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ON THE SUSPENSION ISOMORPHISM FOR INDEX BRAIDS
IN A SINGULAR PERTURBATION PROBLEM

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. We consider the singularly perturbed system of ordinary dif-

ferential equations

(Eε)
εẏ = f(y, x, ε),

ẋ = h(y, x, ε)

on Y ×M, where Y is a finite dimensional normed space andM is a smooth
manifold. We assume that there is a reduced manifold of (Eε) given by the

graph of a function φ:M → Y and satisfying an appropriate hyperbol-

icity assumption with unstable dimension k ∈ N0. We prove that every
Morse decomposition (Mp)p∈P of a compact isolated invariant set S0 of

the reduced equation
ẋ = h(φ(x), x, 0)

gives rises, for ε > 0 small, to a Morse decomposition (Mp,ε)p∈P of an

isolated invariant set Sε of (Eε) such that (Sε, (Mp,ε)p∈P ) is close to ({0}×
S0, ({0} ×Mp)p∈P ) and the (co)homology index braid of (Sε, (Mp,ε)p∈P )

is isomorphic to the (co)homology index braid of (S0, (Mp)p∈P ) shifted by

k to the left.
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1. Introduction

Consider the following singularly perturbed system of ordinary differential
equations

(1.1)

εẏ1 = f1((y1, y2, x), ε),

εẏ2 = f2((y1, y2, x), ε),

ẋ = h((y1, y2, x), ε)

and assume the following

Hypothesis 1.1.

(a) Y1, Y2 and X are finite dimensional normed linear spaces with k :=
dim Y2, U is open in X, ε ∈ ]0,∞[ is arbitrary, Z0 is open in Y1×Y2×U

and W0 := Z0 × [0, ε̄].
(b) f1:W0 → Y1, f2:W0 → Y2 and h:W0 → X are maps such that, for each

ε ∈ ]0, ε], f1( · , ε), f2( · , ε) and h( · , ε) are locally Lipschitzian.
(c) φ1:U → Y1 and φ2:U → Y2 are C2-maps such that for all x ∈ U ,

(φ1(x), φ2(x), x) ∈ Z0 and

f1((φ1(x), φ2(x), x), 0) = 0, f2((φ1(x), φ2(x), x), 0) = 0.

(d) The maps f1( · , 0), f2( · , 0) are of class C2 and the map h( · , 0) is locally
Lipschitzian.

(e) For every (y1, y2, x) ∈ Z0, the maps f1, f2 are continuous at the point
((y1, y2, x), 0) and for every x ∈ U the map h is continuous at the point
((φ1(x), φ2(x), x), 0).

(f) For all x ∈ U , re σ(B11(x)) < 0, re σ(B22(x)) > 0, B12(x) ≡ 0 and
B21(x) ≡ 0, where

Bjl(x) = Djfl((φ1(x), φ2(x), x), 0), j, l ∈ {1, 2}, x ∈ U.

In singular perturbation theory the set

{(φ1(x), φ2(x), x) | x ∈ U}

is called the reduced manifold of (1.1). The corresponding reduced equation is
given by

(1.2) ẋ = h((φ1(x), φ2(x), x), 0).

Part (f) of Hypothesis 1.1 is a hyperbolicity assumption on the reduced manifold
with respect to equation (1.1).

A natural question is whether the dynamics of the reduced equation (1.2)
‘survives’ in the dynamics of (1.1) for ε > 0 small.
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In this paper, this question is considered in the context of Conley index
theory. In particular, we prove that every isolated invariant set S0 of the reduced
equation (1.2) gives rise to a family of isolated invariant sets Sε, ε > 0 small,
of (1.1) whose Conley index h(Sε) is equal to the wedge product of the pointed
k-sphere with the Conley index h(S0) of S0. Moreover, every (partially) ordered
Morse decomposition (Mp)p∈P of S0 gives rise to a family (Mp,ε)p∈P , ε > 0
small, such that, for all such ε, (Mp,ε)p∈P is a Morse decomposition of Sε and the
(co)homology index braid of (Sε, (Mp,ε)p∈P ) is isomorphic to the (co)homology
index braid of (S0, (Mp)p∈P ) shifted by k to the left.

Let us now describe our results more precisely. By πε denote the local
(semi)flow on Z0 generated by the solutions of the differential equation (1.1)
and by π0 denote the local (semi)flow generated on U by the ordinary differen-
tial equation (1.2).

Our first result reads as follows.

Theorem 1.2. Assume Hypothesis 1.1. Let S0 ⊂ U be a compact isolated
invariant set relative to π0 and N ⊂ U be a compact isolating neigbourhood
of S0. Then there is an η0 ∈ ]0,∞[ such that for every η ∈ ]0, η0], there exists
an ε0 = ε0(η) ∈ ]0, ε] such that for every ε ∈ ]0, ε0], the set

Nη := {(y1, y2, x) ∈ Z0 | x ∈ N , |y1 − φ1(x)|Y1 ≤ η and |y2 − φ2(x)|Y2 ≤ η},

is an isolating neigbourhood relative to πε and

h(πε, Sε) = Σk ∧ h(π0, S0),

where Sε = Sε,N,η := Invπε(Nη) and k is the dimension of Y2.

Now, for the rest of this paper, let P be a finite set and ≺ be a strict partial
order on P .

Using the notation of the papers [5], [4], [17] we can state our second result
as follows.

Theorem 1.3. Assume Hypothesis 1.1. Let S0 ⊂ U be a compact isolated
invariant set relative to π0 and N ⊂ U be a compact isolating neigbourhood of S0.
Moreover, let (Mp)p∈P be a ≺-ordered Morse decomposition of S0 relative to π0.
For each p ∈ P , let Vp ⊂ N be an isolating neigbourhood of Mp relative to π0.
For every η ∈ ]0,∞[, every ε ∈ ]0, ε] and every p ∈ P , define

Sε = Sε,N,η := Invπε
(Nη) and Mp,ε = Mp,ε,Vp,η := Invπε

((Vp)η),

where,

(Vp)η := {(y1, y2, x) ∈ Z0 | x ∈ Vp, |y1 − φ1(x)|Y1 ≤ η and |y2 − φ2(x)|Y2 ≤ η}.
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Then there exists an η0 ∈ ]0,∞[ such that for every η ∈ ]0, η0] there is an
ε0 = ε0(η) ∈ ]0, ε] such that for every ε ∈ ]0, ε0], the family (Mp,ε)p∈P is a ≺-
ordered Morse decomposition for Sε relative to πε. Moreover, for every ε ∈ ]0, ε0],
for every K ∈ I(≺) and for every q ∈ Z, there exist isomorphisms

Θε
q(K):Hq(πε,Mε(K)) → Hq−k(π0,M(K))

and
Θq

ε(K):Hq−k(π0,M(K)) → Hq(πε,Mε(K))

such that given (I, J) ∈ I2(≺) the diagrams

// Hq(Mε(I)) //

Θε
q(I)

��

Hq(Mε(IJ)) //

Θε
q(IJ)

��

Hq(Mε(J)) //

Θε
q(J)

��

Hq−1(Mε(I)) //

Θε
q−1(I)

��
// Hq−k(M(I)) // Hq−k(M(IJ)) // Hq−k(M(J)) // Hq−k−1(M(I)) //

Hq(Mε(I))oo Hq(Mε(IJ))oo oo Hq(Mε(J))oo Hq−1(Mε(I))oo oo

Hq−k(M(I))oo

Θq
ε(I)

OO

oo Hq−k(M(IJ))

Θq
ε(IJ)

OO

oo Hq−k(M(J))

Θq
ε(J)

OO

oo Hq−k−1(M(I))

Θq−1
ε (I)

OO

oo oo

commute, where for every K ∈ I(≺), for every ε ∈ ]0, ε0] and for every q ∈ Z,
Hq(M(K)) := Hq(π0,M(K)), Hq(M(K)) := Hq(π0,M(K)), Hq(Mε(K)) :=
Hq(πε,Mε(K)) and Hq(Mε(K)) := Hq(πε,Mε(K)). Thus, the (co)homology in-
dex braid of (πε, Sε, (Mp,ε)p∈P ) is isomorphic to the graded module braid obtained
by shifting the (co)homology index braid of (π0, S0, (Mp)p∈P ) to the left by k.

In addition, we show that the sets Sε = Sε,N,η are asymptotically indepen-
dent of N and η and the family S̃ε, ε ∈ [0, ε0], where S̃0 = {0Y1}×{0Y2}×S0 and
S̃ε = Sε, ε > 0, is upper-semicontinuous at ε = 0 in the topology of Y1×Y2×X.
In this sense, the sets Sε are close to {0Y1}× {0Y2}× S0 for ε > 0 small. Analo-
gously, the sets Mp,ε = Mp,ε,N,η are asymptotically independent of N and η and
close to {0Y1} × {0Y2} ×Mp for ε > 0 small.

In particular, the above results show that the Conley index of S0 com-
pletely determines the Conley index of Sε and the (co)homology index braid
of (π0, S0, (Mp)p∈P ) completely determines the (co)homology index braid of
(πε, Sε, (Mp,ε)p∈P ). This answers the question posed above from the point of
view of Conley index theory.

Theorems 1.2 and 1.3 are special cases of the main result of this paper,
Theorem 4.3. A crucial step in the proof of that theorem is an application of the
suspension isomorphism results for (co)homology index braids established in [4]
and [17].

This paper is organized as follows. In Section 2 we establish an isomorphism
result for (co)homology index braids in the case of the product of an arbitrary
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local semiflow with an asymptotically stable linear flow. This result is required
in the proof of Theorem 4.3. In Section 3 we recall some useful facts about
ordinary differential equations on manifolds. In Section 4 we introduce a gener-
alization of problems (1.1) and (1.2) (see (4.1) and (4.2)) in which the open set
U ⊂ X is replaced by a finite dimensional differentiable manifoldM and Hypoth-
esis 1.1 is replaced by more general assumptions (see Hypotheses 4.1 and 4.2).
We also state our main result, Theorem 4.3. We then prove this theorem and
the upper-semicontinuity results alluded to before. We then discuss two cases
in which Hypothesis 4.2 is satisfied. We end the paper with an example showing
that Hypothesis 4.1 alone is not sufficient for the validity of Theorem 4.3.

We refer the reader to the papers [1], [2], [4], [5], [17] for various notations
and results used implicitly throughout this paper. The interested reader is also
referred to the recent paper [6] for a continuation result of (co)homology index
braids in singularly perturbed hyperbolic equations.

2. A special product case

In this section let E be a Banach space and Π be the global semiflow generated
by a C0-semigroup (T (t))t∈[0,∞[ satisfying, for some constants M , β ∈ ]0,∞[,
the estimate

(2.1) |T (t)u|E ≤ Me−βt|u|E , t ∈ [0,∞[ , u ∈ E.

Moreover, let X be a metric space and π be a local semiflow on X. Let π′ = π×Π
be the product of π with Π. Unless specified otherwise, whenever M is a sub-
set of X, we write M ′ = M × {0E} ⊂ X × E. We will prove in this section
that, under the usual admissibility assumptions, whenever, relative to π, S is an
isolated invariant set and (Mp)p∈P is a (partially) ordered Morse decomposition
of S, then, relative to π′, S′ is an isolated invariant set, (M ′

p)p∈P is a Morse
decomposition of S′ and the (co)homology index braid of (π, S, (Mp)p∈P ) is iso-
morphic to the (co)homology index braid of (π′, S′, (M ′

p)p∈P ). Together with
the suspension isomorphism results established in [4], [17] this will be a crucial
step in the proof of Theorem 4.3.

We will first prove the following result.

Theorem 2.1. Let B be a closed ball in E centered at 0 = 0E.

(a) Let S be an isolated π-invariant set and (Y, Z) be an FM-index pair for
(π, S) such that ClX(Y \ Z) is strongly π-admissible. Then S′ is an
isolated π′-invariant set and (Y × B,Z × B) is an FM-index pair for
(π′, S′) such that ClX×E((Y ×B) \ (Z ×B)) is strongly π′-admissible.
Let fY,Z :Y/Z → (Y × B)/(Z × B) be the (base point preserving) map
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induced by f :Y → Y ×B, x 7→ (x, 0), and, for q ∈ Z, let

Fq := Hq(fY,Z):Hq(Y/Z, {[Z]}) → Hq((Y ×B)/(Z ×B), {[Z ×B]}),

resp.

F q := Hq(fY,Z):Hq((Y ×B)/(Z ×B), {[Z ×B]}) → Hq(Y/Z, {[Z]})

be the induced homology, resp. cohomology, map. The map fY,Z is a ho-
motopy equivalence of pointed spaces so Fq, resp. F q, is an Γ-module
isomorphism for all q ∈ Z.

(b) For all q ∈ Z, the map

〈Fq〉 = 〈Fq〉C,Φ,C′,cΦ′ : Φ̂(C) → Φ̂′(C′),

resp. the map

〈F q〉 = 〈F q〉C,Φ,C′,cΦ′ : Φ̂′(C′) → Φ̂(C),

is independent of the choice of (Y, Z). Here, C (resp. C′) is the categorial
Conley–Morse index of (π, S) (resp. (π′, S′)) as defined in [5] and Φ
(resp. Φ′) is the restriction of Hq, resp. Hq, to C (resp. C′). For all
q ∈ Z, define the morphism κq(π, S):Hq(π, S) → Hq(π′, S′) by

κq(π, S) = 〈Fq〉

and the morphism κq(π, S):Hq(π′, S′) → Hq(π, S) by

κq(π, S) = 〈F q〉.

κq(π, S) and κq(π, S), q ∈ Z, are Γ-module isomorphisms.
(c) Given an isolated π-invariant set S having a strongly π-admissible iso-

lating neigbourhood and an attractor-repeller pair (A,A∗) of S relative to
π, then S′ is an isolated π′-invariant set having a strongly π′-admissible
isolating neigbourhood, (A′, (A∗)′) is an attractor-repeller pair of S′ re-
lative to π′ and the diagrams

(2.2)

// Hq(π,A) //

κq(π,A)

��

Hq(π, S) //

κq(π,S)

��

Hq(π,A∗) //

κq(π,A∗)

��

Hq−1(π,A) //

κq−1(π,A)

��
// Hq(π′, A′) // Hq(π′, S′) // Hq(π′, (A∗)′) // Hq−1(π′, A′) //

(2.3)

Hq(π,A)oo oo Hq(π, S)oo Hq(π,A∗)oo Hq−1(π,A)oooo oo

Hq(π′, A′)oo

κq(π,A)

OO

oo Hq(π′, S′)

κq(π,S)

OO

oo Hq(π′, (A∗)′)

κq(π,A∗)

OO

oo Hq−1(π′, A′)

κq−1(π,A)

OO

oo oo

commute.
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Proof. Let S be an isolated π-invariant set and (Y, Z) be an FM-index pair
for (π, S) such that ClX(Y \Z) is strongly π-admissible. Since, by (2.1), (B, ∅) is
an FM-index pair for (Π, {0}) with B strongly Π-admissible, an application of [4,
Proposition 2.2] shows that (Y ×B,Z×B) is an FM-index pair for (π′, S′) such
that ClX×E((Y × B) \ (Z × B)) is strongly π′-admissible. Now, working with
the homotopy ((x, b), θ) 7→ (x, θb) from (Y ×B)× [0, 1] to Y ×B we easily show
that fY,Z is a homotopy equivalence of pointed spaces. This proves part (a).

To prove the independence of 〈Fq〉 of the choice of (Y, Z), let (Ŷ , Ẑ) be
another FM-index pair for (π, S) with ClX(Ŷ \ Ẑ) strongly π-admissible. By [5,
Proposition 4.6, Lemma 4.8 and Proposition 2.5] we obtain sets L1, L2, W and
Ŵ such that (L1, L2) ⊂ (Y ∩ Ŷ ,W ∩ Ŵ ), Z ⊂ W , Ẑ ⊂ Ŵ and (L1, L2), (Y, W )
and (Ŷ , Ŵ ) are FM-index pairs for (π, S) such that ClX(L1 \ L2), ClX(Y \ Z)
and ClX(Ŷ \ Ŵ ) are strongly π-admissible. We thus obtain the commutative
diagram

Hq(Y/Z, {[Z]})
Hq(fY,Z)

//

��

Hq((Y ×B)/(Z ×B), {[Z ×B]})

��

Hq(Y/W, {[W ]})
Hq(fY,W )

// Hq((Y ×B)/(W ×B), {[W ×B]})

Hq(L1/L2, {[L2]})
Hq(fL1,L2 )

//

OO

��

Hq((L1 ×B)/(L2 ×B), {[L2 ×B]})

OO

��

Hq(Ŷ /Ŵ , {[Ŵ ]})
Hq(f

bY , bW
)

// Hq((Ŷ ×B)/(Ŵ ×B), {[Ŵ ×B]})

Hq(Ŷ /Ẑ, {[Ẑ]})
Hq(f

bY ,bZ
)

//

OO

Hq((Ŷ ×B)/(Ẑ ×B), {[Ẑ ×B]})

OO

whose vertical maps are inclusion induced. Hence, by [5, Proposition 4.5], these
maps are induced by the unique morphisms in C (resp. in C′) between the
corresponding objects of these connected simple systems. In particular, the
vertical maps are all bijective, and so we may invert the upward pointing arrows
and then compose the columns to obtain the commutative diagram

(2.4)

Hq(Y/Z, {[Z]})
Hq(fY,Z)

//

��

Hq((Y ×B)/(Z ×B), {[Z ×B]})

��

Hq(Ŷ /Ẑ, {[Ẑ]})
Hq(f

bY ,bZ
)

// Hq((Ŷ ×B)/(Ẑ ×B), {[Ẑ ×B]})
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where the vertical maps are induced by the corresponding morphism in C (resp.
in C′). Now an application of [4, Proposition 2.4] to diagram (2.4) completes the
proof of part (b) of the theorem in the homology case. The proof of the cohomol-
ogy case is analogous (reversing the arrows). To prove part (c) let (N1, N2, N3)
be an FM-index triple for (π, S,A,A∗) with ClX(N1 \N3) strongly π-admissible.
It follows that (N ′

1, N
′
2, N

′
3) := (N1×B,N2×B,N3×B) is an FM-index triple for

(π′, S′, A′, (A∗)′) such that ClX×E((N1×B)\(N3×B)) is strongly π′-admissible.
In the notation of [4] we thus have the following commutative diagram

(2.5)

∆(N2/N3)/∆({[N3]}) //

∆(fN2,N3 )

��

∆(N1/N3)/∆({[N3]}) //

∆(fN1,N3 )

��

∆(N1/N2)/∆({[N2]})

∆(fN1,N2 )

��

∆(N ′
2/N

′
3)/∆({[N ′

3]}) // ∆(N ′
1/N

′
3)/∆({[N ′

3]}) // ∆(N ′
1/N

′
3)/∆({[N ′

3]})

with inclusion induced weakly exact rows (in view of [4, Proposition 2.8]). Apply-
ing [4, Proposition 2.7] to diagram (2.5) we obtain the induced long commutative
ladder with exact rows. An application of the 〈 · , · 〉-operation to that ladder and
using part (b) we obtain diagram (2.2). This proves part (c) in the homology
case.

Now, in the notation of [17] and using [17, Proposition 3.4] we obtain the
following commutative diagram of cochain maps with weakly coexact rows

(2.6)

C
∗
(N1/N2, {[N2]}) // C

∗
(N1/N3, {[N3]}) // C

∗
(N2/N3, {[N3]})

C
∗
(N ′

1/N
′
2, {[N ′

2]}) //

f]
N1,N2

OO

C
∗
(N ′

1/N
′
3, {[N ′

3]}) //

f]
N1,N3

OO

C
∗
(N ′

2/N
′
3, {[N ′

3]})

f]
N2,N3

OO

Applying [17, Proposition 2.2] to diagram (2.6) we obtain the induced long com-
mutative ladder with exact rows. An application of the 〈 · , · 〉-operation to that
ladder and using part (b) we obtain diagram (2.3). This proves part (c) in the
cohomology case. �

Let (Mp)p∈P be a ≺-ordered Morse decomposition of S relative to π. It fol-
lows that (M ′

p)p∈P is a ≺-ordered Morse decomposition of S′ relative to π′.
Given (I, J) ∈ I2(≺), (M(I),M(J)) is an attractor-repeller pair in M(IJ)
(where IJ = I ∪ J) relative to π, so (M ′(I),M ′(J)) is an attractor-repeller
pair in M ′(IJ) relative to π′.

Setting, for each K ∈ I(≺) and for each q ∈ Z, Hq(M(K)) := Hq(π,M(K)),
Hq(M(K)) := Hq(π,M(K)), Hq(M ′(K)) := Hq(π′,M ′(K)), Hq(M ′(K)) :=
Hq(π′,M ′(K)), κq(K) := κq(π,M(K)) and κq(K) := κq(π,M(K)) and using
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Theorem 2.1 we thus arrive at the commutative diagrams

// Hq(M(I)) //

κq(I)

��

Hq(M(IJ)) //

κq(IJ)

��

Hq(M(J)) //

κq(J)

��

Hq−1(M(I)) //

κq−1(I)

��
// Hq(M ′(I)) // Hq(M ′(IJ)) // Hq(M ′(J)) // Hq−1(M ′(I)) //

and

Hq(M(I))oo oo Hq(M(IJ))oo Hq(M(J))oo Hq−1(M(I))oo oo oo

Hq(M ′(I))oo

κq(I)

OO

oo Hq(M ′(IJ))

κq(IJ)

OO

oo Hq(M ′(J))

κq(J)

OO

oo Hq−1(M ′(I))

κq−1(I)

OO

oo oo

Here, the lower horizontal sequence of the first (resp. second) diagram is the
homology (resp. cohomology) index sequence of (π′,M ′(IJ),M ′(I),M ′(J)) and
the upper horizontal sequence of the first (resp. second) diagram is the homology
(resp. cohomology) index sequence of (π,M(IJ),M(I),M(J)). We thus obtain
the following result.

Theorem 2.2. The family (κq(J))q∈Z, J ∈ I(≺), is an isomorphism from
the homology index braid of (π, S, (Mp)p∈P ) to the homology index braid of
(π′, S′, (M ′

p)p∈P ). The family (κq(J))q∈Z, J ∈ I(≺), is an isomorphism from
the cohomology index braid of (π′, S′, (M ′

p)p∈P ) to the cohomology index braid of
(π, S, (Mp)p∈P ).

3. Ordinary differential equations on manifolds

In this section we will recall a few facts about ordinary differential equations
on manifolds.

3.1. Let M be a differentiable manifold of class Cp (p ≥ 1) modeled on
some Banach space E. The set of all charts of M is denoted by Chart(M). Let
x ∈ M be arbitrary. A chart α:U → E of M is called a chart at x if x ∈ U .
The set of all charts at x is denoted by Chartx(M). A tangent vector at x is
a map u: Chartx(M) → E such that for every α, α̃ ∈ Chartx(M)

u(α̃) = D(α̃ ◦ α−1)(α(x)).u(α).

The set of all tangent vectors at x is called the tangent space to M at x and is
denoted by Tx(M).

Let I be an arbitrary subset of R and t0 ∈ I be such that t0 ∈ ClR(I \ {t0}).
A map γ: I → M is called differentiable at t0 if γ is continuous at t0 and for
some, hence (by the chain rule) every, chart α of M at x = γ(t0) the map α ◦ γ

is differentiable at t0 into E. In this case the chain rule implies that the map
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u: Chartx(M) → E, α 7→ (α ◦ γ)′(t0), is a tangent vector to M at x. We denote
u by γ̇M(t0) or simply by γ̇(t0).

Let Y be a Banach space. A map f :V → Y , where V is a neigbourhood of
x in M (resp. V is open in M), is called differentiable at x (resp. of class Cp) if
for some, and hence every, chart α of M at x, the map f ◦ α−1 is differentiable
at α(x) (resp. of class Cp), as a map from the Banach space E to the Banach
space Y . We then define the map Df(x) = DMf(x):Tx(M) → Y by

Df(x).u = D(f ◦ α−1)(α(x)).u(α), u ∈ Tx(M).

It follows from the chain rule and the definition of a tangent vector that this
definition is independent of the choice of α ∈ Chartx(M).

Let M̃ be differentiable manifold of class Cp modeled on a Banach space Ẽ. A
map f :M→ M̃ is called differentiable at x (resp. of class Cp) if f is continuous
at x (resp. f is continuous) and for every β ∈ Chartf(x)(M̃) the map β ◦ f

(defined, by continuity of f at x resp. by continuity of f , on a neigbourhood of
x, resp. on an open subset of M) is differentiable at x, resp. is of class Cp. We
define the map Txf :Tx(M) → Tf(x)(M̃) by

Txf(u) = v

where v(β) = DM(β ◦ f)(x)(u) for β ∈ Chartf(x)(M̃).

3.2. If I, t0 and Y are as in Subsection 3.1, γ: I →M is differentiable at t0,
γ(I) ⊂ V , V is a neigbourhood of x = γ(t0) in M and f :V → Y is differentiable
at x, then an application of the chain-rule shows that γ̃ := f ◦ γ is differentiable
at t0 as a map from R to Y and

γ̃′(t0) = DMf(x).γ̇(t0).

3.3. The set
T (M) :=

⋃
x∈M

({x} × Tx(M))

is called the tangent bundle of M. If α:U → E is a chart of M at x, then define
the map

χα:
⋃

x∈U

({x} × Tx(M)) → α(U)× E, (x, u) 7→ (α(x), u(α)).

The set of all the maps χα, α ∈ Chart(M), is a Cp−1-atlas of T (M), making
T (M) into a differentiable manifold of class Cp−1 if p ≥ 2 and a topological
manifold if p = 1, modeled on the Banach space E × E.

If f :M→ M̃ is of class Cp then we define the map Tf :T (M) → T (M̃) by

Tf(x, u) = (f(x), Txf(u)), (x, u) ∈ T (M).

It follows that Tf is of class Cp−1.
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3.4. A map f :M→ M̃ is called locally Lipschitzian if f is continuous and
for some and hence every choice of charts α ∈ Chart(M) and β ∈ Chart(M̃) the
map β ◦ f ◦ α−1 is locally Lipschitzian, as a map from the Banach space E to
the Banach space Ẽ.

3.5. Suppose M is Hausdorff, let p ≥ 2 and F be a locally Lipschitzian
vector field on M, i.e. a locally Lipschitzian map F :M→ T (M) such that for
every x ∈ M, F (x) = (x, F1(x)) where F1(x) ∈ Tx(M). F1(x) is called the
principal part of F . By slightly modifying the proofs of [12, IV. 2, Theorems 2,
3 and 5] we can show that under these assumptions the initial value problem for
the ordinary differential equation

(3.1) ẋ = F1(x)

generated by F on M is well-posed. This means that for every x0 ∈ M there
are uniquely determined numbers αx0 ∈ [−∞, 0[ and ωx0 ∈ ]0,∞] and a unique,
maximally defined differentiable function xx0( · ): ]αx0 , ωx0 [ → M, t 7→ xx0(t)
such that

ẋx0(t) = F1(xx0(t)), t ∈ ]αx0 , ωx0 [

with xx0(0) = x0. Moreover, the set

ΩΠ =
⋃

x0∈M
]αx0 , ωx0 [× {x0}

is open in R×M and the map Π:ΩΠ →M, (t, x0) 7→ xx0(t) is continuous. Π is
a local flow on M and π := Π|(ΩΠ∩([0,∞[×M)) is a local semiflow on M. Π, resp.
π is called the local flow , resp. the local semiflow, generated by (3.1). We write
x0Πt (resp. x0πt) instead of Π(t, x0) (resp. (π(t, x0))).

3.6. Let Y be a Banach space and Z0 be an open set in the product manifold
Y ×M. Then Z0 has a canonical structure of differentiable manifold of class Cp.
Suppose f :Z0 → Y and h:Z0 → T (M) are locally Lipschitzian maps such that
for all (y, x) ∈ Z0, h(y, x) = (y, h1(y, x)), where h1(y, x) ∈ Tx(M). Then there
is a unique locally Lipschitzian vector field F on the manifold Z0 such that for
every (y, x) ∈ Z0 and every chart β of Z0 at (y, x) of the form β = idU ×α, with
U open in Y , y ∈ U and α ∈ Chartx(M), the principle part F1(y, x) of F (y, x)
has the form

F1(y, x)(β) = (f(y, x), h1(y, x)(α)).

Thus Subsection 3.5 implies that the ordinary differential equation

ẏ = f(y, x)

ẋ = h1(y, x)

regarded, by definition, as the ordinary differential equation generated by F on
Z0, generates a local (semi)flow on Z0.
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4. A singular perturbation result

Consider the following hypotheses:

Hypothesis 4.1.

(a) Y is a finite dimensional normed linear space, M is a finite dimensional
(boundaryless) second countable paracompact differentiable manifold of
class C2, ε ∈ ]0,∞[ is arbitrary, Z0 is open in Y × M and W0 :=
Z0 × [0, ε̄].

(b) f :W0 → Y and h:W0 → T (M) are maps such that, for each ε ∈ ]0, ε],
f( · , ε) and h( · , ε) are locally Lipschitzian.

(c) For ((y, x), ε) ∈ W0, h((y, x), ε) = (x, h1((y, x), ε)) with h1((y, x), ε) ∈
Tx(M).

(d) φ:M → Y is a C2-map such that for all x ∈ M, (φ(x), x) ∈ Z0 and
f((φ(x), x), 0) = 0.

(e) The map f( · , 0) is of class C2 and the map h( · , 0) is locally Lipschitz-
ian.

(f) For every (y, x) ∈ Z0 the map f is continuous at ((y, x), 0) and for every
x ∈M, the map h is continuous at ((φ(x), x), 0).

Hypothesis 4.2. a0, b0 ∈ R are such that a0 < 0 < 1 < b0 and B:M×
]a0, b0[ → L(Y, Y ) is a locally Lipschitzian map such that B(x, λ) is hyperbolic
for every (x, λ) ∈ M × [0, 1], B(x, 0) = Df((φ(x), x), 0) and B(x, 1) = B for
every x ∈M, where B ∈ L(Y, Y ) has Morse-index k ∈ N0.

Here, for normed spaces Z1 and Z2, L(Z1, Z2) is the normed space of all
bounded linear maps from Z1 to Z2.

By Subsection 3.6, for every ε ∈ ]0, ε], the ordinary differential equation

(4.1)
εẏ = f((y, x), ε),

ẋ = h1((y, x), ε).

generates a local (semi)flow πε on Z0.
In the same way the ordinary differential equation

(4.2) ẋ = h1((φ(x), x), 0).

generates a local (semi)flow π0 on M.
Given M ⊂M and η ∈ ]0,∞[ define

[M ]φη := {(y, x) ∈ Z0 | x ∈ M and |y − φ(x)|Y ≤ η}.

We can now state the main result of this paper.
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Theorem 4.3. Assume Hypotheses 4.1 and 4.2. Let S0 ⊂ M be a compact
isolated invariant set relative to π0 and N ⊂M be a compact isolating neigbour-
hood of S0. Then there is an η0 ∈ ]0,∞[ such that for every η ∈ ]0, η0], there
exists an ε0 = ε0(η) ∈ ]0, ε] such that for every ε ∈ ]0, ε0], the set [N ]φη is an
isolating neigbourhood relative to πε and

h(πε, Sε) = Σk ∧ h(π0, S0),

where Sε = Sε,N,η := Invπε
([N ]φη ). In addition, let (Mp)p∈P be a ≺-ordered

Morse decomposition for S0 relative to π0. For each p ∈ P , let Vp ⊂ N be an
isolating neigbourhood of Mp relative to π0. For every η ∈ ]0,∞[, every ε ∈ ]0, ε]
and every p ∈ P , define

Mp,ε = Mp,ε,Vp,η := Invπε
([Vp]φη ).

Then, for every η ∈ ]0, η0], there is an ε0 = ε0(η) ∈ ]0, ε] such that for every
ε ∈ ]0, ε0], the family (Mp,ε)p∈P is a ≺-ordered Morse decomposition for Sε

relative to πε. For every ε ∈ ]0, ε0] and for every K ∈ I(≺), set

Mε(K) :=
⋃

(p,q)∈K×K

CSπε(Mp,ε,Mq,ε).

Then for every ε ∈ ]0, ε0], for every K ∈ I(≺) and for every q ∈ Z, there exist
isomorphisms

Θε
q(K):Hq(πε,Mε(K)) → Hq−k(π0,M(K))

and

Θq
ε(K):Hq−k(π0,M(K)) → Hq(πε,Mε(K))

such that given (I, J) ∈ I2(≺) the following diagrams

// Hq(Mε(I)) //

Θε
q(I)

��

Hq(Mε(IJ)) //

Θε
q(IJ)

��

Hq(Mε(J)) //

Θε
q(J)

��

Hq−1(Mε(I)) //

Θε
q−1(I)

��
// Hq−k(M(I)) // Hq−k(M(IJ)) // Hq−k(M(J)) // Hq−k−1(M(I)) //

Hq(Mε(I))oo oo Hq(Mε(IJ))oo Hq(Mε(J))oo Hq−1(Mε(I))oo oo

Hq−k(M(I))oo

Θq
ε(I)

OO

oo Hq−k(M(IJ))

Θq
ε(IJ)

OO

oo Hq−k(M(J))

Θq
ε(J)

OO

oo Hq−k−1(M(I))

Θq−1
ε (I)

OO

oo oo

commute, where for every K ∈ I(≺), for every ε ∈ ]0, ε0] and for every q ∈ Z,
Hq(M(K)) := Hq(π0,M(K)), Hq(M(K)) := Hq(π0,M(K)), Hq(Mε(K)) :=
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Hq(πε,Mε(K)) and Hq(Mε(K)) := Hq(πε,Mε(K)). Thus, the (co)homology in-
dex braid of (πε, Sε, (Mp,ε)p∈P ) is isomorphic to the graded module braid obtained
by shifting the (co)homology index braid of (π0, S0, (Mp)p∈P ) to the left by k.

The proof of Theorem 4.3 requires various auxiliary results.

Proposition 4.4. Let Z̃0 be the set of all (u, x) ∈ Y ×M such that (u +
φ(x), x) ∈ Z0. Then Z̃0 is open in Y ×M. The map Φ: Z0 → Z̃0 defined by
Φ(y, x) = (u, x) := (y−φ(x), x) is a C2-diffeomorphism with inverse Φ−1: Z̃0 →
Z0 given by Φ−1(u, x) = (y, x) := (u + φ(x), x). For ε ∈ ]0, ε], let π̃ε be the
conjugate of πε via Φ i.e.

(u, x)π̃εt := Φ((Φ−1(u, x))πεt),

where (u, x) ∈ Z̃0 and t ∈ [0,∞[ is such that (Φ−1(u, x))πεt is defined. Then π̃ε

is the local (semi)flow generated on Z̃0 by the equation

(4.3)
εu̇ = f̃((u, x), ε),

ẋ = h̃1((u, x), ε),

where, for ((u, x), ε) ∈ W̃0 := Z̃0 × [0, ε],

f̃((u, x), ε) = f((u + φ(x), x), ε)− εDMφ(x)h1((u + φ(x), x), ε),

h̃1((u, x), ε) = h1((u + φ(x), x), ε).

Proof. This is a simple calculation using Subsections 3.2 and 3.6. �

Remark 4.5. Since semiflow conjugation leads to the same Conley-index
and isomorphic (co)homology index braids (cf. [15, Proposition II.3.2], [4, The-
orem 3.2] and [17, Theorem 4.2]), it follows from Proposition 4.4 that we may
and will assume without loss of generality that φ = 0 in Hypothesis 4.1. We will
also write [M ]η for [M ]φη , i.e.

[M ]η := {(y, x) ∈ Z0 | x ∈ M and |y|Y ≤ η}.

Our hypotheses on M and Whitney Imbedding Theorem imply that there is
a finite dimensional normed space E and an imbedding e:M → E of class C2.
We define the metric dM on M such that e is an isometry.

Let β = idE and χβ :T (E) → E×E be as in Subsection 3.3. It follows that χβ

is of class C∞ and so χβ ◦Te:T (M) → E×E is of class C1. In particular, χβ ◦Te
is continuous. Moreover, Subsections 3.1 and 3.3 imply that, for (x, u) ∈ T (M)

χβTe(x, u) = χβ(e(x), Txe(u))

= (βe(x), DM(β ◦ e)(x)(u)) = (e(x), DMe(x)(u)).

It follows that the map Γ: T (M) → E, (x, u) 7→ DMe(x)(u), is continuous.
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Proposition 4.6. Let g:W0 → T (M) be a map such that

(a) for each ε ∈ ]0, ε], g( · , ε) is continuous,
(b) g is continuous at ((0, x), 0) for every x ∈M,
(c) for each ((u, x), ε) ∈ W0,

g((u, x), ε) = (x, g1((u, x), ε)) with g1((u, x), ε) ∈ Tx(M).

Let M be compact in M. Then there is an η′1 ∈ ]0,∞[ and an ε′ ∈ ]0, ε] such
that [M ]η′1 ⊂ Z0 and

sup{|Γ(g((u, x), ε))|E | |u|Y ≤ η′1, x ∈ M , ε ∈ ]0, ε′]} < ∞.

For each n ∈ N, let εn ∈ ]0, ε′], an, bn ∈ [0, 1], un: R → Y and xn: R → M

be such that εn → 0, supn∈N supt∈R |un(t)|Y ≤ η′1 and for every n ∈ N, xn is
differentiable into M and ((un(t), xn(t)), εn) ∈ W0. Moreover, assume that one
of the following alternatives holds:

(i) limn→∞ un(t) = 0 for all t ∈ R and ẋn(t) = g1((anun(t), xn(t)), bnεn)
for all n ∈ N and t ∈ R;

(ii) ẋn(t) = εng1((anun(t), xn(t)), bnεn) for all n ∈ N and t ∈ R.

Under these assumptions there is a subsequence of (xn)n which converges in
(M, dM), uniformly on compact subsets of R, to a function x: R → M which is
differentiable into M and such that, in case (i),

ẋ(t) = g1((0, x(t)), 0), t ∈ R

and, in case (ii),
ẋ(t) = 0, t ∈ R.

Proof. Assumption (b) and compactness of M imply the existence of η′1
and ε′ with the desired properties. Set yn = e ◦xn for n ∈ N. By Subsection 3.2
we have that, for each n ∈ N, yn is differentiable into E and, in case (i),

y′n(t) = DMe(xn(t)).g1((anun(t), xn(t)), bnεn)

= Γ(g((anun(t), xn(t)), bnεn)), t ∈ R,

while in case (ii)

y′n(t) = DMe(xn(t)).εng1((anun(t), xn(t)), bnεn)

= εnΓ(g((anun(t), xn(t)), bnεn)), t ∈ R.

By our assumptions,

(4.4) sup
n∈N

sup
t∈R

|Γ(g((anun(t), xn(t)), bnεn))|E < ∞.

This together with the fact that all functions yn lie in the compact set e(M)
implies, by Arzelà–Ascoli Theorem, that there is a subsequence of (yn)n again
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denoted by (yn)n and a continuous function y: R → E such that (yn)n converges
to y in E, uniformly on compact subsets of R. For every t ∈ R a subsequence of
(xn(t))n (depending on t) converges to some point x(t) ∈ M (as M is compact
in the metric space (M, dM)). Continuity of e implies that e(x(t)) = y(t). Since
e is a homeomorphism of M onto the topological subspace e(M) of E, it follows
that x: R →M is defined and continuous and e ◦x = y. Moreover, xn(t) → x(t)
in (M, dM), uniformly for t lying in compact subsets of R. Thus, for each t ∈ R,
Γ(g((anun(t), xn(t)), bnεn)) → Γ(g((0, x(t)), 0)). Together with (4.4) this implies
that for all t, t0 ∈ R

yn(t)− yn(t0) =
∫ t

t0

Γ(g((anun(s), xn(s)), bnεn)) ds →
∫ t

t0

Γ(g((0, x(s)), 0)) ds

in case (i) and

yn(t)− yn(t0) =
∫ t

t0

εnΓ(g((anun(s), xn(s)), bnεn)) ds → 0

in case (ii). Thus

y(t)− y(t0) =
∫ t

t0

Γ(g((0, x(s)), 0)) ds, t, t0 ∈ R

in case (i) and

y(t)− y(t0) = 0, t, t0 ∈ R

in case (ii). It follows that y is differentiable into E and

(4.5) y′(t) = Γ(g((0, x(t)), 0)) = DMe(x(t))(g1((0, x(t)), 0)), t ∈ R

in case (i) and

(4.6) y′(t) = 0, t ∈ R

in case (ii).
Since e(M) is a C2-submanifold of E, it follows that y is differentiable into

e(M) and since e is a C2-diffeomorphism from M to e(M) it follows that x is
differentiable into M. By Subsection 3.2

(4.7) y′(t) = DMe(x(t))(ẋ(t)), t ∈M.

Since e is an imbedding, it follows that, for every x ∈M, the map Txe:Tx(M) →
Te(x)(E) is injective. Since DMe(x)(u) = (Txe(u))(β) for all u ∈ Tx(M) (where,
as before, β = idE) it follows that the map DMe(x):Tx(M) → E is injective.
Thus (4.5), (4.7) and (4.6) imply that

ẋ(t) = g1((0, x(t)), 0), t ∈ R
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in case (i) and, in case (ii),

ẋ(t) = 0, t ∈ R. �

For each ε ∈ ]0, ε] and λ ∈ [0, 1], by Subsection 3.6, the solutions of the
differential equation

(4.8)
εu̇ = (1− λ)(f((u, x), ε)−Df((0, x), 0)u) + B(x, λ)u,

ẋ = h1(((1− λ)u, x), (1− λ)ε)

generate a local (semi)flow π′ε,λ on Z0.

Proposition 4.7. Let ε ∈ ]0, ε] be arbitrary and (λn)n be an arbitrary se-
quence in [0, 1] converging to some λ ∈ [0, 1]. Then π′ε,λn

→ π′ε,λ as n →∞.

Proof. Consider the differential equation

(4.9)

εu̇ = (1− λ)(f((u, x), ε)−Df((0, x), 0)u) + B(x, λ)u,

ẋ = h1(((1− λ)u, x), (1− λ)ε),

λ̇ = 0.

Since the right hand side of (4.9) defines a locally Lipschitzian vector field on
Z0× ]a0, b0[, it follows that the solutions of (4.9) generate a local (semi)flow Π =
Πε on Z0× ]a0, b0[. The definition of Πε shows that, for all ((u, x), λ) ∈ Z0× [0, 1]
and all t ∈ [0,∞[, ((u, x), λ)Πt is defined if and only if (u, x)π′ε,λt is defined and
then ((u, x), λ)Πt = ((u, x)π′ε,λt, λ). Now continuity of Π and openness of the
domain of definition of Π in Z × R imply the assertion of the proposition. �

Define the maps T1:W0 → Y and T2:Z0 → Y by

T1((u, x), ε) = f((u, x), ε)− f((u, x), 0), ((u, x), ε) ∈ W0

and

T2(u, x) = f((u, x), 0)− f((0, x), 0)−Df((0, x), 0)(u), (u, x) ∈ Z0.

Since f((0, x), 0) = 0 for all x ∈M it follows that

f((u, x), ε) = T1((u, x), ε) + T2(u, x) + Df((0, x), 0)(u), ((u, x), ε) ∈ W0.

Lemma 4.8. Let M be compact in M. Then there is an η′2 ∈ ]0,∞[ such
that [M ]η′2 ⊂ Z0 and whenever x ∈ M , λ ∈ [0, 1] and u: R → Y is a solution of
the equation

u̇ = (1− λ)T2(u, x) + B(x, λ)u
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lying in [M ]η′2 , then u ≡ 0.

Proof. Since M is compact in M and Z0 is open in Y ×M, there exists
an η = η(M) ∈ ]0,∞[ such that [M ]η ⊂ Z0. For each η ∈ ]0, η] define

C(η) = sup
(u,x)∈[M ]η

|T2(u, x)|Y .

The mean-value theorem implies that

(4.10) lim
η→0+

C(η)/η = 0.

If the lemma does not hold, then there are sequences (ηn)n, (xn)n and (λn)n

in ]0, η], M and [0, 1], respectively, with ηn → 0, and there is a sequence (un)n

such that for each n ∈ N, un: R → Y is differentiable,

u̇n(t) = (1− λn)T2(un(t), xn) + B(xn, λn)un(t), t ∈ R

and |un(0)|Y = ηn. We may assume that xn → x ∈ M and λn → λ ∈ [0, 1] as
n →∞. Set vn := un/ηn, n ∈ N. Then

(4.11) sup
t∈R

|v̇n(t)|Y ≤ C(ηn)/ηn + sup
n∈N

|B(xn, λn)|L(Y,Y ).

Since, for each t ∈ R, {vn(t) | n ∈ N} lies in a compact subset of Y , us-
ing (4.10), (4.11) and Arzelà–Ascoli theorem we see that a subsequence of (vn)n,
again denoted by (vn)n, converges, uniformly on compact subsets of R, to a boun-
ded function v: R → Y which is differentiable and such that

v̇(t) = B(x, λ)v(t), t ∈ R.

Since B(x, λ) is hyperbolic, it follows that v ≡ 0. However, |v(0)| = 1, a contra-
diction which proves the lemma. �

Let M ⊂ M be compact and η = η(M) ∈ ]0,∞[ be such that [M ]η ⊂ Z0.
Let T0(M) be the set of functions σ: R → Y ×M such that σ(t) = (0, x(t)),
t ∈ R where x is a full solution of π0 lying in Invπ0(M). Moreover, for η ∈ ]0, η],
ε ∈ ]0, ε] and λ ∈ [0, 1], let T ′(M,η, ε, λ) be the set of all full solutions of π′ε,λ

lying in Invπ′ε,λ
([M ]η). Since Invπ0(M) and Invπ′ε,λ

([M ]η) are compact in M
and Y ×M respectively, it follows from [2, Proposition 2.7] that

Lemma 4.9. The set T0(M) is compact in C(R → Y ×M) and translation
and cut-and-glue invariant. Moreover, for η ∈ ]0, η], ε ∈ ]0, ε] and λ ∈ [0, 1], the
set T ′(M,η, ε, λ) is compact in C(R → Y ×M) and translation and cut-and-glue
invariant.
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Proposition 4.10. Let M be compact in M. Then there is an η′ = η′(M) ∈
]0, η(M)] such that whenever η ∈ ]0, η′], (εκ)κ is a sequence in ]0, ε] converging
to 0 and (λκ)κ is an arbitrary sequence in [0, 1] then Tκ → T0 = T0(M), where

Tκ = T ′(M,η, εκ, λκ), κ ∈ N.

Proof. Let η′ = max(η′1, η
′
2), where η′1 and ε′ are as in Proposition 4.6 with

g = h and η′2 is as in Lemma 4.8. Let η ∈ ]0, η′] be arbitrary. It is enough to prove
that whenever (εn)n is a sequence in ]0, ε′] converging to 0, (λn)n is a sequence
in [0, 1] converging to λ ∈ [0, 1] and (σn)n is a sequence such that, for each
n ∈ N, σn is a full solution of π′εn,λn

lying in [M ]η and σn(t) =: (un(t), xn(t)),
t ∈ R then (i) (un)n converges to u ≡ 0 in Y , uniformly on R and (ii) (xn)n has
a subsequence converging in (M, dM), uniformly on compact subsets of R, to
a full solution of π0 lying in M .

Suppose (i) is not true. Then by translation invariance and passing to a sub-
sequence if necessary, we may assume that there is a δ ∈ ]0,∞[ such that
|un(0)|Y ≥ δ for all n ∈ N. Define functions vn: R → Y and ξn: R → M,
n ∈ N, by

vn(t) = un(εnt), ξn(t) = xn(εnt), t ∈ R.

It follows that

ξ̇n(t) = εnh1(((1− λn)vn(t), ξn(t)), (1− λn)εn), n ∈ N, t ∈ R.

An application of Proposition 4.6 (with g = h) shows that, by passing to subse-
quences if necessary, we may assume that (ξn)n converges (M, dM), uniformly
on compact subsets of R, to a constant ξ ∈ M . We also have that

(4.12) v̇n(t) = (1− λn)T1((vn(t), ξn(t)), εn)

+ (1− λn)T2(vn(t), ξn(t)) + B(ξn(t), λn)vn(t), t ∈ R.

By our assumptions

(4.13) lim
ε→0+

sup
(u,x)∈[M ]η

|T1((u, x), ε)|Y = 0.

Since, for each t ∈ R, {vn(t) | n ∈ N} lies in a compact subset of Y , it follows
from (4.13), (4.12) and Arzelà–Ascoli Theorem, passing to subsequences if neces-
sary, that (vn)n converges in Y , uniformly on compact subsets of R to a function
v: R → Y which is is differentiable into Y and

v̇(t) = (1− λ)T2(v(t), ξ) + B(ξ, λ)v(t), t ∈ R.

It follows from Lemma 4.8 that v = 0, a contradiction as |v(0)|Y ≥ δ. This
shows that (i) is satisfied.

Now (i) and an application of Proposition 4.6 with g = h shows that there
is a subsequence of (xn)n which converges in (M, dM), uniformly on compact
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subsets of R, to a function x: R → M which is differentiable into M and such
that

ẋ(t) = h1((0, x(t)), 0), t ∈ R.

Thus x is a full solution of π0 lying in M . This proves (ii). �

Proposition 4.10 has several important corollaries.

Corollary 4.11. Let M be compact in M, η′(M) be as in Proposition 4.10
and η1, η2 ∈ ]0, η′(M)] be arbitrary. Then there is an ε̂ ∈ ]0, ε] such that for all
ε ∈ ]0, ε̂] and all λ ∈ [0, 1]

T ′(M,η1, ε, λ) = T ′(M,η2, ε, λ).

Proof. Suppose e.g. that η1 ≤ η2. If the corollary is not true then we may
assume that there is a sequence (εκ)κ in ]0, ε] converging to zero, there is a se-
quence (λκ)κ in [0, 1] and there is a sequence (σκ)κ with σκ ∈ T ′(M,η2, εκ, λκ)
and σκ(0) 6∈ [M ]η1 for all κ ∈ N. If (uκ(t), xκ(t)) := σκ(t) for κ ∈ N and t ∈ R
then it follows that |uκ(0)| > η1 for all κ ∈ N. However, Proposition 4.10 implies
that a subsequence of (uκ)κ converges to zero in Y . This contradiction proves
the corollary. �

Corollary 4.12. Let M1, M2 be compact in M, η′(M1), η′(M2) be as
in Proposition 4.10 and η1, η2 ∈ ]0,min(η′(M1), η′(M2))] be arbitrary. Suppose
that both M1 and M2 are isolating neigbourhoods of the same isolated invariant
set S relative to π0. Then there is an ε̂ ∈ ]0, ε] such that for all ε ∈ ]0, ε̂] and all
λ ∈ [0, 1]

T ′(M1, η1, ε, λ) = T ′(M2, η2, ε, λ).

Proof. If the corollary is not true then there is a sequence (εκ)κ in ]0, ε]
converging to zero, there is a sequence (λκ)κ in [0, 1] and there is a sequence
(σκ)κ with σκ ∈ T ′(M2, η2, εκ, λκ) and σκ(0) 6∈ [M1]η1 for all κ ∈ N. Set
(uκ(t), xκ(t)) := σκ(t) for κ ∈ N and t ∈ R. Using Proposition 4.10 and taking
subsequences if necessary, we may assume that (uκ)κ converges to zero in Y and
(xκ)κ converges in M, uniformly on compact subsets of R, to a full solution x

of π0 lying in S. In particular, x(0) ∈ IntM(M1) so xκ(0) ∈ IntM(M1) and
|uκ(0)|Y ≤ η1 for κ ∈ N large enough. It follows that σκ(0) ∈ [M1]η1 for all such
κ, a contradiction which proves the corollary. �

Corollary 4.13. Let S0 and N be as in Theorem 4.3. Let η′ = η′(N)
be as in Proposition 4.10 with M = N . Then for every η ∈ ]0, η′] there is an
ε1(η) ∈ ]0, ε] such that for every ε ∈ ]0, ε1(η)] and for every λ ∈ [0, 1] the set
[N ]η is a π′ε,λ-isolating neigbourhood of Sε,λ = Sε,λ,N,η := Invπ′ε,λ

([N ]η).

Proof. If the corollary is not true, then there is an η ∈ ]0, η′] and sequences
(εκ)κ and (λκ)κ in ]0, ε] and [0, 1] respectively such that (εκ)κ converges to zero
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and [N ]η is not a π′εκ,λκ
-isolating neigbourhood for all κ ∈ N. For κ ∈ N set

πκ = π′εκ,λκ
and Tκ = T ′(N, η, εκ, λκ). Moreover, set T0 = T0(N). Then

InvTκ([N ]η) = Invπκ([N ]η) 6⊂ IntY×M([N ]η)

for all κ ∈ N. Now, by Proposition 4.10, Tκ → T0. Since InvT0([N ]η) = {0} ×
Invπ0(N) ⊂ IntY×M([N ]η), it follows from [1, Proposition 2.4] that, for all κ ∈ N
large enough, InvTκ([N ]η) ⊂ IntY×M([N ]η), a contradiction which proves the
corollary. �

Corollary 4.14. Let S0, N , (Mp)p∈P and (Vp)p∈P be as in Theorem 4.3.
Let η′ = η′(N) be as in Proposition 4.10 with M = N . For all η ∈ ]0,∞[,
ε ∈ ]0, ε], λ ∈ [0, 1] and every p ∈ P , define Sε,λ = Sε,λ,N,η := Invπ′ε,λ

([N ]η) and

Mp,ε,λ = Mp,ε,λ,Vp,η := Invπ′ε,λ
([Vp]η).

Then for every η ∈ ]0, η′] there is an ε2(η) ∈ ]0, ε] such that for all ε ∈ ]0, ε2(η)]
and λ ∈ [0, 1] the family (Mp,ε,λ)p∈P is a ≺-ordered Morse decomposition of Sε,λ

relative to π′ε,λ and for every p ∈ P the set [Vp]η is a π′ε,λ-isolating neigbourhood
of Mp,ε,λ.

Proof. If the corollary is not true, then there is an η ∈ ]0, η′] and sequences
(εκ)κ and (λκ)κ in ]0, ε] and [0, 1] respectively such that (εκ)κ converges to zero
and, for every κ ∈ N, either the family (Mp,εκ,λκ

)p∈P is not a ≺-ordered Morse
decomposition of Sεκ,λκ relative to π′εκ,λκ

or else, for some p ∈ P , the set [Vp]η
is not a π′εκ,λκ

-isolating neigbourhood of Mp,εκ,λκ
.

For κ ∈ N set πκ = π′εκ,λκ
and Tκ = T ′(N, η, εκ, λκ). Moreover, set T0 =

T0(N).
Our hypotheses imply that ({0} ×Mp)p∈P is a ≺-ordered T0-Morse decom-

position. Moreover, for every p ∈ P ,

InvT0([Vp]η) = {0} ×Mp ⊂ IntY×M([Vp]η)

and
InvTκ([Vp]η) = Invπκ([Vp]η) = Mp,εκ,λκ , κ ∈ N.

Now, by Proposition 4.10, Tκ → T0. Therefore, it follows from [2, Theo-
rem 3.3] that, for all κ ∈ N large enough, the family (Mp,εκ,λκ

)p∈P is a ≺-ordered
Morse decomposition of Sεκ,λκ relative to π′εκ,λκ

and, for all p ∈ P , the set [Vp]η
is a π′εκ,λκ

-isolating neigbourhood of Mp,εκ,λκ
, a contradiction which proves the

corollary. �

We can now give a

Proof of Theorem 4.3. Let N be as in Theorem 4.3. Let η′(N) and
for every η ∈ ]0, η′(N)] let η1(η) be as in Corollary 4.13. Set η0 = η′(N) and
ε0(η) = ε1(η), η ∈ ]0, η0]. Let η ∈ ]0, η0] and ε ∈ ]0, ε0(η)] be arbitrary.
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By Corollary 4.13 for every λ ∈ [0, 1] the set [N ]η is a π′ε,λ-isolating neig-
bourhood of Sε,λ. Being compact, the set [N ]η is strongly π′ε,λ-admissible for
all λ ∈ [0, 1] and (π′ε,λκ

)κ-admissible for every sequence (λκ)κ in [0, 1]. Thus
Proposition 4.7 and the Conley-index continuation principle, see e.g. [15, Theo-
rem I.12.2], imply that

h(πε, Sε) = h(π′ε,0, Sε,0)h(π′ε,1, Sε,1).

Now π′ε,1 = π̃ε×π0, where π̃ε is the (semi)flow generated by the linear differential
equation

εẏ = By.

Since B is hyperbolic with Morse-index k, it follows that Sε,1 = {0} × S0 and
h(π̃ε, {0}) = Σk. Thus h(π′ε,1, Sε,1) = Σk ∧ h(π0, S0) so

h(πε, Sε) = Σk ∧ h(π0, S0).

This proves the first part of Theorem 4.3. Now let Mp and Vp, p ∈ P be as
in Theorem 4.3. For η ∈ ]0, η0] let ε2(η) be as in Corollary 4.14. Set ε0(η) =
min(ε0(η), ε2(η)), η ∈ ]0, η0].

Let η ∈ ]0, η0] and ε ∈ ]0, ε0(η)] be arbitrary. By Corollary 4.14 for every λ ∈
[0, 1] the family (Mp,ε,λ)p∈P is a ≺-ordered Morse decomposition of Sε,λ relative
to π′ε,λ and, for every p ∈ P , [Vp]η is a π′ε,λ-isolating neigbourhood of Mp,ε,λ.
Together with what we have established so far it follows that all assumptions
of the continuation principle for (co)homology index braids ([3, Theorem 3.7]
with Λ = [0, 1]) are satisfied. Now that continuation principle implies that
the (co)homology index braid of (πε, Sε, (Mp,ε)p∈P ) = (π′ε,0, Sε,0, (Mp,ε,0)p∈P )
is isomorphic to the (co)homology index braid of (π′ε,1, Sε,1, (Mp,ε,1)p∈P ). The
(semi)flow π̃ε is clearly conjugate to the product semiflow π̃−ε × π̃+

ε where π̃−ε
resp. π̃+

ε is the (semi)flow on a finite-dimensional Y − resp. Y + generated by
the linear differential equation

εẏ = B−y resp. εẏ = B+y

where B− ∈ L(Y −, Y −) resp. B+ ∈ L(Y +, Y +) is a linear operator with all
eigenvalues having negative resp. positive real parts. Thus π′ε,1 is conjugate to
the (semi)flow (π0× π̃+

ε )× π̃−ε . Now Theorem 2.2 implies that the (co)homology
index braid of (π′ε,1, Sε,1, (Mp,ε,1)p∈P ) is isomorphic to the (co)homology index
braid of (π0 × π̃+

ε , S0 × {0Y +}, (Mp × {0Y +})p∈P ).
Since k = dim Y +, an application of [4, Theorem 3.1] and [17, Theorem 4.1]

now completes the proof of Theorem 4.3. �

The sets Sε,N,η and Mp,ε,N,η in Theorem 4.3 are asymptotically independent
of N and η. More precisely, the following result holds.
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Proposition 4.15. Let S0 and (Mp)p∈P be as in Theorem 4.3. Let N1 ⊂M
and N2 ⊂M be two compact isolating neigbourhoods of S0, η′(N1), η′(N2) be as
in Proposition 4.10 and η1, η2 ∈ ]0,min(η′(N1), η′(N2))] be arbitrary. Moreover,
for p ∈ P let V1,p ⊂ N1 and V2,p ⊂ N2 be two compact isolating neigbourhoods
of Mp, relative to π0. Then there is an ε̂ ∈ ]0, ε] such that for all ε ∈ ]0, ε̂]

Sε,N1,η1 = Sε,N2,η2 and Mp,ε,V1,p,η1 = Mp,ε,V2,p,η2 , p ∈ P.

Proof. This is an immediate consequence of Corollary 4.12. �

Moreover, the following upper-semicontinuity result obtains.

Proposition 4.16. In the notation of Theorem 4.3

lim
ε→0+

sup
(y,x)∈Sε

inf
z∈S0

(|y|Y + dM(x, z)) = 0

and for every p ∈ P ,

lim
ε→0+

sup
(y,x)∈Mp,ε

inf
z∈Mp

(|y|Y + dM(x, z)) = 0.

Proof. This follows easily from Proposition 4.10. �

Let us discuss two special cases of Theorem 4.3. In the first result we use the
following common notation: if, for i ∈ {1, 2}, Ci and Ei are sets and αi:Ci → Ei

is a map, then α1 × α2:C1 × C2 → E1 × E2 is the product map defined by

(α1 × α2)(c1, c2) = (α1(c1), α2(c2)), (c1, c2) ∈ C1 × C2.

Corollary 4.17. Assume Hypothesis 4.1. In addition, assume that Y =
Y1 × Y2 where Y1 and Y2 are finite-dimensional normed linear spaces. Suppose
that, for all x ∈M,

Df((φ(x), x), 0) = B1(x)×B2(x)

where Bi(x) ∈ L(Yi, Yi), i ∈ {1, 2}, re σ(B1(x)) < 0 and re σ(B2(x)) > 0. Let k

be the dimension of Y2. Then Hypothesis 4.2 is satisfied and so, in particular,
the assertions of Theorem 4.3 hold.

Proof. Let a0 = −1 and b0 = 2. Define B:M× ]a0, b0[ → L(Y, Y ) by

B(x, λ) = (1− λ)Df((φ(x), x), 0) + λB, (x, λ) ∈M× ]a0, b0[

where B = (− idY1)× idY2 . Then, clearly, B:M× ]a0, b0[ → L(Y, Y ) is a locally
Lipschitzian map. An easy calculation shows that B(x, λ) is hyperbolic for every
(x, λ) ∈M× [0, 1], B(x, 0) = Df((φ(x), x), 0) and B(x, 1) = B for every x ∈M,
where B ∈ L(Y, Y ) has Morse-index k ∈ N0. Thus, indeed, Hypothesis 4.2 is
satisfied. �
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In particular, Corollary 4.17 implies Theorems 1.2 and 1.3 stated in the
Introduction.

Corollary 4.18. Assume Hypothesis 4.1. In addition, assume M is con-
tractible to a point x0 ∈M. Moreover, let A(x) := Df((φ(x), x), 0) be hyperbolic
for every x ∈M. Then Hypothesis 4.2 is satisfied with k being the Morse index
of B := Df((φ(x0), x0), 0). In particular, the assertions of Theorem 4.3 hold.

Proof. Our hypothesis implies that there is a continuous map G:M ×
[0, 1] → M such that G(x, 0) = x and G(x, 1) = x0 for all x ∈ M. By well-
known results from the theory of differentiable manifolds we may assume that
G is of class C2 and that, for some a0, b0 ∈ R with a0 < 0 < 1 < b0, G has
an extension to a C2-map from M× ]a0, b0[ to M again denoted by G. Define
B:M× ]a0, b0[ → L(Y, Y ) by

B(x, λ) = A(G(x, λ)), (x, λ) ∈M× ]a0, b0[ .

It is clear that B:M× ]a0, b0[ → L(Y, Y ) is a locally Lipschitzian map such that
B(x, λ) is hyperbolic for every (x, λ) ∈ M × [0, 1], B(x, 0) = Df((φ(x), x), 0)
and B(x, 1) = B for every x ∈ M, where B ∈ L(Y, Y ) has Morse-index k ∈ N0.
Thus, indeed, Hypothesis 4.2 is satisfied. �

We will now show that, in general, Hypothesis 4.1 alone does not suffice for
the assertions of Theorem 4.3 to hold.

Let Y = R2 and 〈 · , · 〉 be the canonical scalar product on Y . Let M =
S1 ⊂ R2 be the one-dimensional sphere endowed with the canonical differentiable
structure of a submanifold of R2. For θ ∈ R and i ∈ {1, 2} let ei(θ) ∈ Y be
defined by

e1(θ) = (cos(θ/2), sin(θ/2)), e2(θ) = (− sin(θ/2), cos(θ/2)).

Notice that, for θ ∈ R, (e1(θ), e2(θ)) is an orthonormal basis of Y and ei(θ+2π) =
−ei(θ), i ∈ {1, 2}.

Let ε ∈ ]0,∞[ be arbitrary and define the map g: (Y × R)× [0, ε] → Y by

g((y, θ), ε) = 〈y, e1(θ)〉e1(θ)− 〈y, e2(θ)〉e2(θ), ((y, θ), ε) ∈ (Y × R)× [0, ε] .

Then g is of class C∞ and 2π-periodic in θ. Thus there is a unique map f : (Y ×
M)× [0, ε] → Y such that

f((y, (cos θ, sin θ)), ε) = g((y, θ), ε), ((y, θ), ε) ∈ (Y ×M)× [0, ε] .

The map f is of class C∞. Define the map h: (Y ×M)× [0, ε] → TM by

h((y, x), ε) = (x, 0x), ((y, x), ε) ∈ (Y ×M)× [0, ε] ,

where, for x ∈M, 0x is the zero tangent vector toM at x. Finally, let φ:M→ Y

be defined by φ(x) = 0 for all x ∈M.
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With these definitions we see that Hypothesis 4.1 is satisfied with Z0 =
Y ×M. Let π0 and πε, ε ∈ ]0, ε], be the local semiflows defined by the differential
equations (4.2) and (4.1), respectively.

The N = M is a compact π0-isolating neigbourhood of the isolated π0-
invariant set S0 = N . Since (N, ∅) is an index pair in N , it follows that for q ∈ Z
the homology Conley index Hq(π0, S0) is represented by Hq(N ∪{p}, {p}), where
p /∈ N , {p} is endowed the discrete topology N ∪ {p} is endowed with the sum
topology. By the excision property it follows that Hq(π0, S0) is represented by
Hq(N).

Now suppose that the assertions of Theorem 4.3 hold for some k ∈ N0 and
let η0 = η0(N) be as in that theorem. Choose η ∈ ]0, η0/

√
2] arbitrarily. Then

by Theorem 4.3 and Corollary 4.11 there is an ε̂ ∈ ]0, ε] such that for every
ε ∈ ]0, ε̂], the sets [N ]η and [N ]√2·η are isolating neigbourhoods of the same
isolated invariant set Sε relative to πε and for each q ∈ Z there is an isomorphism
from Hq(πε, Sε) to Hq−k(π0, S0).

Let ε ∈ ]0, ε̂] be arbitrary. Define the following sets:

L1 = {(y, x) ∈ Y ×M | there exists a θ ∈ R

with x = (cos θ, sin θ), |〈y, e1(θ)〉| ≤ η and |〈y, e2(θ)〉| ≤ η},
L2 = {(y, x) ∈ Y ×M | there exists a θ ∈ R

with x = (cos θ, sin θ), |〈y, e1(θ)〉| = η and |〈y, e2(θ)〉| ≤ η},
L̂1 = {(y, x) ∈ Y ×M | there exists a θ ∈ R

with x = (cos θ, sin θ), |〈y, e1(θ)〉| ≤ η and 〈y, e2(θ)〉 = 0},
L̂2 = {(y, x) ∈ Y ×M | there exists a θ ∈ R

with x = (cos θ, sin θ), |〈y, e1(θ)〉| = η and 〈y, e2(θ)〉 = 0}.

Any solution t 7→ (y(t), x(t)) of the (semi)flow πε satisfies x(t) ≡ constant.
Therefore we easily see that L1 is an isolating block relative to the (semi)flow
πε with exit set L2. Since [N ]η ⊂ L1 ⊂ [N ]√2·η, the set L1 is an isolating
neigbourhood of Sε relative to πε. It follows that Hq(πε, Sε) is represented by
Hq(L1/L2, {[L2]}) so

Hq(L1/L2, {[L2]}) ∼= Hq−k(N) = Hq−k(S1), q ∈ Z.

The map G: (Y × R)× [0, 1] → (Y ×M) given by

G((y, θ), t) = (y − t〈y, e2(θ)〉e2(θ), (cos θ, sin θ)) ((y, θ), t) ∈ (Y × R)× [0, 1]

is continuous and 2π-periodic in θ. Therefore there is a unique map F : (Y ×
M)× [0, 1] → Y ×M such that

F ((y, (cos θ, sin θ)), t) = G((y, θ), t), ((y, θ), t) ∈ (Y × R)× [0, 1] .
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The map F is continuous and F (Li × [0, 1]) ⊂ Li and F (L̂i × [0, 1]) ⊂ L̂i for
i ∈ {1, 2}.

Using the map F we easily see that (L1/L2, [L2]) is homotopy equivalent to
(L̂1/L̂2, [L̂2]). Hence, using integer coefficients, we obtain, for all q ∈ Z,

(4.14) Hq(L̂1/L̂2, {[L̂2]}) ∼= Hq−k(S1) ∼=

{
Z if q − k ∈ {0, 1},
0 otherwise,

Since L̂1 is a Möbius strip and L̂2 is its geometric boundary, it follows that L̂1/L̂2

is homeomorphic to the projective plane. In particular,

H1(L̂1/L̂2, {[L̂2]}) ∼= H1(L̂1/L̂2) ∼= Z/2Z,

a contradiction to (4.14). Thus, indeed, the assertions of Theorem 4.3 do not
hold in this case.
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