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A FORMULA
FOR THE COINCIDENCE REIDEMEISTER TRACE

OF SELFMAPS ON BOUQUETS OF CIRCLES

P. Christopher Staecker

Abstract. We give a formula for the coincidence Reidemeister trace of

selfmaps on bouquets of circles in terms of the Fox calculus. Our formula
reduces the problem of computing the coincidence Reidemeister trace to the

problem of distinguishing doubly twisted conjugacy classes in free groups.

1. Introduction

Fadell and Husseini, in [3] proved the following:

Theorem 1.1 (Fadell, Husseini, 1983). Let X be a bouquet of circles, G =
π1(X), and let G0 be the set of generators of G. If f :X → X induces the map
ϕ:G→ G, then there is some lift f̃ : X̃ → X̃ to the universal covering space with

RT(f, f̃) = ρ

(
1−

∑
a∈G0

∂

∂a
ϕ(a)

)
,

where ρ: ZG→ ZR(f) is the linearization of the projection into twisted conjugacy
classes, and ∂ denotes the Fox derivative.

Theorem 1.1 reduces the calculation of the Reidemeister trace (and thus
of the Nielsen number) in fixed point theory to the computation of twisted
conjugacy classes. Our goal for this paper is to obtain a similar result in
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coincidence theory of selfmaps — a formula for the coincidence Reidemeister
trace RT(f, f̃ , g, g̃) in terms of Fox derivatives which reduces the computation
to twisted conjugacy decisions.

The proof of Theorem 1.1 given in [3] is brief, thanks to a natural trace-like
formula for the Reidemeister trace in fixed point theory. No such formula exists
for the coincidence Reidemeister trace, and this will complicate our derivation.
Our argument is based on first specifying a particular regular form for maps in
Section 3 and for pairs of maps in Section 4. In Section 5 we give our main
result.

The author would like to thank Philip Heath, Nirattaya Khamsemanan, and
Seungwon Kim for helpful and encouraging conversations, and Robert Brown
and the referee for helpful comments on the paper.

2. Preliminaries

Throughout the paper, let X be a bouquet of circles meeting at the base
point x0. Let G = π1(X), a free group, and let G0 be the set of generators of G.
Let X̃ be the universal covering space of X with projection pX : X̃ → X, and
choose once and for all a base point x̃0 ∈ X̃ with pX(x̃0) = x0.

Given maps f, g:X → X and their induced homomorphisms ϕ,ψ:G → G,
we define an equivalence relation on G as follows: two elements α, β ∈ G are
(doubly) twisted conjugate if

α = ϕ(γ)βψ(γ)−1.

The equivalence classes with respect to this relation are the Reidemeister classes,
and we denote the set of such classes as R(ϕ,ψ). Let ρ:G → R(ϕ,ψ) be the
projection into Reidemeister classes.

For any pair of maps f, g:X → X, denote their coincidence set by

Coin(f, g) = {x ∈ X | f(x) = g(x)}.

The set of coincidence points are partitioned into coincidence classes of the
form pX(Coin(α−1f̃ , g̃)), where α ∈ G and f̃ , g̃: X̃ → X̃ are specified lifts of f
and g. Lemma 2.3 of [2] shows that Coin(α−1f̃ , g̃) = Coin(β−1f̃ , g̃) if and only
if ρ(α) = ρ(β), and that Coin(α−1f̃ , g̃) and Coin(β−1f̃ , g̃) are disjoint if ρ(α) 6=
ρ(β). Thus the coincidence classes are represented by Reidemeister classes in G,
and so each particular coincidence point has an associated Reidemeister class.
For x ∈ Coin(f, g), let [x

ef,eg] ∈ R(ϕ,ψ) denote the Reidemeister class ρ(α) for

which x ∈ pX(Coin(α−1f̃ , g̃)).
Let f, g:X → X be mappings with isolated coincidence points, and for each

coincidence point x let Ux ⊂ X be a neighborhood of x containing no other
coincidence points. Then we wish to define the coincidence Reidemeister trace
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as a sum of the classes [x
ef,eg] with each coefficient given by the coincidence index

at x.
The coincidence index is in general not defined for nonmanifolds such as our

bouquet of circles X, but we can construct an appropriate index without too
much difficulty. It will be shown in the next section that we may assume that
g is homotopic to the identity in a neighborhood of the base point x0, and thus
that the coincidence index of f and g on a neighborhood of x0 is simply the fixed
point index of f at x0 (which is defined for any ANR). Near any point x other
than x0, the space X is an orientable differentiable manifold, and we define the
coincidence index as usual for that setting (see [5]):

ind(f, g, Ux) = sign(det(dgx − dfx)),

where dfx and dgx denote the derivatives of f and g at x. (That this determinant
can be assumed to be nonzero is a consequence of our construction below.)

Thus we define the coincidence Reidemeister trace as:

RT(f, f̃ , g, g̃) = ι(f, Ux0)[x0 ef,eg] +
∑

x∈Coin(f,g)−x0

ind(f, g, Ux)[x
ef,eg],

where ι denotes the fixed point index. Indeed we can define a local Reidemeister
trace: for any open set U not cointaining x0, define

RT(f, f̃ , g, g̃, U) =
∑

x∈Coin(f,g,U)

ind(f, g, Ux)[x
ef,eg],

where Coin(f, g, U) = Coin(f, g) ∩ U . If U does contain x0, then we add
ι(f, Ux0)[x0 ef,eg] into the sum in the obvious way. Clearly this local Reidemeister
trace is equal to the nonlocal version if U is taken to be X, and has the following
additivity property: if V and W are disjoint subsets of U with Coin(f, g, U) ⊂
V ∪W , then

RT(f, f̃ , g, g̃, U) = RT(f, f̃ , g, g̃, V ) + RT(f, f̃ , g, g̃,W ).

As for defining the Reidemeister trace for any pair of maps f, g:X → X

(perhaps having nonisolated coincidence points) with lifts f̃ , g̃: X̃ → X̃, we first
change f and g by a homotopy to f ′, g′ so that they have isolated coincidence
points (that this is possible will be a consequence of our construction in Theo-
rem 4.1). Now the homotopies of f , g to f ′, g′ can be lifted to a homotopy of
f̃ , g̃ to some lifts f̃ ′, g̃′. We then define

RT(f, f̃ , g, g̃) = RT(f ′, f̃ ′, g′, g̃′).

That this is well defined will be a consequence of the homotopy invariance of
the coincidence index and the homotopy-relatedness of coincidence classes (see
Lemma 5.1 of [6]).
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We will now review the necessary properties of the Fox calculus (see e.g. [1]).
If {xi} are the generators of a free group G, then the operators

∂

∂xi
:G→ ZG

are defined by:

∂

∂xi
1 = 0,

∂

∂xi
xj = δij ,

∂

∂xi
(uv) =

∂

∂xi
u+ u

∂

∂xi
v,

where δij is the Kronecker delta, and u, v ∈ G are any words. Two important
formulas can be obtained from the above:

∂

∂xi
x−1

i = −x−1
i ,

∂

∂xi
(h1 . . . hn) =

n∑
k=1

h1 . . . hk−1
∂

∂xi
hk.

3. A regular form for mappings

In this section we will describe a standard form for selfmaps of X. Each
circle of X is represented by some generator of the fundamental group. For each
generator a ∈ G0, let |a| ⊂ X be the circle represented by a (including the base
point x0).

For simplicity in our notation, we parameterize each circle by the interval
[0, 1] with endpoints identified. The circles of X will be parameterized so that
the base point x0 is identified with 0 (or equivalently, with 1). For any generator
a ∈ G and any x ∈ [0, 1], let [x]a denote the point of |a| ⊂ X which has
coordinate x. Interval-like subsets of X will be denoted e.g. (x1, x2)a for the
subset of points in |a| parameterized by the interval (x1, x2).

Homotopy classes of mappings of X are characterized by their induced map-
pings on the fundamental groups. Consider the example where G = 〈a, b〉 and
the mapping f :X → X induces ϕ:G→ G with

ϕ(a) = ab−1a−1b2.

Geometrically speaking, the above formula for ϕ indicates that f is homotopic
to a map fixing the base point x0 and mapping some interval (0, x1)a bijectively
onto |a|−x0, maps some interval (x1, x2)a bijectively onto |b|−x0 (in the “reverse
direction”), and so on.

We can represent the action of this map on |a| pictorially as in Figure 1,
where in this case xi = [i/5]a, and the label on each interval indicates that the
interval is being mapped bijectively onto the corresponding circle. Note that
sliding the points xi (i 6= 0) around the circle will not change the homotopy
class of f , provided that no xi ever moves across another, and the ordering of
the labels is preserved.



Coincidence Reidemeister Trace of Selfmaps 45
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Figure 1. Diagram of the action on |a| of a map with ϕ(a) = ab−1a−1b2.

The base point x0 is circled at left

Thus any map f :X → X is homotopic to a map which is characterized as
follows: for each generator a ∈ G0, specify na intervals Ia

1 , . . . I
a
na

together with
labels {ha

1 , . . . , h
a
na
}, where each of ha

i are letters of G (a letter of G is an element
which is either a generator or the inverse of a generator of G). These intervals
will be called intervals of f , and the labels will be called the labels of f .

Since we are concerned only with homotopy classes of maps, we may assume
that f maps (xi, xi+1)a affine linearly onto (0, 1)b for some generator b ∈ G. A
map specified by intervals and labels which is linear on each interval in this way
will be called regular.

Specifying a map f by intervals and labels gives precise information which
can be used to compute the derivatives of f at any point. For any interval
I = (xi, xi+1)a, define w(I), the width of I, as the real number xi+1 − xi. It is
easy to verify that for any coincidence point x ∈ I, we have

dfx = ± 1
w(I)

,

where the sign above is + when I is labeled by a generator, and − when I is
labeled by the inverse of a generator.

4. The Reidemeister trace of a pair of regular maps

Let f, g:X → X be a regular pair of maps, and choose lifts f̃ and g̃ of f and
g respectively so that f̃(x̃0) = g̃(x̃0). In this section we will describe a method
for calculating RT(f, f̃ , g, g̃).
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For each generator a of G, write

f(a) = ha
1 . . . h

a
na
, g(a) = la1 . . . l

a
ma
,

where all ha
i and laj are letters of G. Without loss of generality, we will assume

the action of f and g on |a| is specified by intervals and labels as pictured in
Figure 2.

◦
1

VV

ha
1

??

. . . �� ha
na

��

a−1

hh

1

VV

a

hh
1

a

a−1

PP

la1
88

. . .��
lama

��

a−1

nn

a

Figure 2. Diagram of the action of f and g on |a|. Outer labels give the
action of f , while inner labels give the action of g.

Given this construction of f and g, we see that Coin(f, g) consists of the
points x0 and the various [1/2]a, along with finitely many isolated coincidence
points occuring away from the interval endpoints.

In order to compute the Reidemeister trace, we partition X into several
intervals: let Ia

1 , . . . , I
a
na

be the intervals of f in (0, 1/2)a labeled by ha
1 , . . . , h

a
na

,
and let Ja

1 , . . . , J
a
ma

be the intervals of g in (1/2, 1)a labeled by la1 , . . . , l
a
ma

. Let
Ia be the interval of f containing [1/2]a, and let I0 be the union of all intervals
of f having x0 as an endpoint.

We define four more intervals to cover the remaining portions of X: let Ka
1

be the interval of f in (0, 1/2)a which follows Ia
na

and is labeled by a−1. Let V a

be the first interval of g in (1/2, 1)a (this interval is labeled by a−1) and we set
Ka

2 to be the interior of V a − Ia. Let Ka
3 be the interval of g following Ja

ma
, this

interval is labeled a−1 by g. Finally, let Ua be the last interval of g, and let Ka
4

be the interior of Ua − I0. Since our regular maps are constructed to have no
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coincidences at interval endpoints except for x0 and the [1/2]a, we have

Coin(f ′, g′) ⊂ I0 ∪
⋃

a∈G0

(
Ia ∪

na⋃
i=1

Ia
i ∪

ma⋃
j=1

Ja
j ∪

4⋃
k=1

Ka
k

)
,

and so we can compute RT(f ′, f̃ ′, g′, g̃′) as a sum of the Reidmeister traces over
the various intervals in the above union.

The coincidence points at the various [1/2]a are removable, as g can be de-
formed away from x0 in a neighborhood of [1/2]a. Thus we have RT(f, g, f̃ , g̃, Ia)
= 0 for each a. We can also observe that in a neighbourhood of x0, the map g

is homotopic to the identity, and thus that ind(f, g, I0) is simply the fixed point
index of a constant map, which is 1. Since x̃0 is a coincidence point of f̃ and g̃,
we have [x0 ef,eg] = ρ(1), and so RT(f, f̃ , g, g̃, I0) = ρ(1).

The union above thus gives the Reidemeister trace as a sum:

(4.1) RT(f, f̃ , g, g̃) = ρ(1) +
∑

a∈G0

( na∑
i=1

RT(Ia
i ) +

ma∑
j=1

RT(Ja
j ) +

4∑
k=1

RT(Ka
k )

)
,

where for brevity we write RT( · ) for RT(f, f̃ , g, g̃, · ).
The RT(Ia

i ) terms can be computed as follows: given a coincidence point
x ∈ Ia

i , we have RT(Ia
i ) = ind(f, g, Ia

i )[x
ef,eg]. The index is computed as ±1

depending on the sign of dgx− dfx (which in turn depends on whether ha
i is a or

a−1). A standard covering space argument shows that [x
ef,eg] is either ha

1 . . . h
a
i−1

or ha
1 . . . h

a
i , again depending on whether ha

i is a or a−1. In particular, it is
straightforward to show that

RT(Ia
i ) = −ρ

(
ha

1 . . . h
a
i−1

∂

∂a
ha

i

)
.

Summing over i gives

na∑
i=1

RT(Ia
i ) =

na∑
i=1

−ρ
(
∂

∂a
(h1 . . . h

a
na

)
)

= −ρ
(
∂

∂a
ϕ(a)

)
.

Completely analagous arguments will show that

RT(Ja
j ) = ρ

(
ϕ(a)a−1

(
aa−1laa . . . l

a
j−1

∂

∂a
laj

)−1)
,

and thus that
ma∑
j=1

RT(Ja
j ) =

ma∑
j=1

ρ

(
ϕ(a)a−1

(
aa−1laa . . . l

a
j−1

∂

∂a
laj

)−1)

= −ρ
(
ϕ(a)a−1i

(
∂

∂a
ψ(a)

))
,
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where i: ZG→ ZG is the involution defined by

i

( ∑
k

ckak

)
=

∑
k

cka
−1
k .

Similar computations of Reidemeister classes and indices will show that
RT(Ka

1 ) and RT(Ka
2 ) will cancel in (4.1), and that

RT(Ka
3 ) = −ρ(ϕ(a)ψ(a)−1).

To complete the computation of (4.1) we note that the coincidence point in
Ka

4 is removable by a homotopy, and thus we obtain

Theorem 4.1. Let f, g:X → X be maps which induce the homomorphisms
ϕ,ψ:G→ G. Then there are lifts f̃ and g̃ such that

RT(f, f̃ , g, g̃) = ρ

(
1−

∑
a∈G0

(
∂

∂a
ϕ(a) + ϕ(a)ψ(a)−1 − ϕ(a)a−1i

(
∂

∂a
ψ(a)

)))
.

We end this section with an interpretation of the above formula with respect
to a variation on the Fox calculus. For generators {xi} of G, define the operators
∆

∆xi
:G→ ZG as follows:

∆
∆xi

1 = 0,
∆

∆xi
xj = δij ,

∆
∆xi

(uv) =
(

∆
∆xi

u

)
v +

∆
∆xi

v.

Analogous to the properties given for the Fox calculus we can derive:

∆
∆xi

x−1
i = −xi,

∆
∆xi

(hn . . . h1) =
n∑

k=1

(
∆

∆xi
hk

)
hk−1 . . . h1

We will use one further property, relating our new operator to the ordinary
Fox calculus operator, whose proof is left as an exercise:

∆
∆xj

w = x−1
j i

(
∂

∂xj
w

)
w.

The identity ρ(ϕ(w)z) = ρ(zψ(w) can be used in Theorem 4.2 to obtain:

Corollary 4.2. With notation as in Theorem 4.1, we have

RT(f, f̃ , g, g̃) = ρ

(
1−

∑
a∈G0

(
∂

∂a
ϕ(a)− ∆

∆a
ψ(a) + ϕ(a)ψ(a)−1

))
.
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5. Some examples

First we will note that Theorem 1.1 is a simple consequence of our main
result. Letting ψ be the identity map gives ρ(ϕ(a)a−1) = ρ(a−1ψ(a)) = ρ(1),
and Theorem 1.1 immediately follows from Theorem 4.1.

Our formula also gives the classical formula for the coincidence Nielsen num-
ber on the circle:

Example 5.1. Let G = 〈a〉, and let f and g be maps which induce the
homomorphisms

ϕ(a) = an, ψ(a) = am.

Without loss of generality, we will assume that n ≥ m. Our formula then gives

RT(f, f̃ , g, g̃) = ρ

(
1− ∂

∂a
an +

∆
∆a

am − ana−m

)
= ρ(1− (1 + . . .+ an−1) + (1 + . . .+ am−1)− an−m)

= ρ(1− am − . . .− an−1 − an−m).

A simple calculation shows that ρ(ai) = ρ(aj) if and only if i ≡ j mod n −m.
Thus ρ(1) = ρ(an−m), and all other terms in the above sum are in distinct
Reidemeister classes. Thus the Nielsen number is n−m, as desired.

We conclude with one nontrivial computation of a coincidence Reidemeister
trace of two selfmaps of the bouquet of three circles.

Example 5.2. Let X be a space with fundamental group G = 〈a, b, c〉, and
let f and g be maps which induce homomorphisms as follows:

ϕ :
a 7→ acb−1

b 7→ ab

c 7→ b

ψ :
a 7→ a−1cb−1

b 7→ c

c 7→ b−1a

Our formula gives

RT(f, f̃ , g, g̃) = ρ(1− (1 + a−1cb−1 + a2)− (a+ abc−1)− (ba−1b))

= ρ(−a− a2 − abc−1 − ba−1b− a−1cb−1),

and we must decide the twisted conjugacy of the above elements. We use the
technique from [4] of abelian and nilpotent quotients.

Checking in the abelianization suffices to show that a is not twisted conjugate
to any of the other terms. We also see that a2 and ba−1b are twisted conjugate
in the abelianization, and our computation reveals that ρ(a2) = ρ(ba−1b) with
conjugating element γ = ac−1. Similarly, we find that ρ(a2) = ρ(abc−1) by the
element γ = ab−1.
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It remains to decide whether or not a2 and a−1cb−1 are twisted conjugate,
and a check in the class 2 nilpotent quotient shows that they are not. Thus

RT(f, f̃ , g, g̃) = −ρ(a)− 3ρ(a2)− ρ(a−1cb−1)

is a fully reduced expression for the Reidemeister trace, and so in particular the
Neilsen number is 3.
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