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ON THE COHOMOLOGY OF AN ISOLATING BLOCK
AND ITS INVARIANT PART

Anna Gierzkiewicz — Klaudiusz Wójcik

Abstract. We give a sufficient condition for the existence of an isolating
block B for an isolated invariant set S such that the inclusion induced
map in cohomology H∗(B) → H∗(S) is an isomorphism. We discuss the
Easton’s result concerning the special case of flows on a 3-manifold. We
prove that if S is an isolated invariant set for a flow on a 3-manifold and
S is of finite type, then each isolating neighbourhood of S contains an
isolating block B such that B and B− are manifolds with boundary and
the inclusion induced map in cohomology is an isomorphism.

1. Introduction

Let us consider a continuous flow ϕ on a locally compact metric space X
with an isolated invariant set S. Assume that H∗(S) is of finite type, where H∗

is the Aleksander-Spanier cohomology functor. We will discuss the problem of
the existence of an isolating block B for S such that the inclusion induced map
H∗(B) → H∗(S) is an isomorphism. Our main result (Theorem 3.1) gives a
partial answer to this question.
In the case of a flow on n-dimensional topological manifoldM and a station-

ary point S ⊂ M being the isolated invariant set, the natural question is if S
has an isolating block that is homeomorphic to the n-dimensional compact ball
Dn = {x ∈ Rn : ‖x‖ ≤ 1}. This problem was first studied by Easton (see [9])
for flows in dimension 3. The main result of the paper of Easton (Theorem 1
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in [9]) says that if ϕ is a smooth flow on R3 and an isolated invariant set S
is respectively a torus, a simple closed curve or a point, then there exists an
isolating block B for S which is respectively homeomorphic to S × D1, S × D2,
S × D3 (where Dk is the unit disk in Rk). Unfortunately, it seems that there is
an essential gap in the proof of the above result presented in [9]. In this note
we would like to point out the mistakes in the proof of Easton. We adapt the
idea given in [9] to present the positive solution for the question in dimension 3.
On the other hand, one can use Bing’s example of the dog-bone space X that is
not locally homeomorphic to R3 but X × R is homeomorphic to R4 (see [1]), to
show that the answer in dimension 4 is negative.
We will mention that the similar problems can be posed also in the case of

discrete Conley index theory. It was proved in [17] that a fixed point of the
planar homeomorphism being an isolated invariant set has an isolating block (in
the sense of discrete Conley index theory, see [14]) homeomorphic to a compact
ball.
First, we very briefly recall known facts concerning the isolating blocks. The

Conley index theory is based on the following

Theorem 1.1. An invariant set S is isolated if and only if there exists an
isolating block B such that S = invB. Moreover, each isolating neighbourhood
N of S contains such a block.

This result was first proved in the case of a smooth flow ϕ (i.e. of C∞-class)
on a smooth manifold (see [8], [24]). In the smooth case one can prove that
an isolating block B can be chosen as a smooth submanifold with corners such
that B− and B+ are smooth submanifolds with boundary. The proof in the
purely topological case (i.e. a continuous flow on locally compact metric space)
was given in [5]. In more general context of semiflows on arbitrary metric spaces
the existence of an isolating block for those invariant sets which admits strongly
ϕ-admissible isolating neighbourhood was given by Rybakowski in [19].
In the context of a flow on a locally compact, metric ENR (euclidean neigh-

bourhood retract) the natural question that arises is the existence of an isolating
block B such that B and the exit set B− are both ENRs. In general the answer
to this question is negative. Borsuk in [2] constructed the example of a com-
pact ENR X ⊂ R3 such that each proper 2-dimensional subset of X is not an
ENR. One can use it to construct a simple counterexample to the above ques-
tion. Another counterexample was presented in [18]. In the case of flows on Rn

this question is, at present, far from being solved for n ≥ 4. Some affirmative
answers for flows on topological manifolds can be summarized in the following

Theorem 1.2. Let ϕ be a continuous flow on a topological n-manifold. If
n = 2 or 3 then in each isolating neighbourhood of an isolated invariant set S
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there exists an isolating block B such that B is an ENR and B− is a n − 1-
dimensional manifold with boundary.

The case n = 2 was given by Srzednicki in [21]. Later the result was extended
to the case of flows on 3-dimensional manifolds in [18]. Since Rucha�la’s thesis
are available in Polish, so for the convenience of the reader we present the idea
of his proof in the Appendix.

2. Isolating blocks and the Conley index

Let X be a locally compact metric space. A flow on X is a continuous map
φ:R×X → X such that

φ(0, x) = x, x ∈ X(2.1)

φ(s+ t, x) = φ(t, φ(s, x)), s, t ∈ R, x ∈ X.(2.2)

In the sequel we frequently use the following notation: we write φt(x) instead of
φ(x, t) and if W ⊂ X and J ⊂ R then we write φ(J,W ) instead of φ(J ×W ).
The sets

φ(x): = φ(R, x), φ+(x): = φ([0,∞), x), φ−(x): = φ((−∞, 0], x),
are called, respectively, the trajectory, the positive semitrajectory and the nega-
tive semitrajectory of x. For x ∈ W ⊂ X , by φ(x,W ) we denote the component
of φ(x) ∩W which contains x. This is the orbit segment of x in W . Similarly,
φ±(x,W ) are those components of φ±(x)∩W which contain x. If D ⊂W , then

φ(D,W ) :=
⋃

x∈D
φ(x,W ).

The sets

ω(x) :=
⋂

t≥0
φ([t,∞), x) and α(x) :=

⋂

t≤0
φ((−∞, t], x)

are called, respectively, the ω-limit set and the α-limit set of x. A set W ⊂ X is
called invariant if φ(R,W ) =W .
For W ⊂ X we define the sets

Inv±(W ) := {x ∈ W : φ±(x) ⊂W},
Inv(W ) := Inv−(W ) ∩ Inv+(W ),
W− = {x ∈ W : for all t > 0 there exists s ∈ [0, t] such that φs(x) /∈ W},
W+ = {x ∈ W : for all t < 0 there exists s ∈ [−t, 0] such that φs(x) /∈W},

and functions σ±:W → [0,∞] by
σ+(x) = sup{t ≥ 0 : φ([0, t], x) ⊂W},
σ−(x) = sup{t ≥ 0 : φ([−t, 0], x) ⊂W}.
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The sets Inv±(W ) are called, respectively, the positive invariant part and the
negative invariant part of W , and Inv(W ) is the invariant part of W . Moreover,
W− is called the exit set and W+ is the entrance set of W . The function
σ+ is called the escape-time function of W . It follows by the Wa.zewski Retract
Theorem that ifW andW− are compact then σ+ is continuous (see [6], [15], [22]).
An invariant set S is isolated if there exists a compact neighbourhood N of

S such that

• S = inv(N),
• S ⊂ intN .

Such N is called an isolating neighbourhood for S. We also say that N isolates S.
In particular, if x ∈ ∂N then φ(x) 	⊂ N .
The Conley index theory is based on the existence of some special isolating

neighbourhoods for an isolated invariant set S called isolating blocks. In order to
define an isolating block we need some auxiliary notions. For Σ ⊂ X and δ > 0,
we define a map φδ: (−δ, δ)× Σ→ X by

φδ(t, x) = φ(t, x).

If φδ is a homeomorphism onto its image, then φ((−δ, δ),Σ) is a collar of Σ (with
respect to φ). In this case, Σ is a strong deformation retract of φ((−δ, δ),Σ). If
φδ is a homeomorphism with open range, then Σ is a local section (w.r.t. φ).
Let B ⊂ X be a compact set, and let Σ± be local sections with disjoint

closures i.e. such that

Σ+ ∩Σ− = ∅.
Let δ > 0 be such that

φ((−δ, δ),Σ+), φ((−δ, δ),Σ−)

are disjoint collars of Σ+, Σ−.

Definition 2.1. We call B an isolating block if

(a) (Σ± \ Σ±) ∩B = ∅,
(b) φ((−δ, δ),Σ+) ∩B = φ([0, δ),Σ+ ∩B)
(c) φ((−δ, δ),Σ−) ∩B = φ((−δ, 0],Σ− ∩B)
(d) for each x ∈ ∂B \ (Σ+ ∪Σ−) there exist real numbers ε1 < 0 < ε2, such
that

φ(ε1, x) ∈ Σ+, φ(ε2, x) ∈ Σ−, φ([ε1, ε2], x) ⊂ ∂B.

Let B be an isolating block. It follows that

B− = Σ− ∩B, B+ = Σ+ ∩B,
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and S = Inv(B) is an isolated invariant set. We put

A = Inv+(B) ∪ Inv−(B), a± = Inv±(B) ∩B±.
It follows that a± ⊂ int∂ B(B±) (see [6], [5]).
We will finish this section with the well-known results concerning the co-

homology of an isolated invariant set S. Let H∗ be the Alexander–Spanier (or
Čech) cohomology functor. The cohomology Conley index CH(S) of S is defined
by

CH(S) = H∗(B,B−),

where B is an isolating block for S. One can check that CH(S) is independent
(up to an isomorphism) on the choice of an isolating block B for S (see [5]).
Consider the following commutative diagram of homomorphisms of Q-vector

spaces with exact rows. Let gi (for i = 1, . . . , 5) denotes a vertical homomor-
phism Ai → Bi.

A1 ��

��

A2 ��

��

A3 ��

��

A4 ��

��

A5

��

B1 �� B2 �� B3 �� B4 �� B5

In the sequel we will use the following version of “Five Lemma” (see [20]).

Lemma 2.2. If g2, g4 are monomorphisms and g1 is an epimorphism, then
g3 is a monomorphism. If g2, g4 are epimorphisms and g5 is a monomorphism,
then g3 is an epimorphism.

The following results are due to Churchill (see Propositions 4.6 and Lem-
ma 4.3 in [5] or Propositions 7.2, 7.3 in [22]).

Proposition 2.3. The inclusion (A, a−) ↪→ (B,B−) induces an isomor-
phism H∗(B,B−)→ H∗(A, a−).

Proposition 2.4. The inclusion S ↪→ A induces an isomorphism H∗(A)→
H∗(S).

The proofs of the above results are based on the continuity of the Čech
cohomology.

3. Main result

The aim of this section is to discuss the existence of an isolating block for
an isolated invariant set S with the same cohomology type. Let us begin with a
remark concerning the simplest case when B is an isolating block for S such that
B− = ∅ (or B+ = ∅). Then S is an asymptotically stable set and by Theorem 7.2
in [22] the inclusion S ↪→ B induces an isomorphism H∗(B)→ H∗(S). Actually,
one can prove that S ↪→ B is a shape equivalence (see [22]).
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Remark 3.1. If the origin {0} is an isolated invariant set for the continuous
flow on R2, then there exists an isolating block for {0} homeomorphic to a disc.
Indeed, by Theorem 1.2 there exists an isolating B for {0} such that B is a
topological manifold with boundary and B− is its submanifold with boundary.
Without loss of generality we can assume that B is a closed ball D2 of radius 1
centered at the origin with removed a finite union of open, small discs Ki such
that Ki ∩Kj = ∅ and {0} /∈

⋃n
i=1Ki. Moreover, we can assume that there is no

isolating blocks for {0} of this form with the smaller number of Ki. Let x ∈ ∂Ki
for some i = 1, . . . , n. Suppose that σ+(x) <∞ and φ(σ+(x), x) ∈ S1. Then we
can remove from B the part of the trajectory φ([0, σ+(x)], x) of x together with
the small neighbourhood and we get an isolating block with a smaller number
of holes. So if x ∈ ∂Ki and σ+(x) < ∞ then φ(σ+(x), x) /∈ S1. By reversing of
time we get that if σ−(x) <∞ then φ(−σ−(x), x) /∈ S1. It is easy to check that
D2 is an isolating block and if S = invD2 then

(3.1)
n⋃

i=1

Ki ⊂ S.

In particular intS 	= ∅. It follows by (3.1) that ∂S ⊂ B. Since ∂S is invariant,
nonempty and different from {0}, we get a contradiction.

Lemma 3.2. If B is an isolating block for S, then

(a) H∗(B) → H∗(S) is an isomorphism if and only if H∗(B−) → H∗(a−)
is an isomorphism,

(b) if CHq(S) = 0 and Hq(B−) → Hq(a−) is a monomorphism, then
Hq(B)→ Hq(S) is also a monomorphism,

where all homomorphisms are induced by inclusions.

Proof. Since the inclusion S ↪→ B factors to S ↪→ A ↪→ B, so it follows by
Proposition 2.4 that H∗(B) → H∗(S) is a monomorphism (an isomorphism) if
and only if H∗(B)→ H∗(A) is a monomorphism (an isomorphism).
Consider the following commutative diagram (all homomorphisms are in-

duced by inclusions)

· · · �� Hq(B,B−) ��

��

Hq(B) ��

��

Hq(B−) ��

��

Hq+1(B,B−) ��

��

· · ·

· · · �� Hq(A, a−) �� Hq(A) �� Hq(a−) �� Hq+1(A, a−) �� · · ·

The rows are the long exact sequences for the pairs (A, a−) (bottom row) and
(B,B−) (top row). The part (a) follows by the Five Lemma, Propositions 2.3
and 2.4.
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For the proof of (b) it is sufficient to consider the following part of the above
diagram

0 = Hq(B,B−) �� Hq(B) ��

��

Hq(B−)

��

Hq(A) �� Hq(a−)

Indeed, since the composition Hq(B)→ Hq(A)→ Hq(a−) is a monomorphism,
so Hq(B) → Hq(A) is a monomorphism and consequently, Hq(B) → Hq(S) is
a monomorphism by Proposition 2.4. �

Lemma 3.3. If B is an isolating block for S such that H∗(B)→ H∗(S) is a
monomorphism, then H∗(B−)→ H∗(a−) is a monomorphism.

Proof. It follows directly by the commutative diagram in the proof of
Lemma 3.2 and the Five Lemma. �

Definition 3.4. Let B be an isolating block for a flow on a locally com-
pact metric space X . We say that a± is co-stable in B± if there exists a com-
pact neighbourhood Y ⊂ int∂B (B±) of a± such that the inclusion induced map
H∗(Y )→ H∗(a±) is an isomorphism.

Example 3.5. Let S = {z = (0, x) ∈ R2 : x = 1/n ∨ x = 0}. There is a
continuous function g:R2 → [0,∞) such that

S = {z ∈ R2 : g(z) = 0}.
Let φ be a flow generated by the equation

(3.2) z′ = g(z)e1 = g(z)(1, 0).

In particular, the set S consists of stationary points of (3.2). Observe that
the set of bounded trajectories of (3.2) is equal to S, so S is an isolated invariant
set. One can check that B = [−1, 1]× [−2, 2] is an isolating block for S with the
exit and entrance sets given by B∓ = {±1}× [−2, 2]. Moreover, a∓ = {(±1, x) :
(0, x) ∈ K}.
Since the sets a± have infinitely many connected components, hence H0(a±)

are of infinite dimensions, so one can check that they are not co-stable in B±.
On the other hand, if B± are manifolds with boundaries and a± are finite

sets, then a± are co-stable in B± (compare the example given in Figure 1).

Theorem 3.6. If B is an isolating block for S and a− is co-stable in B−,
then there is an isolating block W ⊂ B for S such that the inclusion induced map
H∗(W )→ H∗(S) is an isomorphism. Moreover, a+ is also co-stable in B+.

Proof. There exists a neighbourhood Y ⊂ intB− of a− such that the in-
clusion induced map

H∗(Y )→ H∗(a−)
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is an isomorphism. Let D = B− \ Y . We define W = B \ φ(D,B), and say
that W is obtained from B by shaving D. It follows by Proposition 3.11 in [15]
that W is an isolating block for S and W− = Y . By Lemma 3.2 we get that
H∗(W )→ H∗(S) is an isomorphism.
It follows that a+ ⊂ W+ ⊂ int (B+) and H∗(W ) → H∗(S) is an isomor-

phism, so again by Lemma 3.2, H∗(W+) → H∗(a+) is an isomorphism, hence
a+ is co-stable in B+. �

4. Blocks in 3D — Easton’s result

In this section we present some results concerning flows near an isolated
invariant set in dimension 3. The main result in [9] is the following

Theorem 4.1 ([E, Theorem 1]). Let V be a C1 vector field on an orientable
smooth 3-manifold which generates a flow ϕ and suppose that S is an isolated
invariant set of ϕ. Then there exists an isolating block B for S such that the
homomorphism H∗(B)→ H∗(S) induced by the inclusion is injective.
Let us mention that in Easton’s paper the isolating blocks without sliding on

the boundary (i.e. ∂B = B− ∪B+), were considered. The proof presented in [9]
consists of the following two steps:

(1) there exists an isolating block for S such that

H∗(B−)→ H∗(a−)

is a monomorphism,
(2) if B is an isolating block such that H∗(B−) → H∗(a−) is a monomor-
phism, then H∗(B)→ H∗(S) is also a monomorphism.

The proof of the first step is correct and is based on the following lemma (see
[9] or [12])

Lemma 4.2. Let M be a compact, connected, orientable 2-manifold with
boundary and let C be a closed subset of the interior of M . Then given any
neighbourhood U of C in M , there exists a compact manifold with boundary N
such that C ⊂ N ⊂ U and such that H∗(N) → H∗(C) is an injection. If, in
addition, H∗(C) is finitely generated, then N can be chosen so that H∗(N) →
H∗(C) is an isomorphism.

Let us observe that by our Lemma 3.3 the injectivity of H∗(B−)→ H∗(a−)
is a necessary condition forH∗(B)→ H∗(S) to be a monomorphism, but it is not
a sufficient condition. The simple example of the planar flow given in Figure 1
shows that the second step is false. To obtain the example in dimension 3 one
can add one stable direction at the stationary point.
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Figure 1. The annulus B is an isolating block for the stationary point
S. Since B− is contractible and a− consists of two points, so H∗(B−) →
H∗(a−) is a monomorphism, however H∗(B) → H∗(S) has a non-trivial
kernel.

The Easton’s proof of the step (2) is based on the existence of the following
exact sequence in homology

· · · −→ Hn(B− \ a−, τ) −→ Hn(B, ∂B) −→ Hn(B,B \ S) −→ · · ·
where τ = B+ ∩ B−, the last arrow is a homomorphism of degree −1 and the
other are induced by inclusions (see the sequence (B) in [9, p. 335]). One can
check that for the flow in Figure 1 we get

H1(B− \ a−, τ) ∼= H1(B,B \ S) = 0, H1(B, ∂B) ∼= Z

which contradicts the exactness of the above sequence. �

The main result of this section is the following theorem obtained by a mod-
ification of Easton’s arguments.

Theorem 4.3. If S is an isolated invariant set for a flow on a 3-manifold
and H∗(S) is finitely generated, then in each isolating neighbourhood N of S
there exists an isolating block B for S such that B is a topological 3-manifold
with boundary and H∗(B)→ H∗(S) is an isomorphism. In particular, S has the
cohomology type of a compact manifold.

Proof. By Theorem 1.2 there exists an isolating block W ⊂ N for S such
thatW is an ENR andW− is a 2-dimensional manifold with boundary. It follows
that CH(S) is finitely generated, so by Propositions 2.3 and 2.4 and the long
exact sequence of the pair (A, a−) we get that H∗(a−) is also finitely generated.



322 A. Gierzkiewicz — K. Wójcik

By Lemma 4.2, set a− is co-stable in W−, hence by Theorem 3.6, for each open
neighbourhood U of a− in W− there exists an isolating block B ⊂W for S such
that a− ⊂ B− ⊂ U and H∗(B)→ H∗(S) is an isomorphism. Moreover, the sets
B± are 2-manifolds. One can easily check that then ∂B is also a 2-manifold and
B is a 3-manifold with boundary. �

Corollary 4.4. If the origin S = {0} is an isolated invariant set for the
continuous flow on R3 then there exists an isolating block B for S being a 3-
dimensional homological ball.

5. Contractibility of B± in ∂B

Lemma 5.1. If B is an isolating block such that for some p, q ≥ 1 the inclu-
sion induced maps

Hp(∂B)→ Hp(B+), Hq(∂B)→ Hq(B−)
are trivial (for example B± are contractible in ∂B), then the cup product

∪:Hp(∂B)⊕Hq(∂B)→ Hp+q(∂B)
is trivial.

Proof. By the exactness of the sequence of the pair (B,B+)

· · · −→ Hp(∂B,B+) −→ Hp(∂B) −→ Hp(B+) −→ · · ·
the homomorphismHp(∂B,B+)→ Hp(∂B) is an epimorphism. In the same way
Hq(∂B,B−) → Hq(∂B) is an epimorphism. Since B± is a strong deformation
retract of ∂B \B∓, so the homomorphisms

Hp(∂B, ∂B \B−)→ Hp(∂B), Hq(∂B, ∂B \B+)→ Hq(∂B)
are epimorphisms. Consider a commutative diagram

∪:Hp(∂B, ∂B\B−)⊕Hq(∂B, ∂B\B+) ��

��

Hp+q(∂B, (∂B\B−)∪(∂B\B+))=0

��

∪:Hp(∂B)⊕Hq(∂B) �� Hp+q(∂B)

Since the first vertical arrow is an epimorphism, so the cup-product in the bottom
row has to be trivial. �

Example 5.2. If S ⊂ R3 is a periodic orbit which is an isolated invariant
set, then there is an isolating block B for S homeomorphic to the solid torus
S1 × D2. Since the cup-product

∪:H1(∂B)⊕H1(∂B)→ H2(∂B)
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is non-trivial, so eitherH1(∂B)→ H1(B+) orH1(∂B)→ H1(B−) is non-trivial.
Observe that if H1(∂B) → H1(B±) is non-trivial, then H1(∂B) → H1(a±) is
non-trivial. In particular, a+ or a− is not contractible in ∂B.

Lemma 5.3. If B+ is contractible in ∂B, then for p ≥ 1 and q ∈ Z the cup
product

∪:Hq(∂B,B−)⊕Hq(∂B)→ Hp+q(∂B,B−)
is trivial.

Proof. Since for p ≥ 1, homomorphism Hp(∂B) → Hp(B+) is an epimor-
phism and B+ is a strong deformation retract of ∂B \B−, so

Hp(∂B, ∂B \B−)→ Hp(∂B)
is an epimorphism, so the result follows by the commutativity of the diagram

∪:Hp(∂B,B−)⊕Hq(∂B, ∂B \B−) ��

��

Hp+q(∂B, ∂B) = 0

��

∪:Hp(∂B,B−)⊕Hq(∂B) �� Hp+q(∂B,B−)

�
Let B ⊂ Rn+1 be an isolating block and let B be a n + 1-manifold with

boundary. Observe that B+ is a strong deformation retract of ∂B \ B− (in
particular B+ is an ENR). Then by duality

Hi(∂B,B−) ∼= Hn−i(∂B \B−) ∼= Hn−i(B+).
Lemma 5.4. Assume that B+ is contractible in ∂B. If Hi(B+) 	= 0 for some

i ≥ 1, then Hn−i−1(B−) 	= 0.
Proof. Since B+ is contractible in ∂B, so Hi(B+)→ Hi(∂B) is trivial. By

the long exact sequence

· · · −→ Hi+1(∂B,B+) −→ Hi(B+)→ Hi(∂B) −→ · · ·
of the pair (∂B,B+) we get that

Hi+1(∂B,B+)→ Hi(B+)
is an epimorphism. In particular, Hi+1(∂B,B+) 	= 0. Since

Hi+1(∂B,B+) ∼= Hi+1(∂B, ∂B \B−),
and by duality

Hi+1(∂B, ∂B \B−) ∼= Hn−i−1(B−),
so

Hi+1(∂B,B+) ∼= Hn−i−1(B−). �



324 A. Gierzkiewicz — K. Wójcik

Corollary 5.5. If B+ is contractible in ∂B, then for i ≥ 1,

dimHn−i−1(B−) = dimHi(B+) + dimHi+1(∂B).

Proof. If i ≥ 1 then Hi(∂B) → Hi(B+) and Hi+1(∂B) → Hi+1(B+) are
trivial, so by the long exact sequence of the pair (∂B,B+) we get the following
exact sequence

0→ Hi(B+) −→ Hi+1(∂B,B+) −→ Hi+1(∂B) −→ 0,

hence

dimHi+1(∂B,B+) = dimHi(B+) + dimHi+1(∂B).

By duality,

dimHn−i−1(∂B \B+) = dimHn−i−1(B−) = dimHi(B+) + dimHi+1(∂B). �

6. Appendix. Rucha�la’s proof of Theorem 1.2

In this section we present the Rucha�la’s proof of Theorem 1.2 (see [18]).

The idea of Rucha�la’s proof of Theorem 1.2. Let N be an isolating
neighbourhood of an isolated invariant set S for a flow ϕ on 2 (respectively 3)
dimensional manifold. By Theorem 1.1 there exists an isolating block B ⊂ N for
S. First we show that dimΣ− = 1 (respectively, 2). We can assume that Σ− is
a separable metric space. We will use the following result: if A, B are compact
metric spaces and dimA = 1, then (see [10])

dim (A×B) = dimA+ dimB.

Let x ∈ Σ−. There are compact neighbourhoods, P of x in Σ− and J of 0
in R such that J × P is homeomorphic to ϕ(J × P ). As ϕ(J × P ) contains a
neighbourhood of x homeomorphic to R2 (respectively R3) and dim J = 1, so
dimP = 1 (resp. 2). It follows by Theorem 3 (or Theorem 13) in [3] that Σ− as
a topological divisor of Rn of dimension less or equal to 2, is a 1 (respectively, 2)
dimensional manifold.
Since B− ⊂ Σ− is compact, there exists a finite number of connected com-

ponents of ϕ((−ε, ε)× Σ−) that cover B−.
Let n = 2. From [11] we know, that a separable connected space locally

homeomorphic to R is homeomorphic to R or S1, so we can take a neighbourhood
W of B− in Σ− consisting of closed intervals or circles, small enough that

(∗) for all x ∈W \B−there exists tx > 0 such that
ϕ(tx, x) ∈ Σ+, ϕ((0, tx), x) ∩ Σ+ = ∅.
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The proof is finished by taking the new block

C = B ∪
⋃

x∈W\B−
ϕ([0, tx], x)

with C− =W .
Let n = 3. It follows from [16] that Σ− has a triangulation. By a barycentric

subdivision of some triangulation of Σ−, we choose a finite number of triangles
(closed) such that B− is contained in the union W of them. We can assume that
the condition (∗) holds. If a point w ∈W is not in the interior of some triangle,
then it has to be on the edge. If w is not a vertex then it has a neighbourhood
homeomorphic to a plane or a half-plane. Assume that w is a vertex. If w
separates a neighbourhood in W , then one can choose a point (not a vertex)
on each edge with a vertex w, remove triangles with vertices in these points
and w and obtain a neighbourhood of B− with the number of such a vertices w
reduced by 1. After a finite number of steps we are able to remove all vertices
that separate neighbourhood in W . If w does not separate a neighbourhood in
W , then it is easy to check that w has a neighbourhood homeomorphic to a
plane or a half-plane. We finish the proof by taking a block C like in the case
n = 2. �
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101–121.

[17] F. R. Ruiz del Portal and J. M. Salazar, Fixed point index of iterations of local
homeomorphisms of the plane: a Conley index approach, Topology 41 (2002), 1199–1212.

[18] L. Rucha�la, O blokach izolujących będących ENR-ami, thesis (2000), Jagiellonian Uni-
versity, Kraków.

[19] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer–
Verlag, Berlin–Heidelberg, 1987.

[20] E. H. Spanier, Algebraic Topology, McGraw–Hill, New York–Toronto–London, 1966.

[21] R. Srzednicki, On rest points of dynamical systems, Fund. Math. 126 (1985), 69–81.

[22] , Wa.zewski method and the Conley index, Handbook of Differential Equations
(A. Canada, P. Drabek and A. Fonda, eds.), vol. 1, Elsevier, 2004, pp. 591–684.

[23] T. Ważewski, Sur un principe topologique pour l’examen de l’allure asymptotique des
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