# ON A GENERALIZATION OF LAZER-LEACH CONDITIONS FOR A SYSTEM OF SECOND ORDER ODE'S 

Pablo Amster - Pablo De Nápoli


#### Abstract

We study the existence of periodic solutions for a nonlinear second order system of ordinary differential equations. Assuming suitable Lazer-Leach type conditions, we prove the existence of at least one solution applying topological degree methods


## 1. Introduction

We study the nonlinear system of second order differential equations for a vector function $u:[0,2 \pi] \rightarrow \mathbb{R}^{N}$ satisfying

$$
\begin{equation*}
u^{\prime \prime}+m^{2} u+g(u)=p(t), \quad 0<t<2 \pi \tag{1.1}
\end{equation*}
$$

under periodic boundary conditions:

$$
\begin{equation*}
u(0)=u(2 \pi), \quad u^{\prime}(0)=u^{\prime}(2 \pi) . \tag{1.2}
\end{equation*}
$$

We shall assume that $m \neq 0$ is an integer, $p \in L^{2}(0,2 \pi)$, and that the nonlinearity $g$ is continuous and bounded. Thus, (1.1)-(1.2) is a resonant problem, since the kernel of the operator $L_{m} u:=u^{\prime \prime}+m^{2} u$ over the space of $2 \pi$ periodic functions is non-trivial. This situation is referred in the literature as resonance at a higher order eigenvalue: indeed, if one considers the eigenvalue problem $-u^{\prime \prime}=\lambda u$ under periodic conditions, a simple computation shows that $\lambda_{m}=m^{2} \in \mathbb{N}_{0}$. Let us recall that the case $m=0$ for a scalar equation has

[^0]a solution if one assumes the well known Landesman-Lazer conditions, which have been firstly obtained in [2] for a resonant elliptic second order scalar equation under Dirichlet conditions (for a survey on Landesman-Lazer conditions see e.g. [5]). Roughly speaking, these conditions state that if $\bar{p}$ (the average of $p$ ) lies between the limits at $\pm \infty$ of the nonlinearity $g$, then the problem admits at least one solution. This condition may be regarded as a degree condition over the sphere $S^{0}=\{-1,1\}$, in the following sense: if for $v= \pm 1$ we define $g_{ \pm 1}=g( \pm \infty)$, then the function $\theta: S^{0} \rightarrow S^{0}$ given by $\theta(v)=\left(g_{v}-\bar{p}\right) /\left|g_{v}-\bar{p}\right|$ is well defined and changes sign, and in consequence it has non-zero degree.

Thus, the following result, adapted from a theorem given by Nirenberg in [6] for elliptic systems, may be regarded as a natural extension of Landesman-Lazer theorem:

Theorem 1.1. Assume that the radial limits $g_{v}:=\lim _{r \rightarrow \infty} g(r v)$ exist uniformly with respect to $v \in S^{N-1}$, the unit sphere of $\mathbb{R}^{N}$. Then (1.1)-(1.2) with $m=0$ has at least one T-periodic solution if the following conditions hold:
(a) $g_{v} \neq \bar{p}:=(1 / T) \int_{0}^{T} p(t) d t$ for any $v \in S^{N-1}$.
(b) The degree of the mapping $\theta: S^{N-1} \rightarrow S^{N-1}$ given by

$$
\theta(v)=\frac{g_{v}-\bar{p}}{\left|g_{v}-\bar{p}\right|}
$$

is different from 0 .
We remark that the average $\bar{p}$ can be regarded as the projection of the forcing term $p$ into the kernel of the linear operator $L_{0}$, which consists in the set of constant functions, naturally identified with $\mathbb{R}^{N}$.

In contrast with the above described case, the situation when $m \neq 0$ makes it necessary to deal with a 2 N -dimensional kernel, namely:

$$
\operatorname{Ker}\left(L_{m}\right)=\left\{\cos (m t) \alpha+\sin (m t) \beta:(\alpha, \beta) \in \mathbb{R}^{2 N}\right\}:=V_{m}
$$

One might expect that a Landesman-Lazer type condition corresponding to this case can be expressed in terms of the projection of $p$ into $V_{m}$ or, equivalently, in terms of the $m$-th Fourier coefficients of $p$. For $N=1$, it has been shown by D. E. Leach and A. Lazer that this is, indeed, the case (see [3]):

Theorem 1.2. Let $N=1$ and assume that $g \in C(\mathbb{R})$ has limits at infinity. Moreover, let $\alpha_{p}$ and $\beta_{p}$ denote the m-th Fourier coefficients of $p$. Then, if

$$
\begin{equation*}
\sqrt{\alpha_{p}^{2}+\beta_{p}^{2}}<\frac{2}{\pi}|g(\infty)-g(-\infty)| \tag{1.3}
\end{equation*}
$$

problem (1.1)-(1.2) admits at least one $2 \pi$-periodic solution.
The aim of this paper is to obtain a generalization of Lazer-Leach theorem for $N>1$. It is worthy to observe that some extra difficulty should be expected
when one attempts to extend the result to a system of equations. For example, when $m=0$, it is not necessary to assume in the scalar case that the limits $g( \pm \infty)$ exist; however, the same argument cannot be implemented for a system. An interesting example has been given in [7], showing that the existence of radial limits of $g$ is in some sense necessary. More precisely, the authors have presented a system for which no periodic solution exists, although the following conditions are fulfilled for some $R>0$ :
(i) $g(u) \neq \bar{p}$ for $|u| \geq R$.
(ii) The degree of the mapping $\theta_{R}: S^{N-1} \rightarrow S^{N-1}$ given by

$$
\theta_{R}(v)=\frac{g(R v)-\bar{p}}{|g(R v)-\bar{p}|}
$$

is different from 0 .
Despite this example, we shall show that the assumption on the existence of radial limits can be replaced by a weaker condition (see condition (G1) below).

Applying topological degree methods [4], we shall obtain solutions of (1.1)(1.2) under appropriate conditions of Lazer-Leach type. In particular, if the nonlinearity $g$ has uniform radial limits at infinity, these conditions involve the $m$-th Fourier coefficients of some suitable extension of $g$ to the infinite sphere. However, unlike in Nirenberg's result, our condition (G1) below does not assume that all radial limits exist: we shall assume instead the existence of upper limits, and only in some specific directions. This kind of condition has been introduced in [1] in the case of resonance at the first eigenvalue for a $\phi$-Laplacian system.

## 2. Preliminaries

Let $H$ be the space of absolutely continuous $2 \pi$-periodic vector functions $u:[0,2 \pi] \rightarrow \mathbb{R}^{N}$, namely

$$
H=H_{\mathrm{per}}^{1}(0,2 \pi):=\left\{u \in H^{1}\left([0,2 \pi], \mathbb{R}^{N}\right): u(0)=u(2 \pi)\right\}
$$

provided with the usual norm $\|u\|:=\|u\|_{H^{1}}$, and let

$$
D=H_{\mathrm{per}}^{2}(0,2 \pi):=\left\{u \in H \cap H^{2}\left([0,2 \pi], \mathbb{R}^{N}\right): u^{\prime}(0)=u^{\prime}(2 \pi)\right\}
$$

The operator $L_{m}: D \rightarrow L^{2}\left([0,2 \pi], \mathbb{R}^{N}\right)$ is defined as in the introduction, and its kernel $V_{m}$ may be described as

$$
V_{m}:=\operatorname{Ker}\left(L_{m}\right)=\left\{u_{w}: w=(\alpha, \beta) \in \mathbb{R}^{2 N}\right\},
$$

where $u_{w}(t):=\cos (m t) \alpha+\sin (m t) \beta$. For convenience, let $J: \mathbb{R}^{2 N} \rightarrow V_{m}$ denote the isomorphism given by $J(w)=u_{w}$. The $m$-th Fourier coefficients of a function $u \in L^{1}\left([0,2 \pi], \mathbb{R}^{N}\right)$ shall be denoted respectively by $\alpha_{u}$ and $\beta_{u}$, i.e.

$$
\alpha_{u}=\frac{1}{\pi} \int_{0}^{2 \pi} \cos (m t) u(t) d t, \quad \beta_{u}=\frac{1}{\pi} \int_{0}^{2 \pi} \sin (m t) u(t) d t .
$$

Furthermore, if $w(u)=\left(\alpha_{u}, \beta_{u}\right)$, then the orthogonal projection $\mathcal{P}$ of the space $L^{2}\left([0,2 \pi], \mathbb{R}^{N}\right)$ onto $V_{m}$ can be defined as $\mathcal{P} u=J(w(u))=u_{w(u)}$.

In particular, the projection of $p$ is given by

$$
u_{w(p)}=\cos (m t) \alpha_{p}+\sin (m t) \beta_{p} .
$$

A straightforward computation (or, equivalently, the fact that $L_{m}$ is symmetric with respect to the inner product of $L^{2}$ ) shows that the range of $L_{m}$ is the orthogonal complement of $V_{m}$, namely:
$R\left(L_{m}\right)=\left\{\varphi \in L^{2}\left([0,2 \pi], \mathbb{R}^{N}\right): \int_{0}^{2 \pi} \cos (m t) \varphi(t) d t=\int_{0}^{2 \pi} \sin (m t) \varphi(t) d t=0\right\}$.
Thus, we may define a right inverse $\mathcal{K}: R(L) \rightarrow H$ of the operator $L_{m}$, given by $\mathcal{K} \varphi=u$, where $u \in D$ is the unique solution of the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+m^{2} u=\varphi \\
\mathcal{P} u=0
\end{array}\right.
$$

Moreover, we have the following standard estimate:
Lemma 2.1. There exists a constant c such that

$$
\|u-\mathcal{P} u\|_{H^{2}} \leq c\left\|L_{m}(u)\right\|_{L^{2}} \quad \text { for each } u \in D
$$

Remark 2.2. From the previous lemma and the embedding $H^{2}(0,2 \pi) \hookrightarrow H$ it becomes immediate that $\mathcal{K}$ is compact.

## 3. Main result

In the sequel, we shall assume that the following condition is satisfied:
(G1) There exists an open covering $\left\{U_{j}\right\}_{j=1 \ldots, K}$ of the unit sphere $S^{2 N-1} \subset$ $\mathbb{R}^{2 N}$, and vectors $w_{j}=\left(\alpha^{j}, \beta^{j}\right) \in S^{2 N-1}$ such that for each $w \in U_{j}$ the limit

$$
\bar{g}_{w, j}(t):=\limsup _{s \rightarrow \infty}\left\langle g\left(s u_{w}(t)\right), u_{w_{j}}(t)\right\rangle
$$

is upper semi-continuous in $w$ for almost every $t$, where $\langle\cdot, \cdot\rangle$ denotes the usual inner product of $\mathbb{R}^{N}$.

Under this condition, our abstract version of the Lazer-Leach result for a system reads as follows:

Theorem 3.1. Assume that condition (G1) holds, and that:
(a) For each $w \in S^{2 N-1}$ there exists $j \in\{1, \ldots, K\}$ such that

$$
\frac{1}{\pi} \int_{0}^{2 \pi} \bar{g}_{w, j}(t) d t<\left\langle\alpha_{p}, \alpha^{j}\right\rangle+\left\langle\beta_{p}, \beta^{j}\right\rangle
$$

(b) For every $R \gg 0$ the Brouwer degree $\operatorname{deg}_{B}\left(G, B_{R}(0), 0\right)$ is different from zero, where $G: \mathbb{R}^{2 N} \rightarrow \mathbb{R}^{2 N}$ is the mapping defined by

$$
G(w)=w(p)-J^{-1} \mathcal{P}\left(g \circ u_{w}\right)
$$

Then problem (1.1)-(1.2) admits at least one solution.
Remark 3.2. It follows from the above definitions that $G$ may be expressed in terms of the $m$-th Fourier coefficients of the function $\varphi(t)=g\left(u_{w}(t)\right)$, namely:

$$
G(w)=\left(\alpha_{p}-\alpha_{g \circ u_{w}}, \beta_{p}-\beta_{g \circ u_{w}}\right) .
$$

Theorem 3.1 has an immediate consequence if we assume that radial limits $g_{v}=\lim _{s \rightarrow \infty} g(s v)$ exist uniformly for $v \in S^{N-1}$. Indeed, in this case, we may define for each $t \in[0,2 \pi]$ and each $w \in S^{2 N-1}$ the limit

$$
\begin{equation*}
g_{w}(t):=\lim _{s \rightarrow \infty} g\left(s u_{w}(t)\right) \tag{3.1}
\end{equation*}
$$

Note that $u_{w}(t)$ might eventually be 0 for a finite number of values of $t$, in which case $g_{w}(t)=g(0)$. However, this "singular set" of values of $t$ does not play any role when using the standard Lebesgue convergence theorems for the integral. On the other hand, if $u_{w}(t) \neq 0$, then $g_{w}(t)$ is continuous as a function of $w$ : in order to prove this, it suffices to fix a constant $c>0$ such that $\left|u_{\widetilde{w}}(t)\right| \geq c>0$ for $\widetilde{w}$ in a neighbourhood $W$ of $w$. Then, $g\left(s u_{\widetilde{w}}(t)\right)=g\left(s\left|u_{\widetilde{w}}(t)\right| \widetilde{v}\right) \rightarrow g_{\widetilde{v}}$ as $s \rightarrow \infty$ for $\widetilde{v}=u_{\widetilde{w}}(t) /\left|u_{\widetilde{w}}(t)\right|$. Given $\varepsilon>0$, fix $s$ such that $\left|g\left(s u_{\widetilde{w}}(t)\right)-g_{\widetilde{v}}\right|<\varepsilon / 3$ for $\widetilde{w} \in W$, then

$$
\left|g_{\widetilde{w}}(t)-g_{w}(t)\right|=\left|g_{\widetilde{v}}-g_{v}\right|<\frac{2 \varepsilon}{3}+\left|g\left(s u_{\widetilde{w}}(t)\right)-g\left(s u_{w}(t)\right)\right|<\varepsilon
$$

for $\widetilde{w}$ close enough to $w$. Thus, condition (G1) is clearly satisfied for any family $\left\{\left(U_{j}, w_{j}\right)\right\}_{j=1, \ldots, K}$ such that $\left\{U_{j}\right\}$ covers $S^{2 N-1}$ and $w_{j} \in S^{2 N-1}$. Furthermore, the inequality in condition (a) of Theorem 3.1 is equivalent to:

$$
\int_{0}^{2 \pi}\left\langle g_{w}(t)-p(t), u_{w_{j}}(t)\right\rangle d t<0
$$

Hence, if $g_{w}-p$ is not orthogonal to the kernel of $L_{m}$, that is to say

$$
\begin{equation*}
\left(\alpha_{g_{w}}, \beta_{g_{w}}\right) \neq\left(\alpha_{p}, \beta_{p}\right) \tag{3.2}
\end{equation*}
$$

then there exists a vector $w_{j} \in S^{2 N-1}$ such that the previous inequality holds in a neighbourhood of $w$. By compactness, if (3.2) holds for any $w \in S^{2 N-1}$, then condition (a) is satisfied.

In this setting, the previous theorem can be formulated, as in Nirenberg's result, in terms of a condition on the extension of $g$ to the infinite sphere or,
more precisely, in terms of the $m$-th Fourier coefficient of this extension. Indeed, for $w \in S^{2 N-1}$ we have:

$$
\lim _{s \rightarrow \infty} G(s w)=\left(\alpha_{p}-\alpha_{g_{w}}, \beta_{p}-\beta_{g_{w}}\right) \neq 0
$$

and thus the mapping $\theta: S^{2 N-1} \rightarrow S^{2 N-1}$ given by

$$
\theta(w)=\frac{\left(\alpha_{p}-\alpha_{g_{w}}, \beta_{p}-\beta_{g_{w}}\right)}{\left|\left(\alpha_{p}-\alpha_{g_{w}}, \beta_{p}-\beta_{g_{w}}\right)\right|}
$$

is well defined. From the properties of the degree, we obtain:
Corollary 3.3. Assume that the radial limits $g_{v}$ exist uniformly for $v \in$ $S^{N-1}$, and for each $w \in S^{2 N-1}$ define the function $g_{w}(t)$ by (3.1). Further, assume that:
(a) $\left(\alpha_{g_{w}}, \beta_{g_{w}}\right) \neq\left(\alpha_{p}, \beta_{p}\right)$ for any $w \in S^{2 N-1}$.
(b) $\operatorname{deg}(\theta) \neq 0$.

Then (1.1)-(1.2) admits at least one solution.
Remark 3.4. In the particular case $N=1$, if $w=(\alpha, \beta) \in S^{1}$ one has that $u_{w}(t)=\cos (m t-\omega)$, where $\alpha=\cos (\omega)$ and $\beta=\sin (\omega)$. It follows that

$$
g\left(s u_{w}(t)\right) \rightarrow \begin{cases}g(\infty) & \text { if } t \in I_{\omega}^{+} \\ g(-\infty) & \text { if } t \in I_{\omega}^{-}\end{cases}
$$

where $I_{\omega}^{+}=\{t \in[0,2 \pi]: \cos (m t-\omega)>0\}, I_{\omega}^{-}=\{t \in[0,2 \pi]: \cos (m t-\omega)<0\}$. Hence

$$
g_{w}(t)=g(\infty) \chi_{I_{\omega}^{+}}(t)+g(-\infty) \chi_{I_{\omega}^{-}}(t),
$$

except for a finite number of values of $t$. After computation, it follows that

$$
\int_{I_{\omega}^{+}} e^{i m t} d t=e^{i \omega} \int_{I_{\omega}^{+}} e^{i(m t-\omega)} d t=e^{i \omega} \int_{I_{0}^{+}} e^{i m t} d t=e^{i \omega} \int_{-\pi / 2}^{\pi / 2} e^{i t} d t=2 e^{i \omega}
$$

and thus

$$
\begin{aligned}
& \int_{I_{\omega}^{ \pm}} \cos (m t) d t= \pm 2 \cos (\omega)= \pm 2 \alpha \\
& \int_{I_{\omega}^{ \pm}} \sin (m t) d t= \pm 2 \sin (\omega)= \pm 2 \beta
\end{aligned}
$$

Hence

$$
\lim _{s \rightarrow \infty} G(s w)=\left(\alpha_{p}, \beta_{p}\right)-\frac{2}{\pi}[g(\infty)-g(-\infty)](\alpha, \beta)
$$

from which the original result by Lazer and Leach is retrieved.
It is worthy to notice that Corollary 3.3 allows a natural interpretation of Lazer-Leach Theorem in terms of a complex integral. Indeed, from the previous computations it is clear that the degree of the function $\theta: S^{1} \rightarrow S^{1}$ given by
$\lim _{s \rightarrow \infty} G(s w) /|G(s w)|$ is equivalent to the index of the curve $\gamma$ defined over the complex plane by

$$
\gamma(t)=\frac{2}{\pi}[g(\infty)-g(-\infty)] e^{i t}
$$

at the point $z_{0}=\alpha_{p}+i \beta_{p}$. From condition (1.3), it is seen that $\left|z_{0}\right|<|\gamma(t)|$, and hence

$$
I\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{\gamma^{\prime}(t)}{\gamma(t)-z_{0}} d t= \pm 1
$$

## 4. Proof of the main result

From the classical continuation theorems in coincidence degree theory (see e.g. [4]), it suffices to prove that the following conditions are satisfied over some bounded domain $\Omega \subset H$ :
(a) $L_{m} u \neq \lambda(p-g(u))$ for $\lambda \in(0,1]$ and $u \in \partial \Omega$.
(b) $F u \neq 0$ for $u \in \partial \Omega \cap V_{m}$, where $F: V_{m} \rightarrow V_{m}$ is defined by $F u:=$ $\mathcal{P}(p-g(u))$.
(c) $\operatorname{deg}_{B}\left(F, \Omega \cap V_{m}, 0\right) \neq 0$.

We shall verify the previous conditions for $\Omega=B_{R}(0)$, with $R$ large enough. In order to prove that (i) holds for $R \gg 0$, let us suppose that $L_{m}\left(u^{n}\right)=$ $\lambda_{n}\left(p-g\left(u^{n}\right)\right)$ for some $\lambda_{n} \in(0,1]$ and $\left\|u^{n}\right\|_{H} \rightarrow \infty$. From Lemma 2.1, we deduce that

$$
\left\|u^{n}-\mathcal{P} u^{n}\right\| \leq c\left\|p-g\left(u^{n}\right)\right\|_{L^{2}} \leq C
$$

for some constant $C$, whence $\left\|\mathcal{P} u^{n}\right\|_{H} \rightarrow \infty$.
Writing $\mathcal{P} u^{n}=\cos (m t) \alpha^{n}+\sin (m t) \beta^{n}=u_{w^{n}}(t)$, with $w^{n}=\left(\alpha^{n}, \beta^{n}\right) \rightarrow$ $\infty$ in $\mathbb{R}^{2 N}$, and passing to a subsequence if necessary, we may assume that $w^{n} /\left|w^{n}\right| \rightarrow w \in S^{2 N-1}$.

Let $j \in\{1, \ldots, K\}$ be chosen as in condition (i), and let $z^{n}(t):=u^{n}(t) /\left|w^{n}\right|$. Then we may write

$$
z^{n}(t)=\frac{u^{n}(t)-\mathcal{P} u^{n}(t)}{\left|w^{n}\right|}+\frac{\mathcal{P} u^{n}(t)}{\left|w^{n}\right|}
$$

and using the embedding of $H^{1}\left([0,2 \pi], \mathbb{R}^{N}\right)$ into $C\left([0,2 \pi], \mathbb{R}^{N}\right)$ and the continuity of $\mathcal{P}$, we conclude that if $n \rightarrow \infty$, then $z^{n}(t) \rightarrow u_{w}(t)$. From the upper semi-continuity of $\bar{g}_{w, j}$ with respect to $w$, for almost every $t$ we have:

$$
\limsup _{n \rightarrow \infty}\left\langle g\left(u^{n}(t)\right), u_{w_{j}}(t)\right\rangle=\limsup _{n \rightarrow \infty}\left\langle g\left(\left|w^{n}\right| z^{n}(t)\right), u_{w_{j}}(t)\right\rangle \leq \bar{g}_{w, j}(t)
$$

Moreover, as $L_{m}\left(u^{n}\right)=\lambda_{n}\left(p-g\left(u^{n}\right)\right)$,

$$
0=\int_{0}^{2 \pi}\left\langle L_{m}\left(u^{n}\right), u_{w_{j}}\right\rangle=\lambda_{n} \int_{0}^{2 \pi}\left\langle p-g\left(u^{n}\right), u_{w_{j}}\right\rangle
$$

This implies that

$$
\pi\left(\left\langle\alpha_{p}, \alpha^{j}\right\rangle+\left\langle\beta_{p}, \beta^{j}\right\rangle\right)=\limsup _{n \rightarrow \infty} \int_{0}^{2 \pi}\left\langle g\left(u^{n}\right), u_{w_{j}}\right\rangle \leq \int_{0}^{2 \pi} \bar{g}_{w, j}
$$

a contradiction.
On the other hand, if $F u^{n}=0$ for $u^{n} \in V_{m}$ such that $\left\|u^{n}\right\|_{H} \rightarrow \infty$, then $u^{n}=u_{w^{n}} \in V_{m}$, with $w^{n} \rightarrow \infty$ in $\mathbb{R}^{2 N}$. Using the fact that $\mathcal{P}\left(p-g\left(u^{n}\right)\right)=0$, a contradiction yields as before. Thus, (b) is proved.

Finally, for $u=u_{w}$ with $w \in \mathbb{R}^{2 N}$ we have:

$$
J^{-1} F J(w)=\left(\alpha_{p}, \beta_{p}\right)-J^{-1} \mathcal{P}\left(g\left(u_{w}\right)\right)=G(w) .
$$

Hence, the degree of $F$ at 0 over $\Omega \cap V_{m}$ can be identified with the Brouwer degree of $G$ at 0 over a large ball of $\mathbb{R}^{2 N}$. In consequence, condition (c) follows from assumption (ii), and the proof is complete.

## 5. An example: a weakly coupled system

As an application of Theorem 3.1, consider the system

$$
u_{i}^{\prime \prime}+m^{2} u_{i}+\widetilde{g}_{i}\left(u_{i}\right)+h_{i}(u)=p_{i}(t), \quad i=1, \ldots, N
$$

where $\widetilde{g}_{i}$ has limits at infinity, and $h_{i}(u) \rightarrow 0$ uniformly as $\left|u_{i}\right| \rightarrow \infty$. We remark that, in this case, radial limits of $g=\widetilde{g}+h$ do not necessarily exist for those $v \in S^{N-1}$ such that $v_{i}=0$ for some $i$, since $h_{i}(s v)$ does not necessarily converge as $s \rightarrow \infty$.

However, condition (G1) is satisfied: for $w=(\alpha, \beta) \in S^{2 N-1}$, fix $i$ such that the $i$-th coordinate of $\alpha$ or $\beta$ is different from 0 . Then taking $z \in S^{2 N-1} \cap$ $\operatorname{span}\left\{e_{i}, e_{N+i}\right\}$, where $e_{k}$ is the $k$-th canonical vector of $\mathbb{R}^{N}$, it follows that

$$
\left\langle g\left(s u_{w}(t)\right), u_{z}(t)\right\rangle=\cos (m t-\omega)\left[\widetilde{g}_{i}\left(s u_{i}(t)\right)+h_{i}\left(s u_{w}(t)\right)\right],
$$

with $u_{i}=\alpha_{i} \cos (m t)+\beta_{i} \sin (m t)=\rho_{i} \cos \left(m t-\omega_{i}\right)$ for some $\rho_{i}>0$, and some $\omega, \omega_{i} \in[0,2 \pi)$. As in Remark 3.4,

$$
\widetilde{g}_{i}\left(s u_{i}(t)\right) \rightarrow \widetilde{g}_{i}(\infty) \chi_{I_{\omega_{i}}^{+}}(t)+\widetilde{g}_{i}(-\infty) \chi_{I_{\omega_{i}}^{-}}(t) \quad \text { a.e. in } t
$$

as $s \rightarrow \infty$, and as $h_{i}\left(s u_{w}(t)\right) \rightarrow 0$ for almost every $t$, it is easy to see that condition (G1) holds, as well as condition (a) in Theorem 3.1.

Furthermore, if $w=(\alpha, \beta)$ satisfies as before that $\alpha_{i} \neq 0$ or $\beta_{i} \neq 0$, then

$$
G_{i}(s w) \rightarrow\left(\alpha_{p}\right)_{i}-\frac{2}{\pi}\left[\widetilde{g}_{i}(\infty)-\widetilde{g}_{i}(-\infty)\right] \alpha_{i}
$$

and

$$
G_{N+i}(s w) \rightarrow\left(\beta_{p}\right)_{i}-\frac{2}{\pi}\left[\widetilde{g}_{i}(\infty)-\widetilde{g}_{i}(-\infty)\right] \beta_{i}
$$

as $s \rightarrow \infty$. Thus, if we define the mapping $T: \mathbb{R}^{2 N} \rightarrow \mathbb{R}^{2 N}$ given by

$$
T(w):=\left(\alpha_{p}, \beta_{p}\right)-\frac{2}{\pi} \sum_{i=1}^{N}\left[\widetilde{g}_{i}(\infty)-\widetilde{g}_{i}(-\infty)\right]\left(\alpha_{i} e_{i}+\beta_{i} e_{N+i}\right)
$$

it follows that under the assumption

$$
\sqrt{\left(\alpha_{p}\right)_{i}^{2}+\left(\beta_{p}\right)_{i}^{2}}<\frac{2}{\pi}\left|\widetilde{g}_{i}(\infty)-\widetilde{g}_{i}(-\infty)\right| \quad \text { for } i=1, \ldots, N
$$

the homotopy $h(\lambda, w)=\lambda G(w)+(1-\lambda) T(w)$ does not vanish on $\partial B_{R}$ for $R \gg 0$. From the product property of the degree,

$$
\operatorname{deg}_{B}\left(G, B_{R}, 0\right)=\operatorname{deg}_{B}\left(T, B_{R}, 0\right)= \pm 1
$$

Thus, condition (b) in Theorem 3.1 is satisfied.
Acknowledgements. The authors would like to thank the anonymous referee for her/his valuable comments.

## References

[1] P. Amster and P. De Nápoli, Landesman-Lazer type conditions for a system of p-Laplacian like operators, J. Math. Anal. and Appl. 326 (2007), 1236-1243.
[2] E. Landesman and A. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.
[3] A. Lazer and D. Leach, Bounded perturbations of forced harmonic oscillators at resonance, Ann. Mat. Pura Appl. 82 (1969), 49-68.
[4] J. Mawhin, Topological degree methods in nonlinear boundary value problems, NSFCBMS Regional Conference in Mathematics, vol. 40, Amer. Math. Soc., Providence, R. I., 1979.
[5] , Landesman-Lazer conditions for boundary value problems: A nonlinear version of resonance, Bol. de la Sociedad Española de Mat. Aplicada 16 (2000), 45-65.
[6] L. Nirenberg, Generalized Degree and Nonlinear Problems Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press New York, 1971, pp. 1-9.
[7] R. Ortega and L. Sánchez, Periodic solutions of forced oscillators with several degrees of freedom, Bull. London Math. Soc. 34 (2002), 308-318.


[^0]:    2000 Mathematics Subject Classification. 34B15.
    Key words and phrases. Resonant systems, Lazer-Leach conditions, topological degree.

