™H)

i+j=q

(41) (f0><...><ft)*®ft*+1l (f0><...><ft+1)*
@ Hl(Xt) ® HJ(X) RSN Hq(Xt-i-l)
i+j=q x

Since Y is a CW-complex, applying the Kiinneth’s formula we have that the
upper row of diagram (4.1) is an isomorphism for any ¢ = 1,2,... and t =
1,...,p—1.

X

The proof will be done by induction on ¢. Suppose inductively that (fy
X f) T HY (YY) — HY(X?) is zero for some t = 1,...,p — 1 and for each i =
1,2,.... By hypothesis, f induces the zero homomorphism in each dimension;
in particular f ; is zero and thus (fo x ... x f;)* ® ff, | is trivial. It follows
from commutativity of the diagram (4.1) that (fo X ... X fi41)* is zero, which

completes the proof. O
We can define a Zy-action on Y? as follows: for each (y1,...,y,) € Y?
91y Yp—1,Yp) = (Yps Y15 - -« ,Yp—1). Since p is a prime, this action is free on

Y? — A, where A is the diagonal in Y?. Let us observe that Ay = F~1(A), thus
F' determines a Zp-equivariant map Fy: X — Ay — YP — A, which induces a map
between the orbit spaces Fo: [X — A¢]* — [Y? — A]*. In these conditions, we
prove that

LEMMA 4.2. The map Fy: HP*([Y? — A]*) — HP*([X — Af]*) is zero.
PROOF. Let us consider the map of pairs (F, Fy): (X, X —Ay) — (Y, Y —A).

One then has the following commutative diagram

5 HPF(X) — HPF(X — Ay) —— HPFFL(X, X — Ap) ——

F*T TFU* T(RFO)*

—— HPF(YP) —— HPR(YP — A) —— HPFHL(YP YP — A) ——
J

where the homomorphisms ¢* and j* are induced by appropriate inclusions. Since
dim(Y?) is less than or equal to pk we have that HP*+1(YP YP — A) is trivial
and thus j* is surjective. On the other hand Fy: (X — Ay) — (YP — A) is
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a Zp-equivariant map and it follows from Remark 2.6 that the diagram

HPE(X — Ag) —T HPF([X — Ag]") —— HEF(X = Af)

S

HPF(YP — A) —— HP([YP — A]) —— HEFFL(YP — A)

between the Smith sequences of X — A; and Y? — A is commutative and since
HPFFL(YP — A) is zero, T is surjective.

Putting together these diagrams, one obtains a new commutative diagram

HPF(X) —5s HPF(X — Ay) —— HPF([X — Ag)*)

(4.2) F*T TFJ TFS

HPE(YP) s HPH(YP = A) —— HP([Y7 — A

where the horizontal sequences are not necessarily exacts, but the composition
T o j* is surjective. Therefore, as F* is zero by Lemma 4.1, it follows from
commutativity of the diagram (4.2) that F " is zero. O

Let h: X* — BZ, be a classifying map for the principal Z,-bundle X — X*.
Then the compositions h o i1: A} — BZ, and h o i [X — Af]* — BZ, are
classifying maps for the following principal Z,-bundles Ay — A% and X — Ay —
[X — Ay]* respectively, where the maps i1: A} — X* and i: [X — Af]" — X~
are induced by the inclusions between the orbit spaces.

Let us consider G:Y? — A — BZ, a classifying map for the principal Z,-
bundle Y? — A — [Y? — A]*. Since Fp: X — Ay — YP — A is a Z,-equivariant
map, one the has that

GoFy: [X — Af]" — BZ,
also classifies the principal Z,-bundle X — Ay — [X — Ay]*. In this way,

(4.3) iy o h* = FyoG*: H*(BZ,) — H*([X — Af]).

To conclude that the Z,-index of Ay is greater than or equal to n — pk, it suffices
to show that i o h*(u) # 0, where y is the generator of H"~P*(BZ,).

We first consider the case when k is odd. Let us observe that n must be
necessarily odd, since p > 2 is a prime. Then, n — pk is even and it follows from
Remark 2.5 that p = b("~Pk)/2 ¢ gn=Pk(B7Z,). Suppose that i} o h*(u) = 0.
From continuity of the cohomology, there exists a neighbourhood V of Ay in X
which is invariant by the action of Z, and such that i oh*(u) = 0 in H"P*(V*).
From the exact cohomology sequence of the pair (X*,V*) one has

(4.4) h*(p) € Tm [H"7PR(X* V*) — H"PR(X™)].
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Since pk is odd from Remark 2.5 = a « bP*=1)/2 is a generator of HP*(BZ,).
It follows from Lemma 4.2 and (4.3) that

i3 0 b (1) = Fiy 0 G*(n) = 0 € HP*([X — A,]%)
and from the exact cohomology sequence of the pair (X*, [X — Af]*) one has
(45) B () € T [HPS (X7, [X — Af]) — HP*(X")].
Thus from (4.4), (4.5) and by the naturality of the cup product we have

h*(n~ p)=h"(n) ~ h*(p) € Im [H" (X", [ X — Af]"UV") — H"(X™)].
Let us note that the element
0w = a o bPR-D/2 L pn=pk)/2 o  pln-1/2
is a generator of H"(BZ,). Furthermore,
H™(X*,[X — A" UV*) = HM(X*, X*) =0

and then h*(n « p) = 0 € H*(X*), that is, h*: H"(BZ,) — H™(X"*) is trivial
which contradicts the hypothesis that the Z,-index of X is greater than or equal
to n.

If k is even, then n — pk is odd and pk is even. In this case, the proof is
analogous to the previous case, considering now the generators

p=a b Pk=U/2 c grrk(Bz. ) and 5= bPH)/2 ¢ HP*(BZ,).

Let us examine the case where G = Zy. Here, n can be any positive integer
and the generator of H"2¥(BZ,) is 4 = a"~2*. To show that the Zs-index of
Ay is greater than or equal to n — 2k, it suffices to prove that ij o h*(pt) # 0. Let
us assume that i} o h*(u) = 0. Then there exists a neighbourhood V' of Ay in
X which is invariant with respect to the action and such that 7 o h*(x) = 0 in
H"=2k(V*). From exact cohomology sequence of the pair (X*, V*) one has that

(4.6) h*(p) € Tm [H" 72K (X, V*) — H"2F(X™)].

On the other hand, n = a?" is the generator of H?*(BZs) and it follows from
Lemma 4.2 and (4.3) that

i3 o h*(n) = FooG*(n) =0 € H*([X — Af]").
Moreover, from exact cohomology sequence of (X*,[X — A¢]*) one has that
(4.7) h*(n) € Im [H?*(X*, [X — Ay]*) — H?*(X™)].
Thus, from (4.6), (4.7) and by the naturality of the cup product we have

B @) = h*(n) ~ h* () € I [H™ (X", [X — A" UV*) = H"(X")].
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Let us observe that n — p = a?* < a"~? = @™ is the generator of H"(BZs).
Furthermore, H™(X*,[X — Af]* UV*) = H™(X*, X*) is trivial and then h*(n -
p) =0 € H™(X*) which contradicts the hypothesis that the Zs-index of X is
greater than or equal to n. This concludes the proof of Theorem 1.2 in the case
G=H=17Z,.

For the general case, suppose that G is a finite group which acts freely on
X and let H C G be a normal cyclic subgroup of prime order p. We denote by
s = |G|/p, the number of the left cosets of G/H and let aq,...,as be a set of
representatives of the cosets. We define the map F: X — Y* by

(4.8) F(z) = (f(ai),..., flaizx), ..., flasz)).
We need to show that
A(f,H,G) = Ap ={v € X : F(z) = F(hz), for all h € H}.

Let z be a point in the set A(f, H,G), then f collapses each orbit determined
by the action of H on a;x to a single point, for each i =1,...,s. f he H

F(hz) = (f(harz),..., f(ha;x), ..., f(hasz)).

Since H is a normal subgroup of G, ha;z = aiﬁx. Furthermore, a;x and aiﬁz =
ha;x belongs to the same H-orbit and f(a;x) = f(ha;x), for each i = 1,... ;s
which implies that F(x) = F(hz). Therefore € Ap. The proof of the another
inclusion is entirely analogous.

To conclude, let us observe that H = Z,, acts freely on X by restriction and by
hypothesis the Z,-index of X is greater than or equal to n. By using Lemma 4.1
for the map F: X — Y* defined in (4.8) one has that F*: H1(Y?®) — H9(X) is
trivial for any ¢ > 1. Since dimension of Y® is ks and Theorem 1.2 is true for
G = Z, we can conclude that the Z,-index of Ap = A(f, H,G) is greater than
or equal n — p(ks) = n — pk(|G|/p) = n — |G|k and this completes the proof. O

PROOF OF THEOREM 1.1. Let ]?:Xw — Y given by f(xl,...,xT) = f(z1),
that is f: f om where 7 is the natural projection on the 1-th coordinate. By
hypothesis f induces the zero homomorphism in each dimension, then we have
that f*: H(Y) — H'(X,) is trivial for any i > 1. Moreover, the Z,-index of
X, is equal to n by Theorem 3.1. In this way, X, and fsatisfy the hypotheses
of Theorem 1.2 which implies that the Z,-index of the set A(f, H, Q) is greater
than or equal to n — |G|k. By Definition 2.1 A,(f,H,G) = A(f,H,G), and then
cohom.dim A, (f, H,G) > n — |G|k. O

REMARK 4.3. In the particular case that G = H = Z, with p prime,
Volovikov in [13, Theorem 3.2] proved a version of Theorem 1.1.
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