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LOCAL MILD SOLUTIONS
AND IMPULSIVE MILD SOLUTIONS

FOR SEMILINEAR CAUCHY PROBLEMS
INVOLVING LOWER SCORZA–DRAGONI MULTIFUNCTIONS

Tiziana Cardinali — Francesco Portigiani — Paola Rubbioni

Abstract. In this note we investigate in Banach spaces the existence of

mild solutions for initial problems, also in presence of impulses, governed

by semilinear differential inclusions where the non-linear part is a Scorza–
Dragoni multifunction. All the results are obtained via a generalization of

Artstein–Prikry selection theorem that we obtain in the first part of the

paper.

1. Introduction

In the last years the study of the existence of local and global mild solutions
for Cauchy problems involving semilinear differential inclusions has been exten-
sively developed. In the literature we first encounter semilinear differential in-
clusions where the linear part is given by an operator generating a C0-semigroup
(see the monograph [12]). Later the linear part is given by a family of operators
generating an evolution system (see e.g. [2], [5], [15], [16]). Such research is ap-
plied in various fields, like engineering and physics (see e.g. [12] and examples
therein). Moreover, we point out that the study of the existence of global solu-
tions is of special importance since it permits to provide solutions in presence of
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impulses too. We recall that impulsive problems find wide applicability in the
modellization of many real phenomena. About impulsive problems we refer to
[6], [7] and [10].

In this paper we first obtain the existence of local mild solutions for semilinear
differential inclusions of the type x′ ∈ A(t)x + F (t, x), for t ∈ [0, b], where
{A(t)}t∈[0,b] is a family of linear operators in a Banach space E and F : [0, b]×E →
P(E) is a lower Scorza–Dragoni multifunction.

Our results extend in a broad sense the analogous ones in [3] even in the
setting of multifunctions which take values on Pfc(E), as shown by Remark 3.9.

In the second part, we continue the study of the above semilinear differential
inclusion and we achieve both the existence of global mild solutions and the
existence of mild solutions in the impulsive case. In Remark 4.5 we compare
these results with the ones in [4].

According to the aim of obtaining our existence results we provide, in a pre-
liminary way, a new Carathèodory selection theorem for lower Scorza–Dragoni
multifunctions in abstract spaces (see Theorem 3.1). We recall that from pa-
per [8] an important number of works has been devoted to the existence of such
selections. From the others we mention the paper [1], where the authors furnish
an interesting answer to the open problem posed in [13] (cf. [1, Theorem 3.2]).

Our selection theorem is a generalization to a larger class of multifunctions
of the mentioned result proved in [1] (see Remark 3.2).

2. Preliminaries

Let (Y, T ) be a topological space or a linear topological space.
We will use the following notations:

P(Y ) = {H ⊂ Y : H 6= ∅};
Pc(Y ) = {H ∈ P(Y ) : H convex};
Pf (Y ) = {H ∈ P(Y ) : H closed};
Pk(Y ) = {H ∈ P(Y ) : H compact};
Pfc(Y ) = Pf (Y ) ∩ Pc(Y ); etc.

Moreover, it will be useful to consider the following family introduced by Michael
in [14]

(2.1) D(Y ) = {H ∈ Pc(Y ) : H ⊃ I(H)}

where I(H) = {x ∈ H : x /∈ S, S supporting set for H} and a supporting set for
H is a proper closed and convex subset S of the closed and convex set H which
satisfies the property:
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• for every segment [x1, x2] ⊂ H such that ]x1, x2[∩S 6= ∅, then the whole
segment [x1, x2] is contained in S.

For this family the following chain inclusion holds:

Pfc(Y ) ⊂ D(Y ) ⊂ Pc(Y ) .

Let (X,SX) be a measurable space; a multifunction F :X → P(Y ) is measurable
if F−(A) ∈ SX , A ∈ T , where F−(A) = {x ∈ X : F (x) ∩A 6= ∅}.

Let (X,SX , µ) and (Y, d) be a measure space and a metric space respectively;
a multifunction F :X → Pk(Y ) is said to be strongly measurable if there exists
a sequence of step multifunctions (Fn)n∈N, Fn:X → Pk(Y ), such that

h(Fn(x), F (x)) n→∞−−−−→ 0, µ-a.e. in X

where h is the Hausdorff metric.
If X and Y are Hausdorff topological spaces, we introduce the following

definitions for multifunctions F : X → P(Y ) (see e.g. [11], [12]).
A multifunction F :X → P(Y ) is said to be:

• upper semicontinuous at x0 ∈ X if, for every open set Ω ⊆ Y with
F (x0) ⊆ Ω, there exists a neighbourhood V of x0 such that F (x) ⊆ Ω
for every x ∈ V ;

• lower semicontinuous at x0 ∈ X if, for every open set Ω ⊆ Y with
F (x0)∩Ω 6= ∅, there exists a neighbourhood V of x0 such that F (x)∩Ω 6=
∅ for every x ∈ V .

Now, let T be a Hausdorff topological space, B(T ) be the Borel σ-algebra on
T and µ a Radon measure on T (i.e. µ:B(T ) → R+

0 for which µ(C) = sup{µ(K) :
K ⊂ C, K compact}); we recall the following property for multifunctions which
will play an essential role throughout the paper (see [1]).

A multifunction F :T×X → P(Y ) verifies the lower Scorza–Dragoni property
if

(l-SD) for every ε > 0 there exists a compact Kε ⊂ T such that µ(T \Kε) < ε

and F|Kε×X is lower semicontinuous.

Moreover, we will use a property introduced in [1], that we present it in the
form which follows.

A multifunction F :T ×X → P(Y ) is a Michael map if it verifies property

(M) for every closed set Z ⊂ T ×X such that F|Z is lower semicontinuous,
there exists a continuous selection of F on Z (i.e. there exists a contin-
uous function f :Z → Y such that f(t, x) ∈ F (t, x), (t, x) ∈ Z).

Moreover, we recall that a multifunction F :T ×X → P(Y ) has a Carathèo-
dory selection (see e.g. [1]) if there exists a function f :T ×X → Y such that

(i) for every t ∈ T , f(t, · ) is continuous on X;
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(ii) for every x ∈ X, f( · , x) is measurable;
(iii) for µ-a.e. t ∈ T and every x ∈ X, f(t, x) ∈ F (t, x).

If Y is a normed space, a multifunction F :T ×X → P(Y ) is said to be

• (DK)-almost lower semicontinuous at (t0, x0) ∈ T ×X if for every ε > 0
there exists a neighbourhood U of (t0, x0) such that

⋂
(t,x)∈U{F (t, x) +

εB1(0)} 6= ∅, where B1(0) is the open unit ball in the space Y ;
• weak lower semicontinuous at (t0, x0) ∈ T × X if for every ε > 0 and

every neighbourhood V of (t0, x0) there is a point (t′, x′) ∈ V such that
for every z ∈ F (t′, x′) there is a neighbourhood Uz of (t0, x0) such that
z ∈

⋂
(t,x)∈Uz

{F (t, x) + εB1(0)}.

From now on, E will denote a Banach space and [a, b] will denote an interval
of the real line endowed with the usual Lebesgue measure.

By the symbol C([a, b];E) (L1([a, b];E)) we will denote the space of all the
continuous (Bochner integrable) functions x: [a, b] → E; for the sake of simplicity,
we will put L1

+([a, b]) instead of L1([a, b]; R+).

Given the multifunction G: [a, b] → P(E), we will consider the set S1
G = {g ∈

L1([a, b];E) : g(t) ∈ G(t), a.e. t ∈ [a, b]}.
Fixed x0 ∈ E, we will deal with the following semilinear Cauchy problem

(P)

{
x′ ∈ A(t)x + F (t, x) for t ∈ [0, b],

x(0) = x0

where F : [0, b]× E → P(E) is a given multifunction.

On the family {A(t)}t∈[0,b] we will consider the following assumption

(A) {A(t)}t∈[0,b] is a family of linear operators A(t):D(A) ⊆ E → E, with
D(A) not depending on t and dense in E, generating an evolution system
{T (t, s)}(t,s)∈∆, where ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b}.

Let us recall that a two parameter family {T (t, s)}(t,s)∈∆, T (t, s):E → E

bounded linear operator, is an evolution system if

(j) T (t, t) = I, t ∈ [0, b]; T (t, r)T (r, s) = T (t, s), 0 ≤ s ≤ r ≤ t ≤ b;
(jj) (t, s) 7→ T (t, s) is strongly continuous on ∆ (i.e. the map (t, s) 7→

T (t, s)x is continuous on ∆, for every x ∈ E).

A function x ∈ C([0, h];E), 0 < h ≤ b, is said to be a mild solution for (P) if

x(t) = T (t, 0)x0 +
∫ t

0

T (t, s)f(s) ds, t ∈ [0, h]

where f ∈ S1
F ( · ,x( · )).
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Moreover, let us consider the following impulsive Cauchy problem, governed
by the same semilinear differential inclusion.

(IP)


x′ ∈ A(t)x + F (t, x) for t ∈ [0, b] \ {t1, . . . , tm},
x(t+k ) = x(tk) + Ik(x(tk)) for k = 1, . . . ,m,

x(0) = x0,

where 0 = t0 < t1 < . . . < tm < tm+1 = b; Ik:E → E, k = 1, . . . ,m are given
functions and x(t+) = lims→t+ x(s).

In order to define a mild solution for (IP), we introduce the intervals J0 =
[0, t1], Jk = ]tk, tk+1], k = 1, . . . , m, and the set

Cp([0, b];E) = {x: [0, b] → E such that x|Jk
∈ C(Jk, E), k = 0, . . . , m,

there exists x(t+k ) ∈ E, k = 1, · · · ,m}.

It is easy to check that (Cp([0, b];E), ‖ · ‖Cp
) is a Banach space, endowed with

the norm

‖x‖Cp
= max{‖xk‖C(Jk;E), k = 0 . . . ,m}

where x0 = x|J0 and, for k ∈ {1, . . . , m}, xk is the function defined as

xk(t) =

{
x(t) for t ∈ Jk,

x(t+k ) for t = tk.

A function x ∈ Cp([0, b];E) is said to be a mild solution for (IP) if

x(t) = T (t, 0)x0+
∑

0<tk<t

T (t, tk)Ik(x(tk)) +
∫ t

0

T (t, s)f(s) ds, t ∈ [0, b]

where f ∈ S1
F ( · ,x( · )).

In the sequel, on the multifunction F : [0, b] × E → P(E) which appears in
(P) and (IP), we will use case by case some of the properties

(F1) for every bounded Ω ⊂ E there exists a function µΩ ∈ L1
+([0, b]) such

that, for every x ∈ Ω,

‖F (t, x)‖ ≤ µΩ(t), a.e. t ∈ [0, b];

(F1)′ there exists a function α ∈ L1
+([0, b]) such that, for every x ∈ E,

‖F (t, x)‖ ≤ α(t)(1 + ‖x‖), a.e. t ∈ [0, b];

(F2) there exists a function k∈L1
+([0, b]) such that, for every bounded D⊂E,

χ(F (t,D)) ≤ k(t)χ(D), a.e. t ∈ [0, b],

where χ is the Hausdorff measure of noncompactness (see e.g. [12]).
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3. Existence of Carathèodory selections
and of local mild solutions for (P)

The following selection theorem will play a crucial role in this paper.

Theorem 3.1. Let T , X and Y be Hausdorff topological spaces and µ be
Radon measure on T . If F :T×X → P(Y ) is a multifunction satisfying properties
(l-SD) and (M), then F has a Carathèodory selection.

Proof. Let (εj)j∈N be a sequence of positive numbers converging to 0. From
property (l-SD) on F we deduce that for every j ∈ N there exists a compact
Kj ⊂ T such that

(3.1) µ(T \Kj) < εj

and F is lower semicontinuous on Kj ×X.
By (M), for each closed set Kj ×X we claim that there exists a continuous

function fj :Kj ×X → Y such that

(3.2) fj(t, x) ∈ F (t, x), (t, x) ∈ Kj ×X.

Put K =
⋃

j∈N Kj , we denote

M1 = K1, Mj = Kj \
⋃
i<j

Ki, j = 2, 3, . . .

Obviously Mi ∩Mj = ∅ for i 6= j and

(3.3) K =
⋃
j∈N

Mj .

Now, fixed y ∈ Y , let us denote by f the function f :T ×X → Y defined by

f(t, x) =

{
fj(t, x) for (t, x) ∈ Mj ×X, j ∈ N,

y otherwise.

We prove that f is a Carathèodory selection of F .
First of all, it is easy to see that for every t ∈ T the function f(t, · ) is

continuous on X. Next, we go to show that, fixed x ∈ X, the function f( · , x) is
measurable on T .

Given an open set A ⊂ Y , we have

f−(A, x) = [f−(A, x) ∩K] ∪ [f−(A, x) ∩Kc],

where Kc = T \K. Let us observe that the set f−(A, x) ∩Kc is equal to Kc if
y ∈ A, while it is the empty set if y /∈ A. So, in both cases, the set f−(A, x)∩Kc

is measurable.
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On the other hand, from (3.3) and taking into account the definition of f , it
follows that

(3.4) f−(A, x) ∩K =
⋃
j∈N

[f−j (A, x) ∩Mj ].

Now, f−j (A, x) is open in Kj ; from the measurability of Kj it is easily deducted
the measurability of f−j (A, x). Moreover, Mj is measurable and so, by (3.4),
f−(A, x) ∩K is measurable too.

Finally, taking into account (3.2) and (3.3), we can state that

f(t, x) ∈ F (t, x), (t, x) ∈ K ×X.

Now, µ is monotone and (3.1) holds; then

0 ≤ µ(Kc) ≤ µ(T \Kj) < εj , j ∈ N,

hence µ(Kc) = 0. Therefore, we can conclude that f is a Carathèodory selection
of the multifunction F . �

Remark 3.2. Let us notice that our Theorem 3.1 strictly contains the selec-
tion theorem proved by Artstein and Prikry ([1, Theorem 3.2]). In fact, in that
theorem the authors consider measurable multifunctions lower semicontinuous
with respect to the second variable; by Theorem 2.1 in [1] those multifunctions
verify the hypotheses of our selection theorem. Moreover, our framework is more
general than the one in [1].

Anyway, even if we consider the more restrictive framework of [1], we can
provide an example of a multifunction satisfying all the assumptions of our se-
lection theorem, but which does not verify anyone of the hypotheses required on
the multifunction of Theorem 3.2 in [1].

Example 3.3. We consider the measure space ([0, 1],B([0, 1]), λ), where λ

is the Lebesgue measure, and (cf. [9, Esempio 20]) a non-measurable set A,
A = [0, 1]× [0, 1], such that

card{x ∈ [0, 1] : (t, x) ∈ A} = 1 for t ∈ [0, 1],

card{t ∈ [0, 1] : (t, x) ∈ A} = 1 for x ∈ [0, 1],

(t, t) ∈ A for t ∈ [0, 1] ∩ (R \Q).

Let F : [0, 1]× [0, 1] → P([0, 1]) be the multifunction defined by

F (t, x) =


[0, 1] for (t, x) = (0, 0),

{0} for (t, x) ∈ A \ {(0, 0)},
[0, 1/2] otherwise.

First of all, it is easy to check that F verifies both properties (l-SD) and (M). On
the other hand, F does not satisfy the whole set of assumptions of Theorem 3.2
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in [1]; in fact the multifunction F (0, · ) is not lower semicontinuous at x = 0 and
F is not measurable on [0, 1]× [0, 1].

Thanks to previous theorem, we state and prove the following two results on
the existence of local mild solutions for (P).

Theorem 3.4. Let E be a separable Banach space. We suppose that family
{A(t)}t∈[0,b] satisfies property (A) and that F : [0, b]×E → P(E) verifies proper-
ties (l-SD), (M), (F1) and (F2). Then there exists at least one local mild solution
for (P).

Proof. From Theorem 3.1 the multifunction F has a Carathèodory selec-
tion f : [0, b]× E → E.

Let us consider the multifunction G: [0, b]× E → Pkc(E) defined as

(3.5) G(t, x) = {f(t, x)}, (t, x) ∈ [0, b]× E

and the associated semilinear Cauchy problem

(3.6)

{
x′ ∈ A(t)x + G(t, x) for t ∈ [0, b],

x(0) = x0.

Let us show that G fulfills all the hypotheses of Theorem 3 in [5].
For each x ∈ E, being G( · , x) measurable with compact values in the separa-

ble Banach space E, from Theorem 1.3.1 in [12] we have that G( · , x) is strongly
measurable. Moreover, for each t ∈ [0, b], f(t, · ) is continuous and so G(t, · ) is
upper semicontinuous in E.

Now we prove that G fulfills (F1). Fixed a bounded set Ω ⊂ E, by (F1)
on F , for every x ∈ Ω, we get

‖G(t, x)‖ ≤ ‖F (t, x)‖ ≤ µΩ(t), a.e. t ∈ [0, b].

Finally, let k be the function presented in (F2) relatively to F . Then, for
every bounded set D ⊂ E, taking into account the monotonicity of the measure
of noncompactness χ, we obtain the following inequality:

χ(G(t, D)) ≤ χ(F (t,D)) ≤ k(t)χ(D), a.e. t ∈ [0, b]

which allows us to conclude that also G satisfies (F2).
By applying Theorem 3 in [5], the existence of at least one local mild solution

for problem (3.6) is deduced, and this solutions is a local mild solution for (P)
too. �

Theorem 3.5. Let E be a finite dimensional Banach space. We suppose
that {A(t)}t∈[0,b] satisfies property (A) and that F : [0, b] × E → P(E) verifies
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properties (l-SD), (M) and (F1). Then there exists at least one local mild solution
for (P).

Proof. By proceeding as in Theorem 3.4, we can say that there exists
a Carathèodory selection f of F . Then we can consider the multifunction G

defined by (3.5), which is strongly measurable in the first variable, upper semi-
continuous in the second one and has property (F1).

Now, let D be a bounded set of E. Since D and f(t, D) are relatively
compact, by means of (3.5) we can write

χ(G(t, D)) = χ(f(t, D)) = 0 = χ(D), t ∈ [0, b].

Hence we can conclude that G verifies (F2).
Therefore, by Theorem 3 of [5], we deduce the existence of at least one local

mild solution for problem in (3.6), and so for (P) as well. �

Restricting our considerations to multifunctions which assume values in the
family D(E) (see (2.1)), from Theorem 3.4 we can deduce the following result.

Corollary 3.6. Let E be a separable Banach space. We suppose that
{A(t)}t∈[0,b] satisfies property (A) and that F : [0, b] × E → D(E) verifies prop-
erties (l-SD), (F1) and (F2). Then there exists at least one local mild solution
for (P).

Proof. First of all, let us consider a closed set Z ⊂ [0, b]×E such that the
multifunction F|Z is lower semicontinuous. The multifunction F|Z satisfies all the
assumptions of Theorem 3.1′′′ in [14], and so it has a continuous selection. Hence
F verifies (M). Then we can apply Theorem 3.4 and the proof is concluded. �

Now, as a consequence of Theorem 3.5, we are in position to provide the
following result.

Corollary 3.7. Let E be a finite dimensional Banach space. We suppose
that {A(t)}t∈[0,b] satisfies property (A) and that F : [0, b] × E → Pc(E) verifies
properties (l-SD) and (F1). Then there exists at least one local mild solution
for (P).

Proof. First of all, let us note that in the case when the Banach space is
finite dimensional, one has Pc(E) = D(E) (see [14, p. 372]). Then, by following
the outline of the proof of Corollary 3.6 and by applying Theorem 3.5 instead of
Theorem 3.4, we achieve the thesis. �

Remark 3.8. We note that by requiring in Theorems 3.4 and 3.5 and in
Corollaries 3.6 and 3.7 the lower semicontinuity in the second variable and the
global measurability instead of property (l-SD), thanks to Theorem 2.1 in [1] we
obtain results which are analogous to others existing in the literature for upper
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Carathèodory-type multifunctions (see e.g. [5]). Whereas, it is not possible to
proceed in the same way if one assumes on the multifunction the lower semicon-
tinuity in the second variable and the measurability only in the first variable. In
fact, these two assumptions do not guarantee property (l-SD) nor the existence
of a Carathèodory selection for the multifunction (see [1, §4]).

Remark 3.9. Our local existence results extend in a broad sense the the-
orems proved in [3]. This claim is a consequence of the fact that D(E) strictly
contains Pfc(E). In fact, it is obvious if E is a finite dimensional space since
D(E) = Pc(E), as observed above. Whereas, if E is infinite dimensional, we
prove the strict inclusion by means of the following example.

Example 3.10. Let E = C([a, b]; R). The set Γ = {x ∈ C([a, b]; R) : x(s) =
ms, m > 0} is a one dimensional linear subspace of C([a, b]; R). Therefore Γ is
an element of D(C([a, b]; R)) (see [14, §5]). On the other hand, of course, Γ is
not closed.

Anyway, even in the setting of multifunctions taking values in Pfc(E), we can
say that there exist multifunctions which verify the hypotheses of our existence
results but do not satisfy the whole set of assumptions required in Theorem 3.1
or 3.2 or 3.3 in [3]. This fact is obvious for Theorem 3.1 in [3] since there the
values of the multifunction are compact too. In the following example we show
a multifunction having all the properties required in our propositions but not
(DK)-almost lower semicontinuous (see §2), hypothesis assumed in Theorem 3.3
of [3]; by means of Remark 3.5 in [4], this multifunction is neither weak lower
semicontinuous (see §2), hypothesis assumed in Theorem 3.2 of [3].

Example 3.11. Let F : [0, 1]× R → Pfc(R) be defined as

F (t, x) =

{
{1} if (t, x) = (1/2, 1),

{0} otherwise.

It is easy to verify that F satisfies all the properties required in our existence
results.

On the other hand, fixed (1/2, 1) ∈ [0, 1] × R, in correspondence to ε = 1/3
we have that for every neighbourhood U of the point (1/2, 1) it is

⋂
(t,x)∈U

{F (t, x) + εB1(0)} =
]
2
3
,
4
3

[
∩

]
−1

3
,
1
3

[
= ∅.

Therefore, F is not (DK)-almost lower semicontinuous.
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4. Existence of global mild solutions for (P)
and applications to the impulsive problem (IP)

In this section, we strengthen (F1) by means of (F1)′ so that we are able to
prove the following results.

Theorem 4.1. Let E be a separable Banach space. We assume that family
{A(t)}t∈[0,b] satisfies property (A) and that F : [0, b]×E → P(E) verifies proper-
ties (l-SD), (M), (F1)′ and (F2). Then

(a) there exists at least one global mild solution for (P);
(b) there exists at least one mild solution for (IP).

Proof. First we observe that, by proceeding as in Theorem 3.4, we can
define the multifunction G: [0, b]×E → Pkc(E) as in (3.5). From (F1)′ on F we
can write

‖G(t, x)‖ ≤ α(t)(1 + ‖x‖), a.e. t ∈ [0, b],

so we have that G verifies (F1)′. On the other hand, G satisfies also the other as-
sumptions required on the multifunction of Theorem 4 in [5]. Then, by applying
this proposition, we can say that there exists at least one global mild solution
for problem (3.6); this is a solution for (P) too. Thus the first thesis is proved.

Now, in correspondence to G, we consider the impulsive problem

(4.1)


x′ ∈ A(t)x + G(t, x) for t ∈ [0, b] \ {t1, . . . , tm},
x(t+k ) = x(tk) + Ik(x(tk)) for k = 1, . . . ,m,

x(0) = x0.

From Theorem 2 in [6], it admits at least one mild solution, which obviously
solves (IP) as well. �

Theorem 4.2. Let E be a finite dimensional Banach space. We assume
that {A(t)}t∈[0,b] satisfies property (A) and that F : [0, b] × E → P(E) verifies
properties (l-SD), (M) and (F1)′. Then

(a) there exists at least one global mild solution for (P);
(b) there exists at least one mild solution for (IP).

Proof. By proceeding as in Theorem 3.5, we apply Theorem 4 in [5] and
Theorem 2 in [6] to problems (3.6) and (4.1) respectively, where G is the same
multifunction used above. Hence we achieve both the theses. �

In analogy with the previous section, we can now formulate the following
corollaries.
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Corollary 4.3. Let E be a separable Banach space. If {A(t)}t∈[0,b] satisfies
property (A) and F : [0, b]×E → D(E) verifies properties (l-SD), (F1)′ and (F2),
then

(a) there exists at least one global mild solution for (P);
(b) there exists at least one mild solution for (IP).

Corollary 4.4. Let E be a finite dimensional Banach space. If {A(t)}t∈[0,b]

satisfies property (A) and F : [0, b] × E → Pc(E) verifies properties (l-SD) and
(F1)′, then

(a) there exists at least one global mild solution for (P);
(b) there exists at least one mild solution for (IP).

Remark 4.5. The same reasonings developed in Remark 3.9 allow us to
claim that the results presented in this section extend in a broad sense the
analogous ones in [4].
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